徐文俊 鄭麗文 馬品奎
摘要: 建立了改進(jìn)的基于Jacobi橢圓函數(shù)的隨機(jī)平均法,用于預(yù)測有界噪聲激勵作用下硬彈簧和軟彈簧系統(tǒng)的隨機(jī)響應(yīng)。通過引入基于Jacobi橢圓函數(shù)的變換,導(dǎo)出關(guān)于響應(yīng)幅值和激勵與響應(yīng)之間相位差的隨機(jī)微分方程,應(yīng)用隨機(jī)平均原理,將響應(yīng)幅值近似為一個Markov擴(kuò)散過程,建立其平均的It隨機(jī)微分方程。響應(yīng)幅值的穩(wěn)態(tài)概率密度由相應(yīng)的簡化FokkerPlanckKolmogorov方程解出;進(jìn)而得到系統(tǒng)位移和速度的穩(wěn)態(tài)概率密度。以DuffingVan der Pol 振子為例,研究了硬剛度及軟剛度情形下的隨機(jī)響應(yīng),通過與Monte Carlo數(shù)值模擬結(jié)果比較證實了此方法的可行性及精度。由于廣義調(diào)和函數(shù)是基于線性系統(tǒng)的精確解,Jacobi橢圓函數(shù)是基于非線性系統(tǒng)的精確解,研究結(jié)果表明基于Jacobi橢圓函數(shù)的隨機(jī)平均法得到的結(jié)果與Monte Carlo模擬方法更接近。因此與基于廣義調(diào)和函數(shù)的隨機(jī)平均相比,基于Jacobi橢圓函數(shù)更加精確,因為它是基于保守的非線性系統(tǒng)。
關(guān)鍵詞: 隨機(jī)振動; 隨機(jī)平均; 有界噪聲; 硬剛度; 軟剛度
中圖分類號: O324; O322? 文獻(xiàn)標(biāo)志碼: A? 文章編號: 1004-4523(2019)03.0444.08
引 言
隨機(jī)平均法是非線性隨機(jī)系統(tǒng)響應(yīng)分析的有效方法之一。該方法在保留系統(tǒng)本質(zhì)非線性特性的同時降低了系統(tǒng)維數(shù),應(yīng)用平均原理后,系統(tǒng)的慢變過程近似為擴(kuò)散Markov過程,通過求解相應(yīng)的FokkerPlanckKolmogorov (FPK)方程得到響應(yīng)概率密度,隨機(jī)平均技術(shù)基于Khasminskii[12]提出的一些定理,迄今的研究可歸為以下5類:標(biāo)準(zhǔn)隨機(jī)平均法[3]、能量包線隨機(jī)平均法[47]、擬Hamilton系統(tǒng)隨機(jī)平均法[811]、基于廣義諧和函數(shù)的隨機(jī)平均法[12]、基于橢圓函數(shù)的隨機(jī)平均法[13]。Stratonovich隨機(jī)平均法可以有效地求解寬帶激勵下的擬線性隨機(jī)系統(tǒng)問題?;谀芰堪j(luò)的隨機(jī)平均,即擬Hamilton系統(tǒng)的隨機(jī)平均,該方法適用于寬帶噪聲激勵下的單自由度強(qiáng)非線性系統(tǒng),也可適用于高斯白噪聲激勵下的多自由度擬Hamilton系統(tǒng)?;趶V義諧和函數(shù)的隨機(jī)平均法,可適用于寬帶、有界、諧波函數(shù)和高斯白噪聲聯(lián)合激勵下的強(qiáng)非線性系統(tǒng)。作者之前引入高斯白噪聲激勵下的基于Jacobi橢圓函數(shù)的隨機(jī)平均法,結(jié)果表明它比基于廣義調(diào)和函數(shù)的隨機(jī)平均具有更高的精度,由于橢圓余弦函數(shù)是保守Duffing系統(tǒng)的精確解,因此該方法具有更高精度。
在研究地震、海浪、風(fēng)作用的時候往往要考慮隨機(jī)噪聲的影響,所以研究隨機(jī)激勵下非線性系統(tǒng)的問題也引起了很多學(xué)者的重視。由于有界噪聲在工程中應(yīng)用非常廣泛,因此本文主要研究在有界噪聲激勵下基于Jacobi橢圓函數(shù)的隨機(jī)平均法。有學(xué)者研究了基于廣義調(diào)和函數(shù)Duffing系統(tǒng)硬剛度在有界噪聲激勵下的響應(yīng)問題[14]。該方法所采用的廣義諧波變換是基于具有時間相關(guān)的幅度、初始相位和頻率的三角函數(shù),它是保守線性系統(tǒng)的精確解,但是隨著立方剛度非線性的增加,這種解的精度將會變差。橢圓函數(shù)是非線性系統(tǒng)的精確解,考慮到基于橢圓函數(shù)的隨機(jī)平均的優(yōu)點,將該方法擴(kuò)展到有界噪聲情況是適當(dāng)?shù)?,但該問題的解至今沒有詳細(xì)提出。