• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient solver for time-dependent Schr?dinger equation with interaction between atoms and strong laser field?

    2019-08-16 01:19:24ShengPengZhou周勝鵬AiHuaLiu劉愛(ài)華FangLiu劉芳ChunChengWang王春成andDaJunDing丁大軍
    Chinese Physics B 2019年8期
    關(guān)鍵詞:劉芳大軍愛(ài)華

    Sheng-Peng Zhou(周勝鵬), Ai-Hua Liu(劉愛(ài)華), Fang Liu(劉芳),Chun-Cheng Wang(王春成), and Da-Jun Ding(丁大軍),?

    1Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    2Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy(Jilin University),Changchun 130012,China

    3School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China

    Keywords: time-dependent Schr?dinger equation,Strong laser fields,Parallel numerical solver

    1. Introduction

    Theoretical simulation plays an important role in understanding of the interaction of atoms or molecules with a strong laser field. There are various methods of simulating the strong-field physical processes, such as the simple-man model,[1]strong-field approximation (SFA),[2,3]classicaltrajectory Monte Carlo simulation (CTMC),[4]quantumtrajectory Monte Carlo (QTMC),[5,6]etc. While the most accurate theoretical method of obtaining the complete information is to solve the time-dependent Schr?dinger equation(TDSE).However, solving the three-dimensional(3D)TDSE for simulating such laser interactions with atoms becomes a challenge because,with the development of laser technology,the laser field intensity can be much higher than the overbarrier ionization region of atoms or molecules. Although many efforts have been made in the past few decades[7-14]to tackle this challenging problem, it still needs more efficient numerical methods,parallel to adapting to the development of computer technology.

    Several efficient parallel methods of solving the 3D TDSE[15-18]have been developed, mainly based on direct TDSE solutions in Cartesian coordinates. Considering the atomic spherical symmetry,it should be better to choose spherical coordinates in computation but this is difficult because,in general, the methods with using the basis set expansion techniques in spherical coordinates are not suitable for parallel calculation.[15]To solve this problem, Patchkovskii et al.have proposed a parallel method,[18]and achieved the spatial derivatives of the radial coordinate by using the finitedifference method (FDM), which leads to an increase in the grids for the larger sized problem,[17]and finally significantly increasing the amount of computation in the case of higher accuracy.[19]Guan et al. solved TDSE of two-electron quantum system in spherical coordinates efficiently based on the finite-element(FE)discrete-variable-representation(DVR)and Short-Iteration-Lanczos(SIL)propagator,[20]because the FE-DVR can offer higher computing accuracy[21]and make the Hamiltonian matrix very sparse, whose effects are similar to those provided by the B-spline[22,23]and sine-DVR,[24]and the efficiency of the wave function evolution strongly relies on the sparsity of the Hamiltonian matrix for the SIL propagator.[25]The most ideal structure of the Hamiltonian matrix is expected to have diagonal or similarly sparse elements for the SIL propagator.

    In this work, we develop a parallel numerical method of solving TDSE in spherical coordinates for simulating linearly polarized laser interacting with single active electron (SAE)atoms. First,a sparse Hamiltonian matrix is constructed based on the FE-DVR and spherical harmonics functions. Second,ideal sub-matrices are separated out from the Hamiltonian matrix for the SIL propagator,[26,27]which is based on the real space product formula (RSPF). This combination guarantees efficient parallel computing for the simulation of real physical problems. We then apply this method to the efficient calculation of atomic high harmonic generation(HHG).Atomic units are used throughout this paper unless otherwise indicated.

    2. Method

    To simulate the interaction of atoms with linear polarized laser fields,[24,28]the TDSE for the full wave function can be expressed as follows:

    with the potential term V(r)=-1/r(atom hydrogen)and the laser-matter interaction term defined as

    The length gauge is adopted in this computation. Thus, the Schr?dinger equation for the reduced wave functions can be rewritten as follows:

    with

    To solve Eq.(3),the reduced wave function ψ(r,t)is expanded into a series of spherical harmonics Ylm(θ,φ)and radial functions φl(shuí)m(r,t),

    For a linear laser field,none of photons have angular momentum,so that all calculations can be done with m=0 if the initial atomic state has a zero magnetic quantum number. Thus,equation(5)is reduced as follows:

    The partial waves can be further discretized as φl(shuí)(r,t) =where χk(r) is FE-DVR base. Two vectors are set to be X(r) = (χ1(r),χ2(r),...,χk(r)) and Cl(t) =(cl1(t),cl2(t),...,clk(t)). Substituting Eq. (6) into Eq. (3), and separating the time-dependent parts from time-independent parts of the Hamiltonian matrix, the corresponding diagonal matrix element and off-diagonal matrix element are given by[24]

    where glis

    The Hamiltonian matrix is symmetrically tridiagonal,as indicated below.

