• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Devanagari Handwriting Grading System Based on Curvature Features

    2017-03-13 05:47:05MunishKumarandSimpelRaniJindal

    Munish Kumar and Simpel Rani Jindal

    1 Introduction

    Optical character recognition is a process of converting the handwritten and printed text into machine processable format. Handwriting recognition is divided into two categories,namely, online and offline. Online handwriting recognition manages the transformation of text information that is composed on an electronic surface with the help of a special pen. In online handwriting, pen strokes information is also accessible which will be helpful in enhancing the precision of online handwriting recognition system. In offline handwriting, the input data will be scanned image of text data. A good number of scholars have exhibited work for printed and handwritten text recognition. Mostly researcher has worked for printed text recognition, and a couple of researchers have done work for handwriting recognition. For example, [Bansal and Sinha (2000)] have built up a procedure for Devanagari text recognition. A recognition system based on Hindi handwritten words was presented by [Belhe, Paulzagade, Deshmukh, Jetley, and Mehrotra (2012)]. They have used HMM and tree classifier for recognition and acquired a recognition accuracy of about 89%. [Garg, Kaur and Jindal (2010)] have segmented the handwritten Hindi text and they have considered structural feature extraction techniques and SVM classifier for recognition of handwritten Hindi characters. Using these features and classifier, they have achieved a recognition accuracy of 89.6%. [Pal, Sharma,Wakabayashi and Kimura (2007)] have set into motion, a system for offline handwritten Devanagari character recognition. They have achieved a recognition accuracy of 94.2%with five-fold cross validation test. [Kumar, Sharma and Jindal (2014)] have presented a study of various features and classifiers for offline handwritten character recognition. In this study, they have accomplished maximum recognition accuracy of 97.7% with PCA.For exploratory outcomes, they have considered 7,000 examples of 35-class problem.They have also provided a framework for handwriting grading of Gurmukhi writers.They have assessed the execution of their framework with various printed Gurmukhi text styles [Kumar, Sharma and Jindal (2016)]. In this paper, we have proposed a framework for grading of Devanagari writers using curvature features, namely, parabola curve fitting and power curve fitting based features. This framework will be useful for conducting the handwriting competitions and deciding the winners in view of their handwriting.Proposed framework comprises of different stages, like, digitization, pre-preparing,feature extraction, classification and grading based on classification score. We have composed this paper into 5 segments. Preamble and related work is presented in Section 1.In Section 2, we have introduced about Devanagari script. Section 3 comprises of different phases of the proposed framework. Experimental results are described in Section 4. In last Section 5, portrays the conclusion and future extension.

    2 Devanagari script

    The Devanagari is the most frequently used script which is mostly used in India and furthermore utilizing to compose text in Hindi, Marathi and Nepali dialects. The word Devanagari can be getting from two Sanskrit terms "Deva" means god and "Nagri" means city. Devanagari script has 49 characters which have 36 vyanjan (pure type of consonants)and 13 svar (vowel) as appeared in Fig. 1(a) and 1(b). It also incorporates ‘signs and symbol’ is the set of modifiers called Matra. In Devanagari script a few characters are similar to each other as appeared in Fig. 2, which makes their recognition a bit difficult.

    3 Phases of proposed grading system

    The meaning of “grading of writers” is to judge the superiority of writing styles related to printed fonts. The grading systems can be used to grade the handwriting of writers and can also be used for verification of signature means determining whether or not the signature is that of a given person. Phases of proposed handwriting grading system are digitization, pre-processing, feature extraction, classification and grading based on the classification score. The architecture of the grading system is given in Fig. 3.

    3.1 Digitization

    Digitization is the initial stage of the proposed framework for grading of writers. In this stage, paper based handwritten data is converted into electronic shape by scanning the paper on the scanner. The aim of digitization is to create the computerized image which is fed to the pre-preparing stage.

