• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deformation and failure analysis of river levee induced by coal mining and its influence factor

    2017-03-13 05:47:03MengLiJixiongZhangNanZhouQiangZhang

    Meng Li , Jixiong Zhang, Nan Zhou, Qiang Zhang

    1 Introduction

    Currently, significant coal resources in China are buried beneath river levees. Therefore,the exploration of such coal resources is supposed to affect the normal use of river levees.When coal is mined, the equilibrium stress in those rocks around the coal resources is lost so as to result in the movement and fracture of overlying strata [Booth (1986); Qian, Xu and Shi (2003)]. Finally, the ground surface is damaged and subsides, which then causes the deformation and failure of river levees. At present, there is a paucity of research into the influence of mining on the stability of river levees. Wang et al. [Wang, Lian and Chen(2013)] studied the movement and deformation of river levees under the influence of mining by simulating surface ground movement during coal mining under river levees.By using a FLAC3D, Li et al. [Li, Hu, Chen and Yang (2008)] simulated the movement and deformation of the river levee of Nantuo River influenced by the mining of the 6123 working face in Baishan Mine (Anhui, China). Wang Lieping et al. [Wang, Hu, Chen,Chen and Li (2009)] predicted the mining subsidence of the southern river levee of Nantuo River lying on thick, unconsolidated, overburden using a probability integral method and FLAC3Dsoftware. Wu et al. [Wu, Wang, Yin, Sun, Jia and Li (2007)]investigated the influence of mining subsidence on the safety of dams by combining numerical calculations and field measurement. All these research projects focus on the deformation of river levees induced by mining. However, since many factors can influence the stability of river levees, a method to evaluate the stability of river levees induced by mining as well as the criterion to determine whether river levees are damaged or not is required. Therefore, based on the deformation characteristics of river levees under mining conditions, this research established a mechanical model for the deformation of river levees and proposed a failure criterion for river levees. After calculating the deformation and stress distribution in typical river levees, this work further analysed those factors which could influence the stability of river levees. This aimed to provide a theoretical basis for the prediction of the deformation and failure of river levees induced by mining.

    2 Deformation characteristics of river levees induced by mining

    Before the mining of underground coal, the underground stress state is in equilibrium.When the coal is mined out, the stress in the surrounding rocks is redistributed, resulting in the movement and fracture of overlying strata [Mohammad, Mohammad, and Abbas(2015); Cao, Zhou, Xu and Li (2014)]. Finally, these cracks develop, from the bottom up,to the ground surface, causing surface subsidence [Can, Kuscu, and Kartal (2012); Wang,Zhang, Guo, and Zha (2014)]. As a result, river levees in the range of surface subsidence are affected. This comes from their foundation and causes their deformation. When the deformation exceeds the capacity of a river levee to sustain it, damage ensues. The horizontal deformation of the surface is mainly attributed to the failure of river levees as their lateral tensile stiffness is small and they are easily cracked, which finally results in their failure. Figure 1 shows the mining-induced deformation characteristics of river levees.

    Figure 1: Mining-induced deformation characteristics of river levees

    3 Mechanical analysis of deformation and failure of river levees

    3.1 Mechanical model

    As surface subsidence basins enlarge and deepen with the advance of a working face,river levees at different positions on the subsidence basin are subject to different influences. Meanwhile, the deformation and stress at different positions of a river levee are different. Therefore, two coordinate [Tan and Deng (2004)] systems describing the surface subsidence and river levee subsidence, which are independent and interconnected,can be constituted to study the deformation and stress distribution of river levees under the influence of mining (Figure 2).

    Figure 2: Coordinate systems for the river levee and the surface subsidence

    Taking the maximum surface subsidence point o as the origin, a coordinate system (w(x)-o-x) for surface subsidence is established with the advancing direction of the working face as the x-axis which lies horizontally to the right, and the vertical, w(x)-axis which extends vertically downwards, represents the surface subsidence at point x. While by regarding the left-hand end o1 of the river levee, at x, to the maximum surface subsidence point o as the origin, a coordinate system (w(r)-o1-r) for river levee subsidence was established. Thereinto, abscissa r is consistent with the direction of the x-axis and the subsidence of any point r in the river levee is recorded as w(r). The corresponding values of surface subsidence are represented as w(x+r).

    Since the deformation of river levees induced by mining is similar to that seen in beam bending problems, the river levee could be regarded as a beam on an elastic foundation.Based on Winkler foundation theory, the foundation subsidence is positively related to the foundation force.

    Where, σ(r) is the subgrade reaction at any point on the foundation at the bottom of the river levee, while k represents the elastic foundation coefficient.