    where O is the zero matrix.According to the RSPF,H(r,t)can be divided into two matrices A and B(t),

    Here,B(t)is not a diagonal matrix and can be reshaped further.After setting

    B(t) can be decomposed into two block diagonal matrices as follows:

    Using Lie-Trotter-Suzuki product formula(LTSPF),[29,30]the propagation scheme can be expressed as

    As shown in Eqs.(11)and(14),the matrices A,Beven(t),and Bodd(t)are block-diagonal matrices.The sub-matrices in these three matrices act independently on the corresponding partial waves. Thus, the parallelization of propagation scheme can be realized programmatically which can be used very well to solve TDSE as shown in a two-electron case.[31]From a concrete realization of the propagation exp(-iδtA), for each hl,lin matrix A,

    And for each bl(t)in Boddand Beven,

    According to the space division scheme of FE-DVR,[32]the radial coordinate of the interval[0,rmax]is divided into nefinite elements. In each FE (i.e., in [ri,ri+1]), nglocal DVR bases χi,mare constructed based on the generalized Gauss-Lobatto points rimand weights wim. In the numerical computation,χk(r)=χi,m(r). So,the partial waves can be expressed. The boundary conditions that the wave function vanishes at r11=0 and rneng=rmaxare imposed by deleting the first and last functions χ1,1and χne,ng. There are nbasis=neng-ng-1 basis functions in use.

    According to the characteristics of the FE-DVR bases,the potential-energy matrix and the matrix of any other local operator turn out to be diagonal with regard to the elements i and local DVR basis indices m;i.e.,

    While for the kinetic-energy representation, the matrix is shown in a diagonal overlapping block structure as follows:[33]

    Therefore, the elements of matrix hl,lin Eq. (11) can be expressed as

    Since it is represented based on FE-DVR,the structure of Eq.(8)is also like the potential-energy matrix,

    For hl,l-1(t)=hl-1,l(t),bl(t)in B(t)is expanded into a sparse symmetric matrix and expressed as

    Obviously, bl(t) is an ideal matrix for the SIL propagator in the perspective of efficiency. The number of nonzero elements in bl(t) is equal to the size of diagonal element of bl(t). This suggests that the ideal method of propagating partial waves in Eq.(17)is the SIL propagator.For the SIL propagator,an orthonormal Krylov subspace is constructed through recursive relations for each time step,

    where H=bl(t),αjand βjare expressed as

    and

    where|Zi〉and hiare the corresponding eigenvalue and eigenvector of Hp. Because it is mainly affected by the operator of bl(t) times the vector pjin Krylov subspace PN, the calculation scale of the SIL operator is proportional to

    It is noted that for propagating the partial waves in Eq.(16)in the SIL frame,the calculation scale is proportional to

    because the number of nonzero elements in hl,lis ne(ngng-1)-1. Comparing with the ideal matrix like bl(t),the calculation scale of the SIL propagator for hl,lincreases ngtimes approximately when neis large. It indicates that the SIL propagator is not a good choice in this case. To overcome this difficulty,in the numerical calculation we decompose the matrix hl,linto smaller sub-blocks, and then the sub-blocks are diagonalized as given in Ref.[26]. Compared with diagonalizing the whole matrix of hl,ldirectly,this method can greatly reduce the amount of computation. Meanwhile,the matrix hl,lis time-independent,and the operations of decomposition and diagonalization of hl,lonly need performing once before timedependent propagating, which further reduces the amount of computation.

    3. Application to numerical simulation of atomic HHG

    In the following, we mainly apply the present solver to the 3D TDSE of HHG from atomic hydrogen in a strong laser field. The parallel program is implemented in the FORTRAN language with openMP. The calculations are carried out on a workstation with two processors(Intel Xeon CPU,E5-2696v4,22 cores, 2.20 GHz). In the calculations, the laser field is 800 nm in wavelength and 1.0×1014W/cm2in power and has an envelope of cos2(πt/nT),where T is the time of an optical cycle,and n=10,the full width of half maximum of the laser pulse is about 13.34 fs.The initial state of hydrogen atom is 1 s. The parameter of time is set to be Ttotal=1200.0 a.u.and Δt=0.01 a.u. The radial space region is in[0,200.0]a.u.