    Figure 1(a): Consonants in Hindi

    Figure 1(b): Vowels in Hindi

    Figure 2: Samples of similar characters in Devanagari script

    3.2 Pre-processing

    Pre-processing is the following phase of the digitization phase which is used to produce the bitmap image of the digital image. Pre-processing also consists of a process for; make the thinned image of the bit mapped image by utilizing parallel thinning algorithm[Zhang and Suen (1984)].

    3.3 Feature extraction

    Feature extraction is the primary stage of the proposed handwriting grading system. The performance of handwriting grading system depends on features that are being extracted in this phase. So, this phase played a major role for evaluation of the handwriting of different individuals. In this phase, we will extract the features of noise free bitmapped character images written by various writers. In past, structural and statistical features have been used for recognition of different scripts. In this paper, we have explored two new curvature features, namely, parabola curve fitting and power curve fitting. These features are proposed by [Kumar, Sharma and Jindal (2014)]. They have used these feature extraction techniques for offline handwritten Gurmukhi character recognition.They have compared these techniques with other most recent feature extraction techniques and noticed that curvature features perform better than other techniques for their work. So, here, we considered these techniques for evaluating the handwriting of Devanagari writers. These techniques are briefly discussed in following sub-sections.

    3.3.1 Parabola curve fitting based features

    Figure 3: Architecture of proposed grading system

    In parabola curve fitting based technique, firstly character thinned image is divided into equal sized n zones. By using the least square method, this process constructs a parabolic curve that suggests a best fitted to series of foreground pixels to given data. The method of least square is perhaps the most systematic procedure to fit a unique curve through the given data points. A parabola for each zone is fitted using the least square method. Let, a parabola curve equation =0+1+22where0,1,2three parameters. The values of these three parameters0,1,2are computed by solving the following equations obtained from the least square method.

    =0+1+22

    The following steps are used to extract these features:

    · The thinned image is divided into n equal sized zones.

    · A parabola for each zone is fitted using the least square method and parabola equation =0+1+22where0,1,2parameters are calculated.

    · If any zone does not have a foreground pixel, then values of0,1,2parameters are taken as zero.

    3.3.2 Power curve fitting based features

    In power curve fitting technique, again character thinned image is divided into equal sized n zones. By using the least square method, this process constructs a power curve that suggests a best fitted to series of foreground pixels to given data. The method of least square is perhaps the most systematic procedure to fit a unique curve through the given data points. A power curve for each zone is fitted using the least square method. Let a power curve equation y= , the values of these two parameters a, b are computed by using least square method.

    The following steps are used to extract these features:

    · The thinned image is divided into n equal sized zones.

    · A power curve for each zone is fitted using least square method and power equation = where a, b two parameters are calculated.

    · If any zone does not have a foreground pixel, then values of a, b parameters are considered as zero.

    3.4 Classification

    Classification phase is also one of the important phases of the proposed grading system.Classification phase uses the features extracted in the previous phase for classification of writers based on their handwriting. In this work, we have considered Nearest Neighbours(NN) classifier. In the NN classifier, Euclidean distance from the applicant vector to stored vector is computed. The Euclidean distance between an applicant vector and stored vector is given by,

    Here, N is the aggregate number of elements in a list of feature vector, is the library stored vector and is the applicant feature vector. The class of the library stored feature delivering the smallest Euclidean distance, when compared with the candidate feature vector, is allocated to the input character.

    4 Data set and experimental results

    In training dataset, four printed Devanagari font styles, namely, Devlys (F1), Krishna (F2),Krutidev (F3), and Utsaah (F4) are taken. For evaluating the effectiveness of the proposed framework, a mock test of 75 writers has been conducted. In this mock test, 35 writers were left-handed and 40 writers were right-handed. So, we have additionally observed that framework won't impact, regardless of whether the writer is left-handed or whether right-handed. A few samples from training and testing data set are shown in Fig. 4-5,respectively. Experimental results of the proposed grading system based on curvature features, in view of the qualities acquired by NN classifier are presented in this section.Classification scores obtained with NN classifier are standardized to [0, 100]in order to give the grade in percentage form. Feature-wise results of proposed grading system for 75 writers are provided in the following sub-sections.

