• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Support Vector Regression for Bus Travel Time Prediction Using Wavelet Transform

    2019-07-25 03:13:54YangLiuYanjieJiKeyuChenandXinyiQi

    Yang Liu,Yanjie Ji*,Keyu Chenand Xinyi Qi

    (1.School of Transportation,Southeast University,Nanjing 210096,China;2.Guangzhou Urban Planning &Design Survey Research Institute,Guangzhou 510060,China)

    Abstract:In order to accurately predict bus travel time,a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR)model is employed.In this model,wavelet decomposition is used to extract important information of data at different levels and enhances the forecasting ability of the model.After wavelet transform different components are forecasted by their corresponding SVR predictors.The final prediction result is obtained by the summation of the predicted results for each component.The proposed hybrid model is examined by the data of bus route No.550 in Nanjing,China.The performance of WT-SVR model is evaluated by mean absolute error(MAE),mean absolute percent error(MAPE)and relative mean square error(RMSE),and also compared to regular SVR and ANN models.The results show that the prediction method based on wavelet transform and SVR has better tracking ability and dynamic behavior than regular SVR and ANN models.The forecasting performance is remarkably improved to obtain within 6%MAPE for testing section I and 8%MAPE for testing section II,which proves that the suggested approach is feasible and applicable in bus travel time prediction.

    Keywords:intelligent transportation;bus travel time prediction;wavelet transform;support vector regression;hybrid model

    1 Introduction

    Bus travel time prediction is vital component of advanced public transportation system(APTS)and advanced traveler information system(ATIS).With the rapid development of communication and network technology,an accurate and real-time travel time forecast is increasingly important.For bus operation management,it can help optimize bus route planning,stop site and distance between stations selection,and choose appropriate road section to implement bus priority tragedy,which will realize better bus priority on the premise of limited traffic supply.On the other hand,real-time and dynamic bus arrival time forecast released by mobile communication applications can help passengers make more suitable travel plans,which not only reduces the long waiting process,but also improves the service level of public transportation and attracts more passengers.

    Previously,various methods have been adopted by researchers to forecastbustraveltime using historical average model[1], time series model[2],statisticalregression model[3]and kalman filter algorithms[4].However,the prediction of bus travel time is very complex and highly nonlinear in nature as it depends upon many influence factors such as ridership,traffic flow,weather and traffic signals in bus system.It is difficult for those predicting methods to consider all of factors,so the prediction quality,in practice,is unsatisfactory.

    In the recent decade,machine learning models have better capability to handle nonlinear mapping problems that are complex in nature,particularly in the field of travel time prediction where an artificial neutral network(ANN)has been widely applied.Park and Rilett analyzed the performance of ANN applications in bus travel time modeling[5];Chien et al.[6]put forward two ANN models based on link and bus station respectively,which are applied to bus travel time prediction.It has been shown that ANN model has good applicability in bustraveltime prediction.Further,there is a lot of research proving that ANN modeloutperformshistoricalaverage,statistical regression and kalman filter models in bus travel time prediction[7-8].However, ANN model follows the principle of empirical risk minimization,which has some drawbacks,like local optimal,overfitting or under-fitting problems and generalization ability defects[9-10],which may reduce the effect of artificial neural network application in travel time prediction to a certain degree.

    Support vector machine(SVM),which is based on statistical learning theory,is a relatively new classification and regression technique from the artificial intelligence field.It is good at finding the statistical laws under the small sample and has a strong learning ability.Moreover,this technique has better generalization performance and is easy to be balanced between the level of generalization and fitness.Due to the structural risk minimization principle,SVM can effectively overcome the defects of ANN,which has gained attention in the transportation domain.Besides,urban public transport is anon-stationary,timevariant,and stochastic system,therefore using SVM in bus travel time prediction has important significance,which has been found to perform well compared to the other predictors[11-13].

    Wavelet transform(WT),which can decompose the original data into various frequency components,has been successfully used in the fields like data analysis and signal processing.The application of wavelet transform provides useful information about sub-series components of originaldata so that forecasting capability of a model can be improved by extracting useful information at different levels.In recent years,wavelet transforms has been applied to a number of research fields such as temperature[14],water resource[15-16],wind energy[17]and share price prediction[18],which combine the wavelet transform to form a hybrid tool in their models.Research findings indicate that the hybrid model can be efficient and effective in improving the accuracy of forecasts and has been gradually adopted in transport domain.In hybrid prediction model,severaltechniques are combined to take advantages of their unique features in data analysis and modeling.In fact,every method has its strong points,for example wavelet transform(WT)has an advantage of frequency decomposition in time domain,while a support vector machine(SVM)is good at handling nonlinear optimization problems.So it is really meaningful to unite those methods in bus travel time prediction domain for the purpose ofimproving theaccuracy ofprediction results[19-21].

    In this study,wavelet transform is used to capture the detailed information of bus travel time variation and decompose original data into several components at different frequency.The SVR models for predicting the components from high frequency to low frequency are constructed respectively.The final prediction result is derived from the summation of model outputs for each component.The main purpose of this study are to analyze the performances of applying wavelet transform-support vector regression model into bus travel time prediction and to compare the performances of the WT-SVR models with other widely used models like SVR and ANN models.

    2 Theory of the Model

    Wavelet transform (WT) has excellent characteristics of multi-resolution analysis.On one hand,the signals can be decomposed into different levels,and the information features of different levels can be displayed,which helps to give a deep insight into the variation of signal.On the other hand,the components of transient abnormal phenomenon entrained in normal signal can be detected,and their components are displayed[22].Compared to traditional artificialneuralnetwork,supportvectormachine method replaces traditional empirical risk with structure risk minimization and solves a quadratic optimization problem with the global optimal solution in theory.Therefore,the application of hybrid wavelet transform-supportvector regression (WT-SVR)model in bus travel time prediction can capture the regularity of bus running behind the seemingly random and improve the prediction accuracy.

    2.1 Wavelet Transform

    Suppose the function φ(t) ∈ L2(R)and its Fourier transform ψ(ω)satisfies the condition(t and ω are random variables):

    Then φ(t)can be called wavelet base or mother wavelet.By dilationsand translationsofmother wavelet,a family ofwaveletfunctionscan be obtained:

    where a