張杰 史治宇
摘要: 提出了同步壓縮小波時(shí)頻脊提取結(jié)合自適應(yīng)時(shí)域?yàn)V波的時(shí)變系統(tǒng)參數(shù)識(shí)別方法。同步壓縮小波相比傳統(tǒng)小波具有優(yōu)異的時(shí)頻分辨率,基于該小波時(shí)頻脊提取可以獲得時(shí)變結(jié)構(gòu)的瞬時(shí)模態(tài)頻率,在此基礎(chǔ)上可構(gòu)造各階分量信號(hào)的載波矩陣,并應(yīng)用自適應(yīng)時(shí)域?yàn)V波求解分量信號(hào)的幅值包絡(luò),進(jìn)而識(shí)別結(jié)構(gòu)的阻尼比。該方法能對(duì)時(shí)變系統(tǒng)結(jié)構(gòu)響應(yīng)進(jìn)行各階分解,相比經(jīng)驗(yàn)?zāi)B(tài)分解方法具有優(yōu)異的時(shí)頻提取能力、較強(qiáng)的抗噪性能和識(shí)別復(fù)雜時(shí)變問(wèn)題的能力。在理論推導(dǎo)基礎(chǔ)上,首先通過(guò)一個(gè)3自由度時(shí)變仿真算例驗(yàn)證了方法的正確性和抗噪性,再應(yīng)用該算例構(gòu)造了一個(gè)復(fù)雜時(shí)變算例(分量信號(hào)在頻域重疊且突變),以此驗(yàn)證方法對(duì)各類(lèi)復(fù)雜時(shí)變情況的適用性和準(zhǔn)確性。
關(guān)鍵詞: 參數(shù)識(shí)別; 同步壓縮小波; 時(shí)頻脊提取; 自適應(yīng)濾波; 時(shí)變系統(tǒng)
中圖分類(lèi)號(hào): TB123; O327? 文獻(xiàn)標(biāo)志碼: A? 文章編號(hào): 1004-4523(2019)03-0462-09
DOI:10.16385/j.cnki.issn.1004-4523.2019.03.011
引 言
現(xiàn)代工程結(jié)構(gòu)逐漸邁向大型化、智能化、微型化的發(fā)展方向,結(jié)構(gòu)時(shí)變問(wèn)題隨之凸顯,例如:運(yùn)載火箭發(fā)射時(shí)質(zhì)量減小、高超聲速飛行器氣動(dòng)加熱引起結(jié)構(gòu)剛度變化、空間太陽(yáng)能板伸展引起結(jié)構(gòu)時(shí)變等,因此結(jié)構(gòu)時(shí)變問(wèn)題研究無(wú)論在理論層面還是在實(shí)際應(yīng)用上都有重大研究?jī)r(jià)值。
國(guó)內(nèi)外現(xiàn)有線(xiàn)性時(shí)變系統(tǒng)參數(shù)識(shí)別的研究思路主要分兩類(lèi)[1]:第一類(lèi)是基于短時(shí)時(shí)不變假設(shè),對(duì)信號(hào)進(jìn)行局部處理,應(yīng)用信號(hào)處理方法(Gabor變換、Wigner-Ville分布[2]、小波變換[3-7])或子空間(Subspace)[8-10]進(jìn)行參數(shù)識(shí)別;第二類(lèi)是先將響應(yīng)信號(hào)作為整體進(jìn)行自適應(yīng)分解,再對(duì)各階響應(yīng)信號(hào)進(jìn)行參數(shù)識(shí)別[11-14]。第一類(lèi)方法,短時(shí)時(shí)不變假設(shè)要求時(shí)域信號(hào)分析區(qū)間選取足夠小但同時(shí)增加了計(jì)算量,因此算法都存在計(jì)算效率低、抗噪性能差、實(shí)用性不足的問(wèn)題。第二類(lèi)方法中較有代表性的是希爾伯特黃變換(HHT)[11],HHT方法通過(guò)經(jīng)驗(yàn)?zāi)B(tài)分解可以自適應(yīng)、高效地將信號(hào)分解為多個(gè)本征模態(tài)函數(shù),進(jìn)一步通過(guò)對(duì)每一個(gè)分量做希爾伯特變換,可在時(shí)頻域得到良好的信號(hào)表示。然而,該方法難以處理多分量頻率重疊或交叉信號(hào),且存在模式混淆、“邊界效應(yīng)”等問(wèn)題。
由于時(shí)變系統(tǒng)產(chǎn)生非平穩(wěn)的振動(dòng)響應(yīng),振動(dòng)信號(hào)具有明顯的時(shí)變調(diào)制特性,因此時(shí)頻分析工具是一種較為理想的研究方法,常用時(shí)頻分析工具都是由傅里葉變換發(fā)展而來(lái),都存在上文所述的精度低、自適應(yīng)不夠、抗噪性能差等問(wèn)題。