    As is well known,the reliability of the solver is very important for simulating the real physical process of atoms interacted with strong laser fields. Figure 1 shows the HHG obtained from the present program, compared with the result of well-established SCID-TDSE,[18]which is a program of time-dependent solution of 1-electron atomic Schr?dinger equation in a strong laser field,and performed as well as LZHDICP.[24]The high-harmonic spectrum of SCID-TDSE is calculated from the Fourier transform of the real part of the expectation value of the dipole response. The high harmonic spectrum of our result is calculated from the Fourier transform of the real part of the expectation value of the time-dependent induced dipole acceleration response.[34]In this calculation,the parameters are chosen to be ng=6,ne=200,Lmax=100,and N=3. For obtaining a convergent result with the program SCID-TDSE, the parameters are Δr =0.3 a.u., Lmax=100,and Δt =0.0005 a.u. The consistency between the two re-sults indicates that our solver is reliable. The visible difference between the two high-harmonic spectra in the high energy region is due to the fact that the precision of HHG with high energy obtained from the dipole response is not enough.It is noted that our program is several times faster than the SCID-TDSE when the two programs run on the same workstation with 32 threads,which is in line with expectations for the reason why the FDM of the program SCID-TDSE requires smaller time steps to ensure the convergence.[35]The present solver can also be used to obtain the HHG of Ar atom in the same laser field with a model potential.[36]There is a need for more FEs(ne=320)in the radial space for the steeper potential of Ar atom near nucleus. The power of the HHG of Ar atom as shown in Fig. 1(b) is greater than that of hydrogen atom for the larger tunnel rate of 3p state with higher angular momentum.[37]

    Fig.1. (a)Comparison between HHGs obtained from our program and the program SCID-TDSE,[18] (b)HHG of Ar atom driven by intense laser field(800 nm and 1.0×1014 W/cm2). Up represents ponderomotive potential,and Ip denotes ionization energy of hydrogen atom.Cut-off position of HHG is marked with blue dashed line Ip+3.17Up.

    The precision of the present solver is mainly affected by the discretization of space and time. The precision of the discretization of space based on the FE-DVR has been discussed in detail in Ref. [27]. The inappropriate values of neand ngwill increase the error of calculation as done by underfitting or overfitting. The error caused by the discretization of time has two main sources, one is from the operator splitting of exponential function in Eq. (15)which is proportional to Δt3, and the other is from the propagation based on the SIL propagator in Eqs.(29)and(30)that relies on the order of the Krylov subspace,and expressed as

    To investigate the total error of the solver, the HHG of the calculations with different orders of the Krylov subspace is shown in Fig.2(a). Figure 2(b)shows the comparison among the phases of HHG which are more sensitive to the accurate.The calculations are carried out with 32 threads. The parameters are ng=6,ne=200,and Lmax=200. Figures 2(a)and 2(b)show clearly that the results are convergent when N ≥3,since the precision of the SIL propagator is consistent with the precision of the operator splitting of exponential function when N=3 according to Eq.(31).

    Fig. 2. Plots of (a) power and (b) phase versus harmonics of HHG of hydrogen atom driven by intense laser field (800 nm and 1.0×1014 W/cm2),obtained by using Krylov subspace with different orders.

    It is noticeable that splitting out the centrifugal potential from the SIL propagator in our scheme is also one of the reasons of fast convergence with small order of Krylov subspace,which has the same result as that of Ref.[35].The requirement for the small order of Krylov subspace means that a lot of time consumption of calculation can be saved according to Eq.(31).It is known that the requirement of accuracy increases with the increase of the laser intensity. So we give out the phase of HHG of Hydrogen atom in the laser field with its intensity up to 1.0×1015W/cm2as shown in Fig. 3(a). It is obvious that three orders of Krylov subspace can meet the accuracy requirement. Three orders of Krylov subspace can also meet the accuracy requirement for Ar atom in an intense laser field as shown in Fig.3(b).

    Fig.3. Plots of(a)phase of HHG of hydrogen in intense laser field(800 nm and 1.0×1015 W/cm2), (b)plots of a haze of HHG of Ar atom in intense laser field(800 nm and 1.0×1014 W/cm2),obtained by using Krylov subspace with different orders.

    For a solver,propagating the wave packet efficiently with a dense matrix such as hl,lis a tricky problem. The propagator for the relatively dense matrix hl,lin our solver is not the SIL propagator, its time consumption does not dependent on the order of the Krylov subspace. It can be seen in Fig.4(a)that the total time consumption of calculations varies with the order of the Krylov subspace as a linear function of N, specifically f(N)=a×N+b. Thus,b=42.27(seconds)is the time consumption relating to the matrix hl,l,and a×N(a=11.63(seconds)) is the time consumption for the matrix bl(t). If the SIL propagator is adopted for the matrix hl,l, then based on Eqs. (31) and (32) it can be deduced that the time consumption can be given as f(N)≈(a/2)×ng×N. For the cases of N=3 and ng=6,the time consumption for the matrix hl,lis about 104.67 seconds,which is more time consuming than that of our method for the matrix hl,l. This can make a significant statement that the propagation for the matrix hl,lin our solver is high efficient.