    Figure 4: A few samples of training dataset

    Figure 5: A few samples of testing dataset

    4.1 Grading using parabola curve fitting based features

    In this sub-section, experimental results of the proposed grading system with parabola curve fitting based features and k-NN classifier are presented. Using this feature, it has been noticed that writer W16(with a score of 100) is the best writer. Graphically results of writers (W1, W2, …, W75) based on this feature extraction technique, are presented in Fig.6.

    Figure 6: Writer wise grading score using parabola curve fitting based features

    4.2 Grading using power curve fitting based features

    In this sub-section, experimental results of the proposed grading system with power curve fitting based on features and k-NN classifier are presented. Using this feature, it has been noticed that writer W72(with a score of 100) is the best writer. Graphically results of writers (W1, W2, …, W75) using power curve fitting based features are presented in Fig. 7.

    Figure 7: Writer wise grading score using power curve fitting based features

    4.3 Final grading using the average of parabola curve fitting and power curve fitting based features

    Here, average grading, based on above mentioned two features has been presented. It has been observed that writer W16(with an average score of 66.06) is the best writer. Final average grading scores of writers (W1, W2, …, W75) considered in this study are shown in Fig. 8.

    5 Conclusions and Future Scope

    In this paper, a framework has been presented for calculating the grading score of the Devanagari writers. Curvature features have been considered for extract the information related to the handwriting of individuals. The framework, proposed in this paper, is tested with four well known printed Devanagari text fonts, namely, Devlys, Krishna, Krutidev and Utsaah. Proposed system can be used as a decision support system for conducting the handwriting competitions of Devanagari writers. We have also concluded that if a writer’s handwriting is very artistic, left-handed or right-handed etc. then the proposed system will not fail. This framework can likewise be stretched out for grading of writers using offline handwritten characters of different scripts after building the training dataset of these scripts.

    Bansal, V., Sinha, R. M. K. (2000): Integrating knowledge sources in Devanagari text recognition system. IEEE Transactions on Systems, Man and Cybernetics - Part A, vol.30, no. 4, pp. 500-505.

    Belhe, S., Paulzagade, C., Deshmukh, A., Jetley, S. and Mehrotra, K. (2012): Hindi handwritten word recognition using HMM and symbol tree. Proc. of the Workshop on Document Analysis and Recognition, pp. 9-14.

    Garg, N. K., Kaur, L. and Jindal, M. K. (2010): A new method for line segmentation of handwritten Hindi text. Proc. of the 7th International Conference on Information Technology: New Generations, pp. 392-397.

    Kumar, M., Sharma, R. K., and Jindal, M. K. (2014): Efficient Feature Extraction Techniques for Offline Handwritten Gurmukhi Character Recognition. National Academy Science Letters, vol. 37, no. 4, pp. 381-391.

    Kumar, M., Sharma, R. K. and Jindal, M. K. (2016): A Framework for Grading Writers using Offline Gurmukhi Characters. Proceedings of the National Academy of Sciences- Physical Science- A, vol. 86, no. 3, pp. 405-415.

    Figure 8: Final grading of writers using curvature features

    Pal, U., Sharma, N., Wakabayashi, T. and Kimura, F. (2007): Off-line handwritten character recognition of Devanagari script. Proc. of the 9th International Conference on Document Analysis and Recognition, pp. 496-500.

    Zhang, T. Y. and Suen, C. Y. (1984): A fast parallel algorithm for thinning digital patterns. Communications of the ACM, vol. 27, no. 3, pp. 236-239.