近年來(lái),Daubechie等[15]提出了壓縮小波變換(Synchrosqueezed Wavelet Transform, SWT)。該算法基于連續(xù)小波變換,通過(guò)對(duì)小波變換的復(fù)數(shù)譜沿頻率軸方向壓縮重排,具有較高的頻率分辨率,能得到頻率曲線(xiàn)更加集中的時(shí)頻表達(dá)。同時(shí)自適應(yīng)濾波在最小化結(jié)構(gòu)和數(shù)據(jù)誤差基礎(chǔ)上,可有效分離在時(shí)頻域內(nèi)鄰近甚至交叉的信號(hào)分量[16],自適應(yīng)濾波在非平穩(wěn)信號(hào)處理中尤其是故障診斷分析中具有廣泛應(yīng)用[17-18],然而時(shí)域?yàn)V波須獲得待分離信號(hào)分量的瞬時(shí)頻率載波矩陣。因此本文提出了將同步壓縮小波時(shí)頻脊提取引入到自適應(yīng)濾波中,得到改進(jìn)的自適應(yīng)時(shí)頻分解方法,并將其應(yīng)用到時(shí)變系統(tǒng)參數(shù)識(shí)別中。該方法首先應(yīng)用同步壓縮小波時(shí)頻脊提取脈沖響應(yīng)信號(hào)的時(shí)頻分布,根據(jù)其時(shí)頻結(jié)果構(gòu)造載波矩陣再應(yīng)用時(shí)域?yàn)V波將響應(yīng)信號(hào)自適應(yīng)分解成多階響應(yīng)信號(hào),最后再對(duì)各階響應(yīng)進(jìn)行瞬時(shí)模態(tài)參數(shù)的識(shí)別。改進(jìn)算法可有效提高識(shí)別的精度并增加其適用范圍。
首先計(jì)算響應(yīng)的壓縮小波時(shí)頻脊,結(jié)果如圖7所示,可以看出結(jié)構(gòu)的第2階和第3階分量在5-8 Hz存在重疊,且在20 s時(shí)頻率發(fā)生突變。分別用本文方法和EMD方法對(duì)加速度響應(yīng)進(jìn)行分解,得到各個(gè)分量的時(shí)域信號(hào),再對(duì)分量信號(hào)作短時(shí)傅里葉分析(STFT)來(lái)驗(yàn)證分解信號(hào)的頻域成分。本文方法分解結(jié)果如圖8所示,將結(jié)果和圖7比較,可以看出3個(gè)分量的STFT結(jié)果和理論值是吻合的。EMD分解結(jié)果如圖9所示,由于EMD存在較多虛假成分,因此按頻率由低到高取能量較大的前4階成分。將分解結(jié)果和圖7比較,可以發(fā)現(xiàn)EMD分解在無(wú)改進(jìn)情況下較難處理此種時(shí)變問(wèn)題,第1分量和第4分量頻率成分較混亂,第2分量含較多突變前頻率成分,第3分量則含較多突變后頻率成分,因此傳統(tǒng)的EMD方法較難處理多分量信號(hào)重頻或交叉的情況。
然后根據(jù)本文方法分解結(jié)果進(jìn)行瞬時(shí)頻率的識(shí)別,識(shí)別結(jié)果如圖10所示。3階頻率識(shí)別結(jié)果都能較好地貼近理論值,僅在數(shù)據(jù)兩端局部會(huì)誤差稍大,并且方法對(duì)突變點(diǎn)也能較好追蹤,總體來(lái)看本文方法相比EMD方法更適用在復(fù)雜時(shí)變情況的參數(shù)識(shí)別。同樣地對(duì)信號(hào)添加不同信噪比的噪聲考察方法的抗噪性,頻率識(shí)別誤差如表3所示,可以看出復(fù)雜時(shí)變情況下參數(shù)識(shí)別也幾乎不受噪聲影響。
5 結(jié) 論
(1) 本文提出了同步壓縮小波時(shí)頻脊提取結(jié)合自適應(yīng)時(shí)域?yàn)V波的時(shí)變系統(tǒng)參數(shù)識(shí)別方法,該方法基于加速度響應(yīng)信號(hào)進(jìn)行數(shù)據(jù)的整體分解,具有較高的自適應(yīng)性和實(shí)用性。
(2) 該方法利用壓縮小波較高的時(shí)頻分辨率能精確提取響應(yīng)信號(hào)的各階瞬時(shí)頻率。
(3) 由于自適應(yīng)時(shí)域?yàn)V波適用于非平穩(wěn)信號(hào)處理,因此改進(jìn)時(shí)頻分解方法能得到精確的時(shí)變響應(yīng)幅值包絡(luò),基于包絡(luò)結(jié)果進(jìn)行的阻尼識(shí)別也更準(zhǔn)確,同時(shí)算法具有很好的抗噪性能,識(shí)別結(jié)果幾乎不受噪聲影響,抗噪性能優(yōu)異。
(4) 相比EMD方法,本文方法適用范圍更廣,能應(yīng)用在各類(lèi)復(fù)雜時(shí)變結(jié)構(gòu)中,并且可以追蹤瞬時(shí)頻率的各類(lèi)變化(線(xiàn)性、周期和突變等)。
參考文獻(xiàn):
[1] 于開(kāi)平, 龐世偉, 趙 婕. 時(shí)變線(xiàn)性/非線(xiàn)性結(jié)構(gòu)參數(shù)識(shí)別及系統(tǒng)辨識(shí)方法研究進(jìn)展[J]. 科學(xué)通報(bào), 2009, 54(20): 3147-3156.