    Finally, the time consumption varying with the number of threads in the calculations of HHG is studied as shown in Fig. 4(b) with the parameters being Lmax= 200, ne= 200,and ng=6. This figure shows almost linearly scaling up to 32 threads,which indicates that the parallelism of the present solver is valid.

    4. Conclusions

    We have described an efficient parallel solver of TDSE simulating the interaction of atoms with a linearly polarized laser field. In this solver, the electronic wave function is expanded in terms of FE-DVR and the spherical harmonics. According to the RSPF, we implement the program in parallel,and improve the efficiency by separating out the ideal sparse sub-matrices from the Hamiltonian matrix for the SIL propagator. By decomposing and diagonalizing the sub-matrices including kinetic operator representation before time-dependent propagating, we can further improve the computational efficiency. Comparing with the split-Lanczos propagator,[35]the efficiency of our solver is high because the SIL propagator is applied to the sparser matrix bl(t) instead of the matrices including kinetic operator. We use the solver to simulate HHG of atomic hydrogen in an intense laser field. The results show that the solver of TDSE has less time consumption and better parallel efficiency. In addition, it is expected that the present solver combined with the Wigner rotation technique should be utilized for simulating the interaction of atoms with circularly polarized intense laser field. For the TDSE for a two-electron system in spherical coordinates,a lot of block sub-matrices exist in the Hamiltonian matrix as a result of transition limits or parity conservation,[20,38,39]our adopted method of separating and constructing block diagonal matrices may also increase the efficiency of solving the TDSE of a two-electron system interaction with an intense laser field.

    Acknowledgment

    We thank the High Performance Computing Center of Jilin University for the supercomputer time.