    丁香六月欧美| 自线自在国产av| 国产主播在线观看一区二区 | 日韩中文字幕视频在线看片| 丰满人妻熟妇乱又伦精品不卡| 一级毛片我不卡| 少妇粗大呻吟视频| 一本一本久久a久久精品综合妖精| 五月开心婷婷网| 免费高清在线观看视频在线观看| 国产激情久久老熟女| 美女福利国产在线| 好男人电影高清在线观看| 91精品三级在线观看| 视频在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 久久精品久久久久久久性| 精品一区二区三卡| 久久中文字幕一级| 亚洲欧洲国产日韩| 国产免费一区二区三区四区乱码| 在线观看人妻少妇| 99国产综合亚洲精品| 18禁黄网站禁片午夜丰满| 我的亚洲天堂| 亚洲精品国产av蜜桃| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看| 亚洲情色 制服丝袜| 97精品久久久久久久久久精品| 精品一区二区三卡| 男的添女的下面高潮视频| 成人国产av品久久久| 国产成人av教育| 日本av手机在线免费观看| 天堂俺去俺来也www色官网| 国产精品国产av在线观看| 国产精品久久久久久人妻精品电影 | 精品亚洲成a人片在线观看| 成人亚洲精品一区在线观看| av片东京热男人的天堂| 国产精品久久久久成人av| 超碰97精品在线观看| 国产又色又爽无遮挡免| 成年人黄色毛片网站| av天堂久久9| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| 国产精品成人在线| 国产免费视频播放在线视频| 国产亚洲av片在线观看秒播厂| 国产高清不卡午夜福利| 亚洲精品乱久久久久久| 欧美 亚洲 国产 日韩一| 午夜福利视频在线观看免费| 丝袜美腿诱惑在线| 一级片'在线观看视频| 免费在线观看视频国产中文字幕亚洲 | 免费少妇av软件| 男女之事视频高清在线观看 | 99久久人妻综合| 19禁男女啪啪无遮挡网站| 婷婷色综合大香蕉| 精品国产国语对白av| av线在线观看网站| 国产福利在线免费观看视频| 激情五月婷婷亚洲| 精品国产超薄肉色丝袜足j| 国产精品久久久人人做人人爽| 老鸭窝网址在线观看| 国产精品三级大全| 亚洲av综合色区一区| 国产精品二区激情视频| 国产精品秋霞免费鲁丝片| 男男h啪啪无遮挡| 午夜视频精品福利| 香蕉丝袜av| 各种免费的搞黄视频| 国产在视频线精品| 久久精品aⅴ一区二区三区四区| 伊人亚洲综合成人网| 国产精品免费大片| 超碰97精品在线观看| 在线天堂中文资源库| 色婷婷av一区二区三区视频| 一本久久精品| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻丝袜制服| 欧美少妇被猛烈插入视频| 一级黄色大片毛片| 久久久久精品人妻al黑| 69精品国产乱码久久久| 中文字幕精品免费在线观看视频| 蜜桃在线观看..| 久久精品亚洲av国产电影网| 我的亚洲天堂| 无遮挡黄片免费观看| 国产亚洲精品久久久久5区| 成年女人毛片免费观看观看9 | 亚洲成色77777| 99精品久久久久人妻精品| 亚洲成人手机| 精品亚洲成国产av| 1024视频免费在线观看| 免费一级毛片在线播放高清视频 | 亚洲av综合色区一区| 久久鲁丝午夜福利片| 久久精品久久久久久噜噜老黄| av国产精品久久久久影院| 韩国高清视频一区二区三区| 99精国产麻豆久久婷婷| 国产视频首页在线观看| 亚洲专区中文字幕在线| 男女下面插进去视频免费观看| 久久久精品94久久精品| 婷婷色av中文字幕| 90打野战视频偷拍视频| 欧美黄色淫秽网站| 男人爽女人下面视频在线观看| 午夜福利一区二区在线看| 国产精品国产三级专区第一集| 欧美另类一区| 