Yu Kaiping, Pang Shiwei, Zhao Jie. Advances in method of time-varying linear/nonlinear structural system identification and parameter estimate[J]. Chinese Science Bulletion (Chinese Version), 2009, 54(20): 3147-3156.
[2] 續(xù)秀忠, 華宏星, 張志誼, 等. 應(yīng)用時(shí)頻表示進(jìn)行結(jié)構(gòu)時(shí)變模態(tài)參數(shù)辨識(shí)[J]. 振動(dòng)與沖擊, 2002, 21(2): 36-40.
Xu Xiuzhong, Hua Hongxing, Zhang Zhiyi,et al. Time-varying modal frequency identification by using time-frequency representation[J]. Journal of Vibration and Shock, 2002, 21(2): 36-40.
[3] Ghanem R, Romeo F. A wavelet-based approach for the identification of linear time-varying dynamic systems[J]. Journal of Sound and Vibration, 2000, 234(4): 555-576.
[4] 鄒甲軍, 馮志化, 陸維生. 基于小波的LTV系統(tǒng)的參數(shù)識(shí)別[J]. 蘇州大學(xué)學(xué)報(bào)(工科版), 2005, 25: 41-46.
Zou Jiajun, Feng Zhihua, Lu Weisheng. Model parameter identification of LTV systems based on Daubechies wavelet[J]. Journal of Soochow University (Engineering Science Edition), 2005, 25: 41-46.
[5] Xu X, Shi Z Y, You Q. Identification of linear time-varying systems using a wavelet-based state-space method[J]. Mechanical Systems and Signal Processing, 2012, 26: 91-103.
[6] Hera A, Shinde A, Hou Z K. Issues in tracking instantaneous modal parameters for structural health monitoring using wavelet approach[C]. Proceedings of 23rd International Modal Analysis Conference (IMAC XXIII), Orlando, Florida, USA, 2005: 338-347.
[7] Dziedziech K, Staszewski W J, Basu B, et al. Wavelet-based detection of abrupt changes in natural frequencies of time-variant systems[J]. Mechanical Systems and Signal Processing, 2015, 64-65:347-359.
[8] Liu K. Identification of linear time-varying systems[J]. Journal of Sound and Vibration, 1997, 204: 487-500.
[9] 龐世偉, 于開(kāi)平, 鄒經(jīng)湘. 識(shí)別時(shí)變結(jié)構(gòu)模態(tài)參數(shù)的改進(jìn)子空間方法[J]. 應(yīng)用力學(xué)學(xué)報(bào), 2005, 22: 184-188.
Pang Shiwei, Yu Kaiping, Zou Jingxiang. Improved subspace method with application in linear time-varying structural modal parameter identification[J]. Chinese Journal of Applied Mechanics, 2005, 22: 184-188.