    猜你喜歡
    劉芳大軍愛(ài)華
    Reciprocal transformations of the space–time shifted nonlocal short pulse equations
    The creative application design research of“Da Ah Fu”image
    Ant Forest Users Plant 55m Trees in 507 Square Kilometers
    第一次拔牙
    神奇的光
    巧用余弦定理解答數(shù)學(xué)題
    在廈金胞張愛(ài)華孝親牽起兩岸情
    海峽姐妹(2016年2期)2016-02-27 15:15:48
    吹鬧心中的風(fēng)鈴
    戲劇之家(2015年23期)2016-01-12 19:04:48
    李?lèi)?ài)華:我希望過(guò)上這樣的生活
    人體免疫大軍之神經(jīng)元
    欧美高清成人免费视频www| 久久人妻av系列| 日本 av在线| 老熟妇仑乱视频hdxx| 精品熟女少妇av免费看| 欧美一级a爱片免费观看看| 亚洲国产精品久久男人天堂| 亚洲人成网站在线播| 精品欧美国产一区二区三| 午夜免费激情av| 俺也久久电影网| videossex国产| 六月丁香七月| 欧美成人一区二区免费高清观看| 亚洲五月天丁香| 插阴视频在线观看视频| 亚洲欧美清纯卡通| 18禁裸乳无遮挡免费网站照片| 69人妻影院| 日本a在线网址| 性插视频无遮挡在线免费观看| 亚洲av熟女| 美女内射精品一级片tv| 嫩草影院入口| 成人无遮挡网站| 亚洲av熟女| 日本一二三区视频观看| 1024手机看黄色片| 国产成人aa在线观看| 老司机影院成人| 国模一区二区三区四区视频| 亚洲一级一片aⅴ在线观看| 男女下面进入的视频免费午夜| 久久精品国产自在天天线| 国产熟女欧美一区二区| 日韩国内少妇激情av| 久久久久精品国产欧美久久久| 日韩av在线大香蕉| 亚洲国产欧洲综合997久久,| 免费av观看视频| 成年av动漫网址| 亚洲图色成人| 国产在线精品亚洲第一网站| 日韩大尺度精品在线看网址| 可以在线观看毛片的网站| 精品久久久噜噜| 联通29元200g的流量卡| 日本一本二区三区精品| 中文字幕人妻熟人妻熟丝袜美| 国产高清三级在线| 久久精品国产亚洲av天美| 中文字幕精品亚洲无线码一区| 99久久无色码亚洲精品果冻| 岛国在线免费视频观看| 午夜福利在线观看吧| 乱人视频在线观看| 国产一区二区在线av高清观看| 九九热线精品视视频播放| 日本a在线网址| 亚洲欧美清纯卡通| 国产人妻一区二区三区在| 久久人人爽人人片av| 欧美色欧美亚洲另类二区| 啦啦啦啦在线视频资源| 免费看av在线观看网站| 在线播放国产精品三级| av黄色大香蕉| 亚洲在线观看片| 亚洲不卡免费看| 国产大屁股一区二区在线视频| 美女被艹到高潮喷水动态| 欧美绝顶高潮抽搐喷水| 精品久久久久久久久久免费视频| 真实男女啪啪啪动态图| 啦啦啦观看免费观看视频高清| 国产av一区在线观看免费| 亚洲精品456在线播放app| 欧美另类亚洲清纯唯美| 天堂影院成人在线观看| 国产aⅴ精品一区二区三区波| 国产色婷婷99| 又黄又爽又刺激的免费视频.| 内地一区二区视频在线| 亚洲av电影不卡..在线观看| 欧美色欧美亚洲另类二区| 久久精品国产99精品国产亚洲性色| 天堂av国产一区二区熟女人妻| 身体一侧抽搐| 成人国产麻豆网| 欧美性猛交黑人性爽| 中文字幕熟女人妻在线| 国内精品宾馆在线| 99热这里只有精品一区| 国产精品野战在线观看| 啦啦啦韩国在线观看视频| 国产av麻豆久久久久久久| 美女高潮的动态| 最后的刺客免费高清国语| 日韩高清综合在线| 色哟哟·www| 国产国拍精品亚洲av在线观看| 亚洲精品粉嫩美女一区| 综合色丁香网| 欧美成人a在线观看| 给我免费播放毛片高清在线观看| 一级毛片我不卡| 好男人在线观看高清免费视频| 国产单亲对白刺激| 亚洲在线自拍视频| 久久久久国产精品人妻aⅴ院| 小说图片视频综合网站| 此物有八面人人有两片| 成人三级黄色视频| 亚洲av免费在线观看| 最近视频中文字幕2019在线8| 91麻豆精品激情在线观看国产| 国产精品一及| 91久久精品国产一区二区三区| 床上黄色一级片| 淫秽高清视频在线观看| 91久久精品国产一区二区成人| 亚洲最大成人手机在线| 一夜夜www| 成人午夜高清在线视频| 久久韩国三级中文字幕| 亚洲国产精品成人综合色| 亚洲国产欧洲综合997久久,| 亚洲综合色惰| 大型黄色视频在线免费观看| 精品午夜福利视频在线观看一区| 