    According to the theory of coal mining subsidence, a trigonometric function [Zou, Deng,and Ma (2003); Tan, and Deng (2007)] is applied to describe the surface subsidence curve:

    Where, L is the half-basin length (the distance between the point of maximum subsidence and the boundary of the subsidence basin) and wmaxis the maximum value of surface subsidence.

    3.2 Solutions to the mechanical model

    The load on the river levee is the difference between its self-weight and the foundation force.

    Where, q is the self-weight of the river levee.

    Based on Winkler theory of foundation beams, the differential equation describing the flexure of a river levee on an elastic foundation is:

    Where, E is the elastic modulus of the soil comprising river levee, and I is the moment of inertia of the cross-section of the river levee normal to the axis of bending.

    By substituting Formula (2) into Formula (4), the differential equation governing flexure of the river levee can be rewritten as follows:

    The solutions of the homogeneous differential equation (6) are composed of general and special solutions. By processing (6), the following subsidence formula for the river levee can be obtained:

    Where, d1to d4are coefficients to be solved as determined by the boundary conditions.

    Since the river levee is supposed to move with the subsidence of the surface, the two ends of the river levee can regarded as free. Then, the specific boundary conditions are acquired as follows:

    Where, l is the length of the river levee.

    By substituting the relevant parameters into (7), and combining this with the boundary conditions (8) for the river levee, the undetermined coefficients d1to d4can be found.

    After subtracting the subsidence caused by the self-weight of the river levee, the subsidence thereof induced by mining can be acquired.

    The corresponding surface subsidence is

    3.3 Failure criterion for a river levee

    The stress in the river levee under the influence of mining is:

    The bending moment in the river levee during mining is:

    Horizontal tensile deformation is the main factor damaging the river levee, therefore the first strength theory is used to determine the failure of the river levee. Under the influence of mining, the maximum tensile stress in the river levee occurs at the bottom of the river levee, that is:

    Where, Izis the moment of inertia of the section about the neutral axis of the beam, while b and h are the width and height of the river levee.

    When the maximum tensile stress at the bottom of the river levee is larger than the tensile strength, the river levee is supposed to be damaged and:

    Where, σtis the tensile strength of the river levee.

    4 Analysis of examples

    4.1 Calculation parameters

    The deformation and failure of a river levee under the influence of mining was studied based on actual cases: the river levee was just under the 14120 working face and parallel to the advancing direction of the working face (Figure 3). According to the subsidence of the adjacent working face in this region after mining, the maximum surface subsidence wmaxof the river levee and the half-length L of the surface subsidence basin were set to 0.8 m and 300 m, respectively. In addition, the width b, height h, and length l of the river levee were 5 m, 8 m, and 120 m, separately. In addition, with the elastic modulus E and self-weight load q being 2.5 GPa and 0.16 MPa, the tensile strength σtof the river levee was 0.8 MPa. Moreover, the distance x between the river levee to the point of maximum subsidence was 30 m and the foundation coefficient k was 45 MN/m3.

    Figure 3: Positions of the river levee and the 14120 working face

    4.2 Deformation and failure of river levees

    Based on the boundary conditions in (8), d1to d4are obtained as follows by substituting the above parameters into (7):

    The mining-induced subsidence of the river levee is acquired by substituting d1to d4into(9):

    According to (16), the subsidence at different positions along the river levee is as shown in Figure 4.

    Figure 4: The subsidence of different positions along the river levee

    Based on Figure 4, it can be seen that when the river levee is not influenced by mining,the maximum subsidence thereof is 0.78 m, which is found at the left-hand end of the river levee. Moving right along the river levee, the subsidence decreases continuously until reaching the minimum value of 0.41 m which is found at the right-hand end of the river levee. Furthermore, the tensile stress at the bottom of the river levee is given by (13)as:

    Based on (17), the tensile stress at different positions at the bottom of the river levee is as shown in Figure 5.

    Figure 5: Tensile stress at different positions at the bottom of the river levee

    As seen in Figure 5, the maximum horizontal stresses on the river levee at different positions are distributed in an arcuate manner. When the river levee is not influenced by mining, the maximum tensile stress at the bottom of the river levee is 0.58 MPa which is observed at a point 47 m from the left-hand end thereof. As the maximum tensile stress is less than the tensile strength of the river levee, therefore, according to the failure criterion in (14), the river levee is not damaged.