[10] Tasker F, Bosse A, Fisher S. Real-time modal parameter estimation using subspace methods: Theory[J]. Mechanical Systems and Signal Processing, 1998, 12: 797-808.
[11] Feldman M. Nonlinear system vibration analysis using Hilbert transform II: Forced vibration analysis method[J]. Mechanical Systems and Signal Processing, 1994, 8(3): 309-318.
[12] Shi Z Y, Law S S. Identification of linear time-varying dynamical systems using Hilbert transform and EMD[J]. Journal of Applied Mechanics, 2007, 74(2): 223-230.
[13] Bao C X, Hao H, Li Z X, et al. Time-varying system identification using a newly improved HHT algorithm[J]. Computers and Structures, 2009, 87:1611-1623.
[14] 程軍圣, 張 亢, 楊 宇, 等. 局部均值分解與經(jīng)驗(yàn)?zāi)J椒纸獾膶?duì)比研究[J]. 振動(dòng)與沖擊, 2009, 28(5):13-16.
Cheng Junsheng, Zhang Kang, Yang Yu, et al. Comparison between the methods of local mean decomposition and empirical mode decomposition[J]. Journal of Vibration and Shock, 2009, 28(5):13-16.
[15] Daubechies I, Lu F J, Wu H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30:243-261.
[16] Vold H,Herlufsen H,Mains M.Multi axle order tracking with the Vold-Kalman tracking filter[J].Journal of Sound and Vibration, 1997, 13(5):30-34.
[17] 秦嗣峰,馮志鵬,Liang Ming. Vold-Kalman濾波和高階能量分離在時(shí)變工況行星齒輪箱故障診斷中的應(yīng)用研究[J]. 振動(dòng)工程學(xué)報(bào),2015,28(5):839-845.
Qin Sifeng, Feng Zhipeng, Liang Ming. Application of Vold-Kalman filter and higher order energy separation to fault diagnosis of planetary gearbox under time-varying conditions[J]. Journal of Vibration Engineering, 2015, 28(5):839-845.
[18] 馮 珂,王科盛,宋理偉,等. 基于階次譜的Vold-Kalman濾波帶寬優(yōu)選方法[J]. 振動(dòng)工程學(xué)報(bào),2017,30(02):319-324.
Feng Ke, Wang Kesheng, Song Liwei, et al. An order spectrum based selection method to Vold-Kalman filter bandwidth[J]. Journal of Vibration Engineering, 2017, 30(02):319-324.
[19] Vold H, Mains M, Blough J. Theoretical foundations for high performance order tracking with the Vold-Kalman tracking filter[C]. SAE Noise and Vibration Conference and Exposition, 1997:1083-1088.
[20] Feldauer Ch, Hldrich R. Realisation of a Vold-Kalman tracking filter——A least square problem[C]. Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-410800), Verona, Italy, 2000: 7-9.
[21] Tuma J. Setting the pass bandwidth in the Vold-Kalman order tracking filter[C]. Twelfth International Congress on Sound and Vibration, Lisbon, 2005, Paper 719.
Abstract: In this paper, an instantaneous modal parameter identification method for time-varying structures based on synchrosqueezed wavelet transform (SWT) and adaptive filtering is proposed. The time-frequency ridges of SWT are applied to the instantaneous frequency extraction of time-varying structures for their excellent time-frequency resolution. Then the carrier matrix of each order component signal can be constructed and the component signal amplitude envelope is calculated based on the adaptive filter. On this basis, the structural damping ratio is identified. Compared with the empirical mode decomposition, this method has excellent time-frequency extraction capability, strong noise immunity and strong applicability for various time-varying conditions. Based on the theory, the results of a three-degree-of-freedom time-varying simulation verify the correctness and anti-noise ability of the method. The example is also used to construct a complex time-varying situation in order to verify the applicability of the method, and the results show that this method can be applied to time-varying situations that component signals overlap or even intersect in frequency domain.
Key words: parameter identification; synchrosqueezed wavelet transform; time-frequency ridges extraction; adaptive filtering; time-varying system
作者簡(jiǎn)介: 張 杰(1988-),男,博士研究生。電話(huà):18551670428;E-mail:jzhang1988@nuaa.edu.cn
通訊作者: 史治宇(1967-),男,博士,教授,博士生導(dǎo)師。電話(huà):18914704215;E-mail:zyshi@nuaa.edu.cnZ ··y^