国产精品嫩草影院av在线观看| 日韩强制内射视频| 男女边吃奶边做爰视频| 亚洲无线观看免费| 此物有八面人人有两片| 波多野结衣高清无吗| 一区福利在线观看| 一夜夜www| 国产欧美日韩一区二区精品| av女优亚洲男人天堂| 成年免费大片在线观看| 天堂影院成人在线观看| 可以在线观看毛片的网站| 国产在线男女| 少妇熟女aⅴ在线视频| 国内精品一区二区在线观看| 黄色配什么色好看| 欧美一区二区精品小视频在线| 18禁黄网站禁片免费观看直播| 国产男人的电影天堂91| 两个人视频免费观看高清| 成人午夜高清在线视频| 国产亚洲精品久久久com| 中文字幕免费在线视频6| 18+在线观看网站| 成人美女网站在线观看视频| 伊人久久精品亚洲午夜| av在线蜜桃| 91av网一区二区| 成年女人永久免费观看视频| 最近手机中文字幕大全| 亚洲国产精品国产精品| 色5月婷婷丁香| 日日摸夜夜添夜夜添av毛片| 欧美三级亚洲精品| 午夜影院日韩av| 久久久久久久久大av| 日本爱情动作片www.在线观看 | 亚洲精华国产精华液的使用体验 | 国产高清三级在线| 成人美女网站在线观看视频| 波野结衣二区三区在线| 一a级毛片在线观看| 日韩精品青青久久久久久| 成人国产麻豆网| 国模一区二区三区四区视频| 日本三级黄在线观看| 日日摸夜夜添夜夜添av毛片| 欧美日韩精品成人综合77777| 舔av片在线| 精品一区二区三区视频在线| 乱码一卡2卡4卡精品| 久久久久国产精品人妻aⅴ院| 亚洲成人精品中文字幕电影| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 国产伦精品一区二区三区四那| 12—13女人毛片做爰片一| 波多野结衣高清作品| 男人和女人高潮做爰伦理| 国产在视频线在精品| 日本成人三级电影网站| 菩萨蛮人人尽说江南好唐韦庄 | 晚上一个人看的免费电影| 老熟妇乱子伦视频在线观看| 在线观看一区二区三区| 一个人观看的视频www高清免费观看| 国产精品一二三区在线看| 久久精品国产亚洲av涩爱 | 色吧在线观看| 嫩草影院新地址| 真人做人爱边吃奶动态| 99国产极品粉嫩在线观看| 91久久精品国产一区二区三区| 乱系列少妇在线播放| 亚洲av中文字字幕乱码综合| 2021天堂中文幕一二区在线观| 日韩成人av中文字幕在线观看 | 国产精品国产高清国产av| 国产一区二区在线观看日韩| 在线观看一区二区三区| 国产真实伦视频高清在线观看| 黄片wwwwww| 久久热精品热| 精品熟女少妇av免费看| 欧美一区二区精品小视频在线| 18禁黄网站禁片免费观看直播| 久久精品国产清高在天天线| 一本一本综合久久| 亚洲性久久影院| 亚洲欧美日韩无卡精品| 一进一出好大好爽视频| 亚洲婷婷狠狠爱综合网| 欧美最黄视频在线播放免费| 国产精品综合久久久久久久免费| 天堂动漫精品| 简卡轻食公司| av在线老鸭窝| 在线播放无遮挡| 国内精品一区二区在线观看| 成人av在线播放网站| 精品日产1卡2卡| 国产精品99久久久久久久久| 在线观看一区二区三区| 成人无遮挡网站| 禁无遮挡网站| 欧美中文日本在线观看视频| 可以在线观看毛片的网站| 日韩av不卡免费在线播放| 日本免费a在线| 国产乱人偷精品视频| av.在线天堂| 美女大奶头视频| 两个人视频免费观看高清| 亚洲人成网站在线播| 亚洲av二区三区四区| 婷婷色综合大香蕉| 国产精品av视频在线免费观看| 国产高清有码在线观看视频| 亚洲无线在线观看| 午夜激情福利司机影院| 欧美高清成人免费视频www| 国产男靠女视频免费网站| 亚洲性夜色夜夜综合| 久久精品国产99精品国产亚洲性色| 国产亚洲精品av在线| 无遮挡黄片免费观看| 日日摸夜夜添夜夜爱| 亚洲久久久久久中文字幕| 高清午夜精品一区二区三区 | 久久久久久伊人网av| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三区视频在线观看免费| 国产 一区精品| 久久6这里有精品| 精品人妻一区二区三区麻豆 | 国产高清视频在线观看网站| 亚洲最大成人手机在线| 国内久久婷婷六月综合欲色啪| 插逼视频在线观看| 欧美精品国产亚洲| 可以在线观看的亚洲视频| 在线国产一区二区在线| 午夜影院日韩av| 男女之事视频高清在线观看| 性欧美人与动物交配| 欧美人与善性xxx| 少妇人妻一区二区三区视频| 舔av片在线| 亚洲av电影不卡..