三上悠亚av全集在线观看| 国产av精品麻豆| 国产一区亚洲一区在线观看| 亚洲av综合色区一区| 亚洲成色77777| 狂野欧美激情性xxxx| 国产片特级美女逼逼视频| 人妻 亚洲 视频| 成年人黄色毛片网站| 中文字幕高清在线视频| 久久精品aⅴ一区二区三区四区| 日韩人妻精品一区2区三区| 在线av久久热| 午夜日韩欧美国产| 欧美日韩视频高清一区二区三区二| 国产精品人妻久久久影院| 一级毛片女人18水好多 | 国产精品一区二区免费欧美 | 亚洲精品第二区| 日韩电影二区| 夫妻性生交免费视频一级片| 嫁个100分男人电影在线观看 | 嫩草影视91久久| 国产av一区二区精品久久| 五月开心婷婷网| 大香蕉久久成人网| 两人在一起打扑克的视频| 99久久综合免费| 国产欧美日韩一区二区三区在线| 天天躁狠狠躁夜夜躁狠狠躁| www.999成人在线观看| 欧美在线一区亚洲| 亚洲av男天堂| 高潮久久久久久久久久久不卡| 老司机在亚洲福利影院| 精品人妻一区二区三区麻豆| 啦啦啦 在线观看视频| 国产精品偷伦视频观看了| 午夜久久久在线观看| 在现免费观看毛片| 黄色 视频免费看| 尾随美女入室| 电影成人av| 多毛熟女@视频| 视频在线观看一区二区三区| 国产1区2区3区精品| 丝袜喷水一区| 欧美精品一区二区免费开放| 2021少妇久久久久久久久久久| 青春草视频在线免费观看| 国产成人影院久久av| 国产99久久九九免费精品| 丁香六月天网| 1024视频免费在线观看| 欧美乱码精品一区二区三区| 亚洲成人国产一区在线观看 | 日韩 欧美 亚洲 中文字幕| 免费人妻精品一区二区三区视频| 午夜91福利影院| 青春草视频在线免费观看| 国产色视频综合| 午夜91福利影院| 久久久精品免费免费高清| 美女主播在线视频| 日韩 亚洲 欧美在线| 亚洲成av片中文字幕在线观看| 亚洲欧洲国产日韩| 国产精品国产三级国产专区5o| 五月开心婷婷网| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 成人亚洲精品一区在线观看| 激情五月婷婷亚洲| 国产亚洲精品第一综合不卡| 日本色播在线视频| 亚洲欧美中文字幕日韩二区| 成人亚洲精品一区在线观看| 9色porny在线观看| 免费少妇av软件| 中文欧美无线码| 亚洲国产最新在线播放| 熟女av电影| e午夜精品久久久久久久| 亚洲专区国产一区二区| 久久人妻福利社区极品人妻图片 | videosex国产| 国产精品一区二区在线不卡| 国产精品麻豆人妻色哟哟久久| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 免费在线观看完整版高清| 亚洲国产av新网站| 韩国高清视频一区二区三区| 满18在线观看网站| 99国产精品99久久久久| 国产成人一区二区在线| 国产男女内射视频| 老熟女久久久| 69精品国产乱码久久久| 国产精品国产三级国产专区5o| 美女脱内裤让男人舔精品视频| 伦理电影免费视频| 国产亚洲av片在线观看秒播厂| 国产精品成人在线| 国产黄色视频一区二区在线观看| 51午夜福利影视在线观看| 亚洲精品久久午夜乱码| 国产精品国产av在线观看| 性少妇av在线| 国产精品99久久99久久久不卡| 午夜免费观看性视频| 天天操日日干夜夜撸| 在线av久久热| 久久精品亚洲熟妇少妇任你| videos熟女内射| 久久久国产精品麻豆| 日韩伦理黄色片| xxxhd国产人妻xxx| 黑人巨大精品欧美一区二区蜜桃| 最近中文字幕2019免费版| 一本色道久久久久久精品综合| 一边摸一边抽搐一进一出视频| 在线精品无人区一区二区三| 叶爱在线成人免费视频播放| 国产精品一国产av| 久久午夜综合久久蜜桃| 婷婷色av中文字幕| 在线天堂中文资源库| 亚洲欧美成人综合另类久久久| 女人爽到高潮嗷嗷叫在线视频| av在线老鸭窝| 精品福利永久在线观看| 成人18禁高潮啪啪吃奶动态图| 少妇粗大呻吟视频| 五月天丁香电影| www.