    4.3 Analysis of the factors affecting levee subsidence

    There are, in the main, three factors including the maximum surface subsidence, the halflength of the surface subsidence basin, and the foundation coefficient which can affect the deformation and failure of the river levee. Therefore, the influence of these factors on the stability of the river levee is analysed as follows.

    (1) The maximum surface subsidence

    Figure 6 shows the influence of the maximum surface subsidence on the stability of the river levee.

    Figure 6: Influence of the maximum surface subsidence on the river levee

    From Figure 6, it is seen that the maximum surface subsidence significantly influences the river levee: upon the gradual increase in maximum surface subsidence, the tensile stress at the bottom of the river levee continuously increases. The maximum surface subsidence of, and the maximum tensile stress on, the river levee are linearly related:when the maximum surface subsidence increases from 0.3 m to 1.2 m, the maximum tensile stress correspondingly increases from 0.215 MPa to 0.859 MPa. When the maximum surface subsidence reached 1.2 m, the river levee was damaged. Thus it can be seen that, reducing the height of the working face was beneficial in that it decreased the influence of mining on the river levee.

    (2) The half-length of the surface subsidence basin

    The influence of the half-length of the surface subsidence basin on the stability of the river levee is shown in Figure 7.

    Figure 7: Influence of the half-length of the surface subsidence basin on the river levee

    As shown in Figure 7, the half-length of the surface subsidence basin exerts a significant influence on the river levee: the tensile stress decreases with increasing half-length of the surface subsidence basin, but by decreasing amounts. The half-length of the surface subsidence basin and the maximum tensile stress on the river levee are fitted by a polynomial relationship: when the half-length of the surface subsidence basin increased from 300 m to 600 m, the maximum tensile stress decreased from 0.575 MPa to 0.132 MPa. Therefore, it can be seen that increasing the advancing length of the working face can decrease the influence of mining on the river levee.

    (3) The foundation coefficient

    Figure 8: Influence of the foundation coefficient on the river levee

    Figure 8 shows the influence of the foundation coefficient on the stability of the river levee.By analysing Figure 8, it can be seen that the foundation coefficient exerts no obvious influence on the stability of the river levee. The tensile stress increases with increasing foundation coefficient. However, the amplitude of this increase gradually diminished.The foundation coefficient and the maximum tensile stress on the river levee had a polynomial relationship: when the foundation coefficient increased from 15 MN/m3to 100 MN/m3, the maximum tensile stress increased by only 0.021 MPa. Thus it can be seen that softening of the foundation was beneficial with regard to decreasing the influence of mining on the river levee.

    5 Conclusions

    (1) The lateral deformation of the ground surface (under tension) is the major factor leading to failure of such river levees. Since the river levees have poor resistance to lateral (tensile) deformation, cracks readily occur in river levees subject to tensile deformation: this ultimately damages them.

    (2) Based on the deformation characteristics of typical river levees under the influence of mining, this research established a mechanical model of the deformation of a levee by using a typical surface subsidence function. Moreover, a failure criterion for the river levee was proposed.

    (3) After the analysis of specific examples, the deformation and stress distributions were obtained for typical river levees under the influence of mining. When the maximum tensile stress at the bottom of the river levee was less than its tensile strength, the river levee was undamaged. Moreover, this research further analysed the influence of three key factors including: the maximum surface subsidence, the half-length of the surface subsidence basin, and the foundation coefficient, on the stability of a typical river levee.Results showed that reducing the mining height of the working face and the foundation coefficient, and increasing the advancing length of the working face, were beneficial to a reduction in the influence of mining on the river levee.

    Acknowledgement Financial support for this work, provided by Project of Jiangsu Distinguished Professor (2015-29) and Jiangsu Province Fourth 333 Engineering(BRA2015311).

    Booth, C. J. (1986): Strata-movement concepts and the hydrogeological impact of underground coal mining. Ground Water, vol. 24, no. 4, pp. 507–515.

    Can, E.; Kuscu, S. and Kartal, M. E. (2012): Effects of mining subsidence on masonry buildings in Zonguldak hard coal region in Turkey. Environmental Earth Sciences, vol.66, no. 8, pp. 2503–2518.

    Cao, Z. Z.; Zhou, Y. J.; Xu, P.; Li, J. W. (2014): Mechanical response analysis and safety assessment of shallow-buried pipeline under the influence of mining. CMES:Computer Modeling in Engineering & Sciences, vol. 101, no. 5, pp. 351–364.