Tien等提出的基于橢圓函數(shù)的隨機(jī)平均[13]是文[1516]的確定性系統(tǒng)的擴(kuò)展。近幾年,Okabe,Rakaric等[1719]提出了改進(jìn)的基于Jacobi橢圓函數(shù)確定平均法,將解表示為Jacobi橢圓函數(shù),從而可用來研究各種彈簧特性的系統(tǒng)。得到了具有各種彈簧性質(zhì)的強(qiáng)非線性確定性動力系統(tǒng)的高精度周期解,證明了該方法提供了更準(zhǔn)確的解決方案[19]。本文把基于Jacobi橢圓函數(shù)的平均方法擴(kuò)展到有界噪聲的情況。
本文推廣已有的基于Jacobi橢圓函數(shù)的隨機(jī)平均法,用于研究有界噪聲激勵下強(qiáng)非線性系統(tǒng)的隨機(jī)響應(yīng)。將系統(tǒng)樣本響應(yīng)用Jacobi橢圓正弦函數(shù),余弦函數(shù)和delta函數(shù)來近似,其中頻率和模用幅值表示。通過引入新變量,即施加的激勵和系統(tǒng)響應(yīng)之間的相位差,通過隨機(jī)平均原理導(dǎo)出二維擴(kuò)散過程,然后求解相關(guān)的FPK方程得到振幅和相位差的平穩(wěn)聯(lián)合概率密度函數(shù)。以硬剛度和軟剛度的Duffing系統(tǒng)為例,通過計算得到的數(shù)值結(jié)果說明了所提出方法的可行性。
3 結(jié) 論
本文主要研究了基于Jacobi橢圓函數(shù)的隨機(jī)平均法,并用其研究強(qiáng)非線性系統(tǒng)在有界噪聲激勵下的隨機(jī)響應(yīng)問題。首先引入Jacobi橢圓函數(shù)的變換,包含Jacobi橢圓正弦函數(shù)、余弦函數(shù)及delta函數(shù)。導(dǎo)出外共振情形下關(guān)于響應(yīng)幅值和激勵與響應(yīng)的相位差的隨機(jī)微分方程,應(yīng)用隨機(jī)平均原理可以得到一個二維的擴(kuò)散過程。通過解相應(yīng)的FPK方程,可以得到系統(tǒng)的穩(wěn)態(tài)概率密度。將此方法應(yīng)用于具有硬化和軟化剛度的有界噪聲激勵下的Duffing系統(tǒng)。該方法的結(jié)果與Monte Carlo模擬結(jié)果一致,說明該方法的有效性和準(zhǔn)確性。此外,與基于廣義諧和函數(shù)的隨機(jī)平均法相比,該方法提供了更準(zhǔn)確的結(jié)果。
參考文獻(xiàn):
[1] Khasminskii R Z. A limit theorem for the solution of differential equations with random righthand sides[J]. Theory of Probability and Its Applications,1966, 11:390405.
[2] Khasminskii R Z.On the averaging principle for stochastic differential equations[J]. Kibernetika,1968, 4:260299.
[3] Stratornovich R L. Topics in the Theory of Random Noise[M]. New York:Gordon Breach,1967.
[4] Roberts J B. The energy envelope of a randomly excited nonlinear oscillator[J]. Journal of Sound and Vib ration,1978, 60:177185 .
[5] Roberts J B, Spanos P D. Stochastic averaging: An approximate method of solving random vibration problems[J]. Internationd Journal of NonLinear Mechanics,1986, 21:111134.
[6] Zhu W Q, Lin Y K. Stochastic averaging of energy envelope[J]. Journal of Engineering Mechanics,1991, 117:18901905.