自偷自拍.com| 成人亚洲欧美一区二区av| 99热网站在线观看| 午夜日韩欧美国产| 国产在线观看jvid| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 男人爽女人下面视频在线观看| 国产欧美日韩一区二区三 | 亚洲国产看品久久| 亚洲黑人精品在线| 久久国产精品人妻蜜桃| 少妇粗大呻吟视频| 夫妻性生交免费视频一级片| 国产精品人妻久久久影院| 一二三四在线观看免费中文在| 另类亚洲欧美激情| 免费看十八禁软件| 精品一区二区三区av网在线观看 | 国产精品国产三级专区第一集| 久久综合国产亚洲精品| 老司机靠b影院| 久久精品人人爽人人爽视色| 国产97色在线日韩免费| 亚洲专区中文字幕在线| 国产精品成人在线| 亚洲中文字幕日韩| 日韩人妻精品一区2区三区| 无限看片的www在线观看| 国产在线视频一区二区| 黄色a级毛片大全视频| 国产av一区二区精品久久| 各种免费的搞黄视频| www.自偷自拍.com| 女警被强在线播放| 国产高清视频在线播放一区 | 9色porny在线观看| 亚洲第一青青草原| 国产日韩一区二区三区精品不卡| 91麻豆精品激情在线观看国产 | 九色亚洲精品在线播放| 大话2 男鬼变身卡| 欧美精品啪啪一区二区三区 | 久久天躁狠狠躁夜夜2o2o | 久久性视频一级片| 丝袜脚勾引网站| 一区二区日韩欧美中文字幕| 国产精品 国内视频| 啦啦啦在线免费观看视频4| 男女无遮挡免费网站观看| 国产成人免费观看mmmm| 看免费成人av毛片| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 久久国产精品男人的天堂亚洲| 亚洲伊人久久精品综合| 韩国精品一区二区三区| 少妇人妻 视频| 欧美 日韩 精品 国产| 免费人妻精品一区二区三区视频| 国产精品一二三区在线看| 日韩av不卡免费在线播放| 女性被躁到高潮视频| 国产熟女欧美一区二区| 一级毛片我不卡| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 国产主播在线观看一区二区 | 亚洲国产精品999| 日本猛色少妇xxxxx猛交久久| tube8黄色片| 亚洲国产av新网站| 成年av动漫网址| 别揉我奶头~嗯~啊~动态视频 | 19禁男女啪啪无遮挡网站| 人人澡人人妻人| 免费看不卡的av| 亚洲国产中文字幕在线视频| 精品人妻在线不人妻| 又粗又硬又长又爽又黄的视频| 久久精品国产a三级三级三级| 男女边摸边吃奶| 免费一级毛片在线播放高清视频 | 麻豆av在线久日| 久久精品久久精品一区二区三区| 国产xxxxx性猛交| 最新的欧美精品一区二区| 亚洲 欧美一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 男女下面插进去视频免费观看| av在线播放精品| 免费少妇av软件| 18在线观看网站| 最近手机中文字幕大全| 久久狼人影院| 男人操女人黄网站| 午夜福利影视在线免费观看| 欧美97在线视频| 美女主播在线视频| 成年人午夜在线观看视频| 欧美黑人欧美精品刺激| 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区 | 一二三四在线观看免费中文在| 精品人妻熟女毛片av久久网站| 在线av久久热| 自线自在国产av| 欧美日韩成人在线一区二区| 精品高清国产在线一区| 久久狼人影院| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 