    Li, M.; Hu, K.; Chen, Z. Q.; Yang, R. (2008): Numerical simulation prediction study of surface subsidence caused by coal mining under the bank of Nantuo river. Journal of Anhui University of Science and Technology (Natural Science), vol. 28, no. 2, pp. 6–10.Mohammad, R.; Mohammad, F. H.; Abbas, M. (2015): Determination of longwall mining-induced stress using the strain energy method. Rock Mechanics and Rock Engineering, vol. 48, no. 6, pp. 2421–2433.

    Qian, M. G.; Xu, J. L.; Shi, P. W. (2003): Mining Pressure and Ground Control. China University of Mining & Technology Press.

    Tan, Z. X.; Deng, K. Z. (2004): Coordinating work model of ground, foundation and structure of building in mining area. Journal of China University of Mining &Technology, vol 33, no. 3, pp. 264-267.

    Tan, Z. X.; Deng, K. Z. (2007): Study on change laws of additional ground reaction force of buildings in mining area. Journal of China Coal Society, vol. 32, no. 9, pp. 907–911.

    Wu, X.; Wang, X. G.; Yin, Q. W.; Sun, Y. D.; Jia, Z. X.; Li, X. Q. (2007): Study on coal mining in seam under large reservoir areas. Journal of China Coal Society, vol. 32,no. 12, pp. 1273–1276.

    Wang, L. P.; Hu, K.; Chen, Y. P.; Chen, Z. Q.; Li, M. (2009): Mining subsidence prediction of Nantuo river bank under condition of thick and unconsolidated overburden.Coal Science & Technology, vol. 37, no. 12, pp. 96–99.

    Wang, C. J.; Lian, W. L.; Chen, Y. (2013): Deformation laws of river levees under the influence of mining. Energy Technology & Management, vol. 38, no. 3, pp. 159–162.

    Wang, L.; Zhang, X. N.; Guo, G. L.; Zha, J. F. (2014): Research on surface subsidence prediction model of coal mining with solid compacted backfilling. Rock & Soil Mechanics, vol. 35, no. 7, pp. 1973–1978.

    Zou, Y. F.; Deng, K. Z.; Ma, W. M. (2003): Mining Subsidence Engineering. China University of Mining & Technology Press.