在线观看| 国产午夜精品论理片| 少妇人妻一区二区三区视频| 女人十人毛片免费观看3o分钟| 免费看日本二区| 亚洲av二区三区四区| 亚洲精品色激情综合| 在线免费十八禁| 亚洲国产日韩欧美精品在线观看| 最好的美女福利视频网| 变态另类成人亚洲欧美熟女| 美女大奶头视频| 18禁在线无遮挡免费观看视频 | 久久亚洲精品不卡| 日韩高清综合在线| 人妻丰满熟妇av一区二区三区| 一进一出抽搐gif免费好疼| 亚洲最大成人av| 欧美另类亚洲清纯唯美| 欧美三级亚洲精品| 女生性感内裤真人,穿戴方法视频| 在线免费观看不下载黄p国产| 午夜日韩欧美国产| 久久人人精品亚洲av| 99久久无色码亚洲精品果冻| 精品一区二区三区av网在线观看| ponron亚洲| 综合色丁香网| 乱码一卡2卡4卡精品| 波多野结衣高清无吗| 成年女人永久免费观看视频| 久久久久性生活片| 久久久久国产精品人妻aⅴ院| 国产一区亚洲一区在线观看| 麻豆精品久久久久久蜜桃| 日韩成人伦理影院| 午夜福利18| 一个人观看的视频www高清免费观看| 丝袜喷水一区| 一进一出抽搐gif免费好疼| 亚洲性夜色夜夜综合| 如何舔出高潮| 小说图片视频综合网站| 五月玫瑰六月丁香| 一级黄片播放器| 一个人看的www免费观看视频| 少妇的逼好多水| 极品教师在线视频| 全区人妻精品视频| 国产一区二区三区在线臀色熟女| 欧美色视频一区免费| 欧美激情国产日韩精品一区| 精品一区二区免费观看| 亚洲国产色片| 日日摸夜夜添夜夜添av毛片| 久久精品国产清高在天天线| 午夜激情欧美在线| 欧美人与善性xxx| 国产私拍福利视频在线观看| 狂野欧美白嫩少妇大欣赏| av在线亚洲专区| 日韩欧美一区二区三区在线观看| 在线免费十八禁| 少妇熟女aⅴ在线视频| 精品午夜福利在线看| 欧美色欧美亚洲另类二区| 欧美日韩综合久久久久久| 国国产精品蜜臀av免费| 欧美另类亚洲清纯唯美| 国内少妇人妻偷人精品xxx网站| 男女之事视频高清在线观看| 天堂网av新在线| 亚洲乱码一区二区免费版| 男人和女人高潮做爰伦理| 内射极品少妇av片p| 国产av不卡久久| 亚洲欧美精品综合久久99| 国产高清不卡午夜福利| 国产精品精品国产色婷婷| 女人被狂操c到高潮| 亚洲一区二区三区色噜噜| 听说在线观看完整版免费高清| 国产aⅴ精品一区二区三区波| 国产三级中文精品| a级毛片a级免费在线| 欧美国产日韩亚洲一区| 精品人妻偷拍中文字幕| 国产成人a∨麻豆精品| 99热这里只有是精品50| 日韩av不卡免费在线播放| 日韩av在线大香蕉| 精品久久久久久成人av| 老熟妇乱子伦视频在线观看| 国产精品一区二区三区四区久久| 国产麻豆成人av免费视频| 国产精品1区2区在线观看.| 国产精品人妻久久久影院| 久久精品国产99精品国产亚洲性色| 黄色日韩在线| 亚洲无线在线观看| 久久精品国产鲁丝片午夜精品| 欧美日韩综合久久久久久| 中文字幕熟女人妻在线| 亚洲美女搞黄在线观看 | 99在线视频只有这里精品首页| 欧美人与善性xxx| 久久久久久久久久黄片| 国产黄色视频一区二区在线观看 | 春色校园在线视频观看| 欧美高清成人免费视频www| 久久婷婷人人爽人人干人人爱| 一本一本综合久久| 天天一区二区日本电影三级| 深夜精品福利| 热99re8久久精品国产| 美女被艹到高潮喷水动态| 搡女人真爽免费视频火全软件 | 国产色爽女视频免费观看| 久久人人精品亚洲av| 久久国内精品自在自线图片| 午夜视频国产福利| 亚洲精品在线观看二区| 亚洲五月天丁香| 免费av观看视频| 男女下面进入的视频免费午夜| 少妇人妻精品综合一区二区 | 国内精品久久久久精免费| 午夜福利在线在线| 久久九九热精品免费| 不卡视频在线观看欧美| 黄片wwwwww| 美女 人体艺术 gogo| 看十八女毛片水多多多| 变态另类丝袜制服| 蜜桃久久精品国产亚洲av| 欧美一区二区精品小视频在线| а√天堂www在线а√下载| 黄色欧美视频在线观看| 国产精品久久久久久亚洲av鲁大| 免费搜索国产男女视频| 亚洲成av人片在线播放无| 亚州av有码| 日本黄色片子视频| 免费在线观看影片大全网站| 日本爱情动作片www.在线观看 | 亚洲一级一片aⅴ在线观看| 性欧美人与动物交配| 国产极品精品免费视频能看的| 综合色丁香网| 日韩一区二区视频免费看| 3wmmmm亚洲av在线观看| 国产淫片久久久久久久久| 亚洲专区国产一区二区| 中文字幕av在线有码专区| 亚洲精品在线观看二区| 亚洲精品久久国产高清桃花| 一个人看的www免费观看视频| 淫秽高清视频在线观看| 国产精品电影一区二区三区| 日韩三级伦理在线观看| 国产高清三级在线| 国产高清激情床上av| 最新在线观看一区二区三区| 国产爱豆传媒在线观看| 午夜福利视频1000在线观看| 在线a可以看的网站| 日本免费a在线| 国产在线男女| 亚洲国产欧洲综合997久久,| 九九爱精品视频在线观看| 亚洲乱码一区二区免费版| 美女 人体艺术 gogo| 成人毛片a级毛片在线播放| 麻豆国产av国片精品| 