亚洲 国产 日韩一| 精品少妇黑人巨大在线播放| 亚洲综合色网址| 欧美日韩黄片免| 亚洲九九香蕉| 中国国产av一级| 新久久久久国产一级毛片| 久久久久国产精品人妻一区二区| 老汉色av国产亚洲站长工具| 日韩大片免费观看网站| 亚洲精品中文字幕在线视频| 亚洲成色77777| 男女高潮啪啪啪动态图| 91字幕亚洲| 伊人亚洲综合成人网| 国精品久久久久久国模美| 国产真人三级小视频在线观看| 午夜av观看不卡| www日本在线高清视频| 高清视频免费观看一区二区| av又黄又爽大尺度在线免费看| 亚洲精品中文字幕在线视频| 满18在线观看网站| 黄色毛片三级朝国网站| 欧美变态另类bdsm刘玥| 中文字幕色久视频| 9色porny在线观看| 国产精品麻豆人妻色哟哟久久| av又黄又爽大尺度在线免费看| 美女午夜性视频免费| 熟女少妇亚洲综合色aaa.| 久久狼人影院| av天堂久久9| 在线精品无人区一区二区三| 在线观看免费高清a一片| 午夜福利在线免费观看网站| 又黄又粗又硬又大视频| 日韩人妻精品一区2区三区| 欧美成人午夜精品| 别揉我奶头~嗯~啊~动态视频 | 午夜影院在线不卡| 多毛熟女@视频| kizo精华| 校园人妻丝袜中文字幕| 色94色欧美一区二区| 好男人视频免费观看在线| 99国产综合亚洲精品| 国产精品熟女久久久久浪| 国产福利在线免费观看视频| 欧美成人午夜精品| 操出白浆在线播放| 丝袜喷水一区| 欧美另类一区| 亚洲精品美女久久av网站| 亚洲中文日韩欧美视频| 久久精品国产亚洲av高清一级| 黄色视频在线播放观看不卡| 成年人黄色毛片网站| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| 人人妻,人人澡人人爽秒播 | 极品少妇高潮喷水抽搐| 爱豆传媒免费全集在线观看| 午夜免费男女啪啪视频观看| 久久精品久久精品一区二区三区| 国产精品av久久久久免费| 欧美性长视频在线观看| 日韩大码丰满熟妇| 18禁观看日本| av又黄又爽大尺度在线免费看| 久热这里只有精品99| 丰满迷人的少妇在线观看| 中文字幕人妻丝袜一区二区| 在线亚洲精品国产二区图片欧美| 国产欧美日韩综合在线一区二区| 十八禁高潮呻吟视频| 亚洲成国产人片在线观看| 午夜福利乱码中文字幕| 色视频在线一区二区三区| 日韩熟女老妇一区二区性免费视频| 午夜福利影视在线免费观看| 男女边摸边吃奶| 婷婷成人精品国产| 一级毛片 在线播放| 美女午夜性视频免费| 伦理电影免费视频| 国产精品九九99| 一本综合久久免费| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线| 国产成人欧美在线观看 | 91精品伊人久久大香线蕉| 免费女性裸体啪啪无遮挡网站| 一二三四在线观看免费中文在| 日本av免费视频播放| 天天躁夜夜躁狠狠躁躁| 又粗又硬又长又爽又黄的视频| 亚洲视频免费观看视频| 我的亚洲天堂| 夫妻性生交免费视频一级片| 下体分泌物呈黄色| 波多野结衣一区麻豆| 午夜免费成人在线视频| 国产男女内射视频| 久久鲁丝午夜福利片| 午夜福利影视在线免费观看| 国产黄色免费在线视频| 成人国产一区最新在线观看 | 国产午夜精品一二区理论片| 啦啦啦在线免费观看视频4| 国产高清不卡午夜福利| 国产精品免费视频内射| 在线观看免费午夜福利视频| 97在线人人人人妻| 久久久精品国产亚洲av高清涩受| 久久精品国产a三级三级三级| 一级片'在线观看视频| 国产午夜精品一二区理论片| 国产视频首页在线观看| 18禁国产床啪视频网站| 亚洲中文日韩欧美视频| 久久久久久久久久久久大奶| 久久久久久久大尺度免费视频| 各种免费的搞黄视频| 1024香蕉在线观看| 久久精品国产综合久久久| 亚洲国产欧美一区二区综合| 国产日韩欧美视频二区| 日韩一卡2卡3卡4卡2021年| 午夜福利乱码中文字幕| 久久 成人 亚洲| 日本色播在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 熟女少妇亚洲综合色aaa.