    村上凉子中文字幕在线| 一边摸一边抽搐一进一小说| 日韩三级伦理在线观看| 搡女人真爽免费视频火全软件 | 99九九线精品视频在线观看视频| 国产一区二区亚洲精品在线观看| 国产精品爽爽va在线观看网站| 精品久久久久久久久av| 哪里可以看免费的av片| 麻豆国产97在线/欧美| 亚洲精品国产成人久久av| 少妇裸体淫交视频免费看高清| 色播亚洲综合网| 俺也久久电影网| 能在线免费观看的黄片| 最近2019中文字幕mv第一页| 欧美3d第一页| 亚洲不卡免费看| 久久久精品大字幕| 97超碰精品成人国产| 一个人看视频在线观看www免费| 三级经典国产精品| 日本黄大片高清| 3wmmmm亚洲av在线观看| 国产私拍福利视频在线观看| 亚洲熟妇熟女久久| 舔av片在线| 精品久久久久久久久av| 99国产精品一区二区蜜桃av| 亚洲av第一区精品v没综合| 成年女人永久免费观看视频| 超碰av人人做人人爽久久| 亚洲精品影视一区二区三区av| 国产片特级美女逼逼视频| 综合色丁香网| 国产蜜桃级精品一区二区三区| 18禁黄网站禁片免费观看直播| 日本 av在线| 麻豆久久精品国产亚洲av| 成年女人看的毛片在线观看| 欧美+亚洲+日韩+国产| 欧美日韩精品成人综合77777| 国产蜜桃级精品一区二区三区| 色综合站精品国产| 免费大片18禁| 久久国内精品自在自线图片| 精品一区二区三区视频在线| 国产精品一二三区在线看| 九九爱精品视频在线观看| 精品久久久噜噜| 中国美白少妇内射xxxbb| 免费看光身美女| 国产女主播在线喷水免费视频网站 | 欧美成人精品欧美一级黄| 丝袜喷水一区| 国产一级毛片七仙女欲春2| 一进一出好大好爽视频| 免费观看的影片在线观看| 日本三级黄在线观看| 国产毛片a区久久久久| 久久国产乱子免费精品| 天美传媒精品一区二区| 欧美成人免费av一区二区三区| 国产亚洲精品综合一区在线观看| 国产男靠女视频免费网站| 丰满乱子伦码专区| 99热这里只有是精品在线观看| 久久久久久久久中文| 国产女主播在线喷水免费视频网站 | 亚洲国产欧美人成| 久久精品国产自在天天线| 一进一出抽搐动态| 哪里可以看免费的av片| 男插女下体视频免费在线播放| 午夜激情福利司机影院| 一级黄片播放器| 国产大屁股一区二区在线视频| 日韩高清综合在线| 中出人妻视频一区二区| 真实男女啪啪啪动态图| 搡老熟女国产l中国老女人| 日本黄大片高清| 免费不卡的大黄色大毛片视频在线观看 | 老女人水多毛片| 日韩大尺度精品在线看网址| 在线观看美女被高潮喷水网站| 永久网站在线| 国产精品人妻久久久久久| 天堂网av新在线| 乱码一卡2卡4卡精品| 99久久精品一区二区三区| 精品不卡国产一区二区三区| 国产午夜精品久久久久久一区二区三区 | 欧美人与善性xxx| 色哟哟哟哟哟哟| 亚洲精品日韩在线中文字幕 | 久久精品影院6| 国产黄色小视频在线观看| 国产成人影院久久av| 麻豆乱淫一区二区| 天堂影院成人在线观看| 欧美绝顶高潮抽搐喷水| 国内精品美女久久久久久| 亚洲乱码一区二区免费版| 亚洲av美国av| 丝袜美腿在线中文| 日韩 亚洲 欧美在线| 内地一区二区视频在线| av黄色大香蕉| 亚洲性久久影院| 国产又黄又爽又无遮挡在线| 天堂影院成人在线观看| 毛片女人毛片| 日日摸夜夜添夜夜添av毛片| 在线播放无遮挡| 人妻夜夜爽99麻豆av| 久久精品国产自在天天线| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品成人综合色| 一级黄片播放器| 啦啦啦观看免费观看视频高清| 精品少妇黑人巨大在线播放 | 激情 狠狠 欧美| 在现免费观看毛片| 51国产日韩欧美| av黄色大香蕉| 不卡视频在线观看欧美| 国产高潮美女av| 久久久成人免费电影| 国产精品福利在线免费观看| 国产黄片美女视频| 亚洲高清免费不卡视频| 91av网一区二区| 成人国产麻豆网| 99在线人妻在线中文字幕| www日本黄色视频网| a级毛片免费高清观看在线播放| 亚洲av成人精品一区久久| 国产探花在线观看一区二区| 亚洲人成网站高清观看| 小蜜桃在线观看免费完整版高清| 日本免费a在线| 人妻少妇偷人精品九色| 如何舔出高潮| 精品少妇黑人巨大在线播放 | 国内精品宾馆在线| 国产精品久久电影中文字幕| 亚洲图色成人| 欧美激情久久久久久爽电影| 大型黄色视频在线免费观看| 久久久成人免费电影| 国产成人影院久久av| 国产aⅴ精品一区二区三区波| 