国产精品99久久久久久久久| 国产精品女同一区二区软件| 天堂av国产一区二区熟女人妻| 亚洲av美国av| 听说在线观看完整版免费高清| 亚洲电影在线观看av| 免费搜索国产男女视频| 日韩国内少妇激情av| 综合色丁香网| 欧美中文日本在线观看视频| 人人妻,人人澡人人爽秒播| 老司机影院成人| 悠悠久久av| 国产精品嫩草影院av在线观看| 日本黄色视频三级网站网址| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片| 我要搜黄色片| 熟妇人妻久久中文字幕3abv| 欧美一区二区亚洲| 免费一级毛片在线播放高清视频| 丰满乱子伦码专区| 可以在线观看毛片的网站| 亚洲av美国av| 亚洲av成人精品一区久久| 美女黄网站色视频| 午夜久久久久精精品| 高清日韩中文字幕在线| 国内久久婷婷六月综合欲色啪| 在线观看一区二区三区| 欧美丝袜亚洲另类| 亚洲丝袜综合中文字幕| 天堂动漫精品| 老师上课跳d突然被开到最大视频| 最新中文字幕久久久久| 免费看av在线观看网站| 日日啪夜夜撸| 在线看三级毛片| 日产精品乱码卡一卡2卡三| 一进一出抽搐动态| 身体一侧抽搐| 在线观看午夜福利视频| 日本熟妇午夜| 亚洲精品国产成人久久av| 亚洲三级黄色毛片| www.色视频.com| 欧美另类亚洲清纯唯美| 日产精品乱码卡一卡2卡三| 少妇人妻精品综合一区二区 | 老司机影院成人| 国产爱豆传媒在线观看| 最近2019中文字幕mv第一页| 嫩草影视91久久| 熟女人妻精品中文字幕| 欧美一区二区精品小视频在线| 简卡轻食公司| 男女啪啪激烈高潮av片| 日本撒尿小便嘘嘘汇集6| 99国产极品粉嫩在线观看| 桃色一区二区三区在线观看| 日韩欧美精品v在线| 精品午夜福利视频在线观看一区| 久久精品久久久久久噜噜老黄 | 女人十人毛片免费观看3o分钟| 少妇高潮的动态图| 国产精品精品国产色婷婷| 久久久久久久久久成人| 天美传媒精品一区二区| 久久久久国产精品人妻aⅴ院| 毛片一级片免费看久久久久| 小说图片视频综合网站| 免费观看的影片在线观看| 日本-黄色视频高清免费观看| 欧美色视频一区免费| 久久精品人妻少妇| 国产亚洲欧美98| 少妇被粗大猛烈的视频| 国产精品久久电影中文字幕| 99热网站在线观看| 精品久久久噜噜| 亚洲熟妇熟女久久| 午夜免费男女啪啪视频观看 | 91在线观看av| 最近中文字幕高清免费大全6| 免费无遮挡裸体视频| 美女内射精品一级片tv| 欧美区成人在线视频| 最近在线观看免费完整版| 亚洲电影在线观看av| 亚洲精品国产av成人精品 | 国产成人a∨麻豆精品| 黄色配什么色好看| 欧美激情在线99| av天堂中文字幕网| 一级毛片我不卡| 悠悠久久av| 国产亚洲欧美98| 男人舔女人下体高潮全视频| 尤物成人国产欧美一区二区三区| 亚洲一级一片aⅴ在线观看| 啦啦啦韩国在线观看视频| 波多野结衣高清作品| 99久久精品一区二区三区| 日韩强制内射视频| 国产探花极品一区二区| 亚洲av第一区精品v没综合| 日韩,欧美,国产一区二区三区 | 熟女人妻精品中文字幕| 你懂的网址亚洲精品在线观看 | 亚洲欧美日韩无卡精品| 1024手机看黄色片| 午夜福利在线在线| 欧美3d第一页| av国产免费在线观看| 久久久久性生活片| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 小说图片视频综合网站| 欧美日韩精品成人综合77777| 一级黄片播放器| 国产高潮美女av| 51国产日韩欧美| 97人妻精品一区二区三区麻豆| 99热这里只有精品一区| 婷婷六月久久综合丁香| 联通29元200g的流量卡| 我要看日韩黄色一级片| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频 | 熟妇人妻久久中文字幕3abv| 久久综合国产亚洲精品| 欧美+日韩+精品| 91在线精品国自产拍蜜月| 在线a可以看的网站| 能在线免费观看的黄片| 日本色播在线视频| 亚洲国产精品国产精品| 国产一区二区亚洲精品在线观看| 成人精品一区二区免费| 69人妻影院| 成年版毛片免费区| videossex国产| 成人av一区二区三区在线看| 日本撒尿小便嘘嘘汇集6| 最新中文字幕久久久久| 黄色欧美视频在线观看| 日韩欧美免费精品| 九九在线视频观看精品| 午夜激情福利司机影院| 色噜噜av男人的天堂激情| 国产高清三级在线| 亚洲最大成人av| 婷婷亚洲欧美| 久久午夜亚洲精品久久| 免费看a级黄色片| 日本在线视频免费播放| 精品久久国产蜜桃| 国产成人freesex在线 | 99视频精品全部免费 在线| 久久久国产成人免费| 深夜a级毛片|