| 久久精品熟女亚洲av麻豆精品| av网站在线播放免费| 国产淫语在线视频| 欧美少妇被猛烈插入视频| 热99久久久久精品小说推荐| 精品少妇久久久久久888优播| 亚洲九九香蕉| 建设人人有责人人尽责人人享有的| 亚洲伊人久久精品综合| 久久毛片免费看一区二区三区| 午夜福利视频精品| cao死你这个sao货| 三上悠亚av全集在线观看| 午夜激情久久久久久久| 亚洲精品美女久久久久99蜜臀 | 又大又爽又粗| 亚洲精品一区蜜桃| 成人影院久久| 亚洲av电影在线进入| 狂野欧美激情性bbbbbb| 久久这里只有精品19| 两个人免费观看高清视频| 真人做人爱边吃奶动态| a级毛片在线看网站| 自线自在国产av| √禁漫天堂资源中文www| 岛国毛片在线播放| 777久久人妻少妇嫩草av网站| 99热国产这里只有精品6| 精品一品国产午夜福利视频| 啦啦啦在线免费观看视频4| 永久免费av网站大全| 午夜视频精品福利| www.精华液| 亚洲av日韩精品久久久久久密 | 中文字幕另类日韩欧美亚洲嫩草| 在线观看www视频免费| 一本—道久久a久久精品蜜桃钙片| 免费看不卡的av| 欧美乱码精品一区二区三区| 亚洲五月婷婷丁香| 亚洲国产毛片av蜜桃av| 日本av手机在线免费观看| 满18在线观看网站| 亚洲精品国产av蜜桃| 多毛熟女@视频| 国产精品一区二区在线观看99| 欧美精品亚洲一区二区| 日韩一卡2卡3卡4卡2021年| 国产91精品成人一区二区三区 | 热re99久久国产66热| 麻豆av在线久日| 极品少妇高潮喷水抽搐| 人人澡人人妻人| 亚洲国产精品一区二区三区在线| 国产高清视频在线播放一区 | 秋霞在线观看毛片| 欧美日韩视频精品一区| 国产欧美日韩一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 十八禁高潮呻吟视频| 一本色道久久久久久精品综合| 波多野结衣av一区二区av| 日韩中文字幕视频在线看片| 精品一品国产午夜福利视频| 国产人伦9x9x在线观看| 精品人妻熟女毛片av久久网站| 91精品国产国语对白视频| 美女脱内裤让男人舔精品视频| 国产精品熟女久久久久浪| 麻豆av在线久日| 免费在线观看影片大全网站 | 午夜91福利影院| 精品免费久久久久久久清纯 | 宅男免费午夜| 国精品久久久久久国模美| 欧美日韩亚洲综合一区二区三区_| 在现免费观看毛片| 国产精品国产三级专区第一集| 久久久久久人人人人人| 最新在线观看一区二区三区 | 一区二区三区精品91| 三上悠亚av全集在线观看| 桃花免费在线播放| 精品人妻在线不人妻| 亚洲欧美日韩高清在线视频 | 十八禁高潮呻吟视频| 中文精品一卡2卡3卡4更新| 国产不卡av网站在线观看| 久久人人爽人人片av| 婷婷色综合大香蕉| 亚洲人成网站在线观看播放| 婷婷色综合www| 欧美日韩福利视频一区二区| 久久天堂一区二区三区四区| 2021少妇久久久久久久久久久| 久久精品久久久久久噜噜老黄| 91麻豆精品激情在线观看国产 | 亚洲精品久久成人aⅴ小说| 精品高清国产在线一区| 久久精品亚洲av国产电影网| 精品视频人人做人人爽| 午夜91福利影院| 免费观看a级毛片全部| 国产精品国产av在线观看| 欧美 亚洲 国产 日韩一| 18禁黄网站禁片午夜丰满| 黄片小视频在线播放| 成年人午夜在线观看视频| 免费不卡黄色视频| 亚洲精品美女久久久久99蜜臀 | 亚洲欧洲国产日韩|