成人综合一区亚洲| 人人妻人人澡人人爽人人夜夜 | 日本与韩国留学比较| 国产精品三级大全| 深爱激情五月婷婷| 在线看三级毛片| 国产精品电影一区二区三区| 亚洲av成人精品一区久久| 日韩精品中文字幕看吧| 两个人的视频大全免费| 日韩成人伦理影院| 色尼玛亚洲综合影院| 春色校园在线视频观看| 亚洲av成人av| 国产男靠女视频免费网站| 久久久久国产网址| 直男gayav资源| 国产午夜福利久久久久久| 一区二区三区高清视频在线| 午夜免费男女啪啪视频观看 | 在线观看66精品国产| 久久久精品大字幕| 久久久久性生活片| 欧美激情在线99| 精品乱码久久久久久99久播| 身体一侧抽搐| 国产在线男女| 中出人妻视频一区二区| 18禁裸乳无遮挡免费网站照片| 麻豆国产97在线/欧美| 亚洲精品日韩av片在线观看| 国产精品1区2区在线观看.| 日韩大尺度精品在线看网址| 亚洲成a人片在线一区二区| 国产成人a∨麻豆精品| 久久中文看片网| 亚洲美女视频黄频| 亚洲av熟女| 精品一区二区三区视频在线| 成人鲁丝片一二三区免费| 国模一区二区三区四区视频| 欧美性猛交黑人性爽| 九九久久精品国产亚洲av麻豆| 久久热精品热| 亚洲av五月六月丁香网| 亚洲av中文字字幕乱码综合| 亚洲久久久久久中文字幕| 熟女人妻精品中文字幕| 亚洲av熟女| 久久久精品94久久精品| 男人舔女人下体高潮全视频| 在线观看av片永久免费下载| 黄色配什么色好看| 青春草视频在线免费观看| 久久草成人影院| 午夜爱爱视频在线播放| 一个人观看的视频www高清免费观看| 观看美女的网站| 亚洲熟妇中文字幕五十中出| 婷婷六月久久综合丁香| 午夜福利在线在线| 欧美三级亚洲精品| 成人永久免费在线观看视频| 人妻丰满熟妇av一区二区三区| 亚洲久久久久久中文字幕| 美女 人体艺术 gogo| 日本一二三区视频观看| 观看美女的网站| 国产精品三级大全| 日日撸夜夜添| 欧美日韩精品成人综合77777| 午夜福利高清视频| 国产视频一区二区在线看| 国产成人一区二区在线| 欧美最黄视频在线播放免费| 国产精品永久免费网站| 女人被狂操c到高潮| 人妻少妇偷人精品九色| 18禁裸乳无遮挡免费网站照片| 国产黄色小视频在线观看| 成年女人永久免费观看视频| 美女黄网站色视频| 成人国产麻豆网| 亚洲成人精品中文字幕电影| 日本-黄色视频高清免费观看| 国产白丝娇喘喷水9色精品| 国产成人一区二区在线| 午夜视频国产福利| 真实男女啪啪啪动态图| 国产精品久久电影中文字幕| 欧美3d第一页| 免费在线观看成人毛片| 久久久国产成人免费| 男插女下体视频免费在线播放| 欧美在线一区亚洲| 免费大片18禁| 乱人视频在线观看| 一级毛片电影观看 | 一级毛片电影观看 | av在线天堂中文字幕| 51国产日韩欧美| 久久草成人影院| 麻豆av噜噜一区二区三区| 国产精品一区www在线观看| 特大巨黑吊av在线直播| 亚洲性久久影院| 日韩精品有码人妻一区| 久久久久久久亚洲中文字幕| 亚洲成人av在线免费| 日韩三级伦理在线观看| 亚洲精品国产成人久久av| 麻豆精品久久久久久蜜桃| 国内精品一区二区在线观看| 亚洲美女视频黄频| 插阴视频在线观看视频| 美女被艹到高潮喷水动态| 永久网站在线| 又粗又爽又猛毛片免费看| 国产私拍福利视频在线观看| 国产精华一区二区三区| 国产色婷婷99| 免费在线观看影片大全网站| 女生性感内裤真人,穿戴方法视频| 免费看av在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 秋霞在线观看毛片| 欧美色欧美亚洲另类二区| 日韩,欧美,国产一区二区三区 | 亚洲在线观看片| 午夜日韩欧美国产| 搡老熟女国产l中国老女人| 热99在线观看视频| 免费人成视频x8x8入口观看| 又爽又黄无遮挡网站| 国产精品不卡视频一区二区| 国产精品,欧美在线| 三级毛片av免费| 97超碰精品成人国产| 99久久久亚洲精品蜜臀av| 国产精品日韩av在线免费观看| 亚洲成人久久爱视频| 国产精品1区2区在线观看.| 久久精品影院6| 蜜桃亚洲精品一区二区三区| av天堂中文字幕网| 久久久精品94久久精品| 久久精品国产鲁丝片午夜精品| 人妻夜夜爽99麻豆av| 久久精品国产清高在天天线| 日本黄大片高清| 菩萨蛮人人尽说江南好唐韦庄 | 成人漫画全彩无遮挡| 深夜精品福利| 久久久国产成人精品二区| 久久精品91蜜桃| 少妇裸体淫交视频免费看高清| 国产精品久久电影中文字幕| 亚洲国产高清在线一区二区三| 亚洲av成人av| 亚洲av电影不卡..