[7] Wang Y, Ying Z G, Zhu W Q. Stochastic averaging of energy envelope of Preisach hysteretic systems[J]. Journal of Sound and Vibration,2009, 321:976993.
[8] Zhu W Q. Nonlinear stochastic dynamics and control in Hamiltonian formulation[J]. Applied Mechanics Reviews, 2006, 59:230248.
[9] Zhu W Q, Yang Y Q. Stochastic averaging of quasinonintegrableHamiltonian systems[J]. Journal of Applied Mechanis, ASME,1997, 64:157164.
[10] Zhu W Q, Huang Z L, Yang Y Q. Stochastic averaging of quasiintegrable Hamiltonian systems[J]. Journal of Applied Mechanics, ASME,1997, 64:975984.
[11] Zhu W Q, Huang Z L, Suzuki Y. Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems[J]. International Journal of NonLinear Mechanics, 2002, 37:419437.
[12] Huang Z L, Zhu W Q, Suzuki Y. Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations[J]. Journal of Sound and Vibration, 2000, 238:233256.
[13] Tien W M, Namachchivaya N S, Coppola V T. Stochastic averaging using elliptic functions to study nonlinear stochastic systems[J]. Nonlinear Dynamics,1993, 4:373387.
[14] Huang Z L, Zhu W Q, Ni Y Q, et al. Stochastic averaging of strongly nonlinear oscillators under bonded noise excitations[J]. Journal of Sound and Vibration,2002, 254:24567.
[15] Coppola V T, Rand R H. Averaging using elliptic functions: Approximation of limit cycles[J]. Acta Mechanica,1990, 81:125142.
[16] Coppola V T. Averaging of strongly nonlinear oscillators using elliptic functions[D]. Ithace,NY: Cornell University,1989.
[17] Okabe T, Kondou T, Ohnishi J. Elliptic averaging methods using the sum of Jacobian elliptic delta and zeta functions as the generating solution[J]. International Journal of NonLinear Mechanics,2011, 46:159169.
[18] Rakaric Z, Kovacic I. An elliptic averaging method for harmonically excited oscillators with a purely nonlinear nonnegative realpower restoring force[J]. Communications in Nonlinear Science and Numerical Simulation,2013, 18:18881901.
[19] Okabe T, Kondou T. Improvement to the averaging method using the Jacobian elliptic function[J]. Journal of Sound and Vibration,2009, 320:339364.
[20] Holmes P J. A nonlinear oscillator with a strange attractor[J]. Philosophical Transactions of the Royal Society London, Series AMathematical and Physical Sciences,1979, 292(1394):419448.
[21] Lin Y K, Cai G Q. Probabilistic Structural Dynamics: Advanced Theory and Applications[M]. New York:McGrawHill, 1995.
[22] Anderson T J, Nayfeh A H, Balachandran B. Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam[J]. Journal of Vibration Acoustics, ASME,1996, 118:2127.
[23] Feng Z H, Lan X J, Zhu X D. Principal parametric resonances of a slender cantilever beam subject to axial narrowband random excitation of its base[J]. International Journal of NonLinear Mechanics,2007, 42:11701185.
[24] 方 同.工程隨機(jī)振動[M].北京:國防工業(yè)出版社,1995.
[25] 金肖玲.多自由度強(qiáng)非線性隨機(jī)系統(tǒng)的響應(yīng)與穩(wěn)定性研究[D].杭州: 浙江大學(xué),2009.
Abstract: A novel stochastic averaging technique is proposed to evaluate the random responses of nonlinear systems with cubic stiffness to bounded noises. By introducing a transformation based on the Jacobian elliptic functions, the stochastic differential equations with respect to the system amplitude and the phase difference between the imposed excitation and the system response are derived. Applying the stochastic averaging principle yields the associated It stochastic differential equations. Then, the stationary joint probability density of the amplitude and the phase difference is obtained by solving the corresponding FokkerPlanckKolmogorov equation. Numerical results for a representative example with hardening and softening stiffness are given to verify the feasibility and accuracy of the proposed procedure. Compared to the stochastic averaging method based on generalized harmonic functions, the present procedure is of higher accuracy as it is based on the exact solution of the associated conservative nonlinear system.
Key words: stochastic vibration; stochastic averaging; bounded noise; hardening stiffness; softening stiffness
作者簡介: 徐文?。?981),男,碩士,副教授。電話:(0570)8068262; Email: xwjaaa@126.comZ ··y^