在线观看| 欧美绝顶高潮抽搐喷水| 日产精品乱码卡一卡2卡三| 一本久久中文字幕| 国产色爽女视频免费观看| 日日啪夜夜撸| 国产黄色小视频在线观看| av在线老鸭窝| 欧美日本亚洲视频在线播放| 日本一二三区视频观看| 少妇的逼水好多| 男女下面进入的视频免费午夜| 亚洲av熟女| 色5月婷婷丁香| 天堂动漫精品| 国产麻豆成人av免费视频| 久久久久国产网址| 99在线人妻在线中文字幕| 成人亚洲精品av一区二区| 亚洲成人av在线免费| 香蕉av资源在线| 女的被弄到高潮叫床怎么办| 在线观看66精品国产| 91久久精品国产一区二区三区| 国产单亲对白刺激| 国产爱豆传媒在线观看| 性色avwww在线观看| 中文资源天堂在线| 黑人高潮一二区| 热99re8久久精品国产| .国产精品久久| 有码 亚洲区| 晚上一个人看的免费电影| 男人舔奶头视频| 欧美在线一区亚洲| 国产91av在线免费观看| 搡老熟女国产l中国老女人| av天堂在线播放| 一区二区三区四区激情视频 | 精品午夜福利在线看| 国产精品美女特级片免费视频播放器| 欧美日韩国产亚洲二区| 美女免费视频网站| 久久久久国内视频| 尾随美女入室| 美女黄网站色视频| 欧美丝袜亚洲另类| 中文亚洲av片在线观看爽| 美女xxoo啪啪120秒动态图| 成人美女网站在线观看视频| 黄片wwwwww| 成人性生交大片免费视频hd| 欧美+日韩+精品| 天天躁夜夜躁狠狠久久av| 亚洲精华国产精华液的使用体验 | 亚洲国产高清在线一区二区三| 国产黄a三级三级三级人| 亚洲人与动物交配视频| 日韩成人伦理影院| 亚洲激情五月婷婷啪啪| 岛国在线免费视频观看| 亚洲天堂国产精品一区在线| 天天躁夜夜躁狠狠久久av| 欧美成人a在线观看| 国产激情偷乱视频一区二区| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 女的被弄到高潮叫床怎么办| 搞女人的毛片| 99热只有精品国产| 51国产日韩欧美| 亚洲aⅴ乱码一区二区在线播放| 免费人成在线观看视频色| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清三级在线| 国产av在哪里看| 老司机影院成人| 国产探花在线观看一区二区| 日韩精品有码人妻一区| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱 | 九九热线精品视视频播放| 久久精品国产鲁丝片午夜精品| av中文乱码字幕在线| 午夜免费激情av| 国语自产精品视频在线第100页| 国产高清有码在线观看视频| 黄色欧美视频在线观看| 日韩精品有码人妻一区| 中文字幕人妻熟人妻熟丝袜美| 国产蜜桃级精品一区二区三区| 天堂影院成人在线观看| АⅤ资源中文在线天堂| 97超碰精品成人国产| 深爱激情五月婷婷| 大香蕉久久网| 成人无遮挡网站| 精品不卡国产一区二区三区| 最近在线观看免费完整版| 国产高潮美女av| 在线免费观看不下载黄p国产| 国产男靠女视频免费网站| 少妇人妻精品综合一区二区 | 精品久久久久久久久亚洲| 在线免费观看的www视频| 国产日本99.免费观看| av天堂中文字幕网| 欧美zozozo另类| 日韩一区二区视频免费看| 国产蜜桃级精品一区二区三区| 国产精品久久久久久久久免| 亚洲激情五月婷婷啪啪| 最近在线观看免费完整版| 在线a可以看的网站| 国产黄色小视频在线观看| 亚洲人成网站在线观看播放| 97超视频在线观看视频| 内地一区二区视频在线| 永久网站在线| av中文乱码字幕在线| 男人和女人高潮做爰伦理| 精品不卡国产一区二区三区| 综合色丁香网| 欧美高清成人免费视频www| www.色视频.com| 男人狂女人下面高潮的视频| 久久久久久九九精品二区国产| 99riav亚洲国产免费| 国产黄片美女视频| 日韩成人av中文字幕在线观看 | 亚洲成人中文字幕在线播放| 一级黄片播放器| 国产女主播在线喷水免费视频网站 | 久久久久国内视频| 日韩欧美 国产精品| 午夜激情福利司机影院| 一a级毛片在线观看| 老师上课跳d突然被开到最大视频| 黑人高潮一二区| 波多野结衣巨乳人妻| 午夜亚洲福利在线播放| 九九在线视频观看精品| 精品人妻熟女av久视频| 97人妻精品一区二区三区麻豆| 久久久国产成人精品二区| 久久精品国产亚洲av香蕉五月| 九九久久精品国产亚洲av麻豆| 在线播放国产精品三级| 亚洲18禁久久av| 国产精品野战在线观看| av在线播放精品| 欧美最新免费一区二区三区| 简卡轻食公司| 美女免费视频网站| 国产在线精品亚洲第一网站| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 亚洲va在线va天堂va国产| 日本免费一区二区三区高清不卡| 男人狂女人下面高潮的视频| 久久中文看片网| 亚洲中文日韩欧美视频| 卡戴珊不雅视频在线播放| 亚洲欧美精品自产自拍| 国产69精品久久久久777片| 国产伦精品一区二区三区视频9| 成人综合一区亚洲| 午夜亚洲福利在线播放| 欧美日韩一区二区视频在线观看视频在线 | 欧美xxxx黑人xx丫x性爽| 悠悠久久av| 性欧美人与动物交配| 99热网站在线观看| 成人一区二区视频在线观看| 成人特级av手机在线观看| 精品少妇黑人巨大在线播放 | 欧美在线一区亚洲| 两个人的视频大全免费| 国产精品久久久久久久久免| 日本精品一区二区三区蜜桃| 国产精品99久久久久久久久| 日本一二三区视频观看| 国产三级在线视频| 国产又黄又爽又无遮挡在线| 中国国产av一级| 国产精品1区2区在线观看.| 麻豆成人午夜福利视频| www日本黄色视频网| 精品久久久久久久久久免费视频| 免费大片18禁| 久久精品91蜜桃| 桃色一区二区三区在线观看| av免费在线看不卡| 看黄色毛片网站| 国产高清有码在线观看视频| av在线蜜桃| 91精品国产九色| av免费在线看不卡| 久久久久免费精品人妻一区二区| 99riav亚洲国产免费| 久久久午夜欧美精品| 亚洲精品乱码久久久v下载方式| 精品乱码久久久久久99久播| 91狼人影院| 亚洲精品国产av成人精品 | 色尼玛亚洲综合影院| 色哟哟·www| 色综合色国产| 国产成人aa在线观看| 午夜福利18| 又黄又爽又刺激的免费视频.| 国产精品爽爽va在线观看网站| 人人妻人人澡人人爽人人夜夜 | 精品熟女少妇av免费看| aaaaa片日本免费| 黄片wwwwww| 欧美最黄视频在线播放免费| 日韩av在线大香蕉| 国产乱人视频| 少妇猛男粗大的猛烈进出视频 | 久久久久久久午夜电影| 免费av观看视频| 99久久无色码亚洲精品果冻| 国产乱人视频| 亚洲第一电影网av| 91久久精品国产一区二区三区| 婷婷精品国产亚洲av| 亚洲欧美中文字幕日韩二区| 精品国产三级普通话版| 午夜免费男女啪啪视频观看 | 人妻夜夜爽99麻豆av| 精品午夜福利视频在线观看一区| 亚洲av免费在线观看| 搡老熟女国产l中国老女人| 美女cb高潮喷水在线观看| 亚洲精品在线观看二区| 久久精品国产鲁丝片午夜精品| 国产精品爽爽va在线观看网站| 成人亚洲欧美一区二区av| 欧美色欧美亚洲另类二区| 美女黄网站色视频| 搞女人的毛片| 简卡轻食公司| 日韩制服骚丝袜av| 日日摸夜夜添夜夜添av毛片| 毛片女人毛片| 欧美bdsm另类| 可以在线观看毛片的网站| 性插视频无遮挡在线免费观看| 女同久久另类99精品国产91| 免费看av在线观看网站| 久久人人爽人人爽人人片va| 久久久久国产网址| 51国产日韩欧美| 高清日韩中文字幕在线| 日韩欧美在线乱码| 日本一二三区视频观看| 五月伊人婷婷丁香| 真人做人爱边吃奶动态| 一级毛片我不卡| 精品人妻视频免费看| av在线老鸭窝| 久久6这里有精品| 嫩草影视91久久| 色尼玛亚洲综合影院| 深爱激情五月婷婷| 我的老师免费观看完整版| 亚洲人成网站在线播| 狂野欧美激情性xxxx在线观看| 你懂的网址亚洲精品在线观看 | aaaaa片日本免费| 亚洲av美国av| 国产精品99久久久久久久久| 久久久久九九精品影院| 免费观看在线日韩| 秋霞在线观看毛片| 亚洲美女视频黄频| 中文字幕久久专区| 一级毛片久久久久久久久女| 网址你懂的国产日韩在线| 十八禁网站免费在线| 少妇人妻精品综合一区二区 | 韩国av在线不卡| 亚洲欧美日韩东京热| 国产精品久久久久久av不卡| 三级经典国产精品| 亚洲高清免费不卡视频| 永久网站在线| 国产69精品久久久久777片| 久久精品国产亚洲av香蕉五月| 成人美女网站在线观看视频| 久久久精品欧美日韩精品| 精品福利观看| 别揉我奶头~嗯~啊~动态视频| 亚洲成人中文字幕在线播放| 亚洲精品国产成人久久av| 亚洲无线观看免费| 毛片一级片免费看久久久久| 国产高清视频在线播放一区| 亚洲av电影不卡..在线观看| 哪里可以看免费的av片| 99久久精品一区二区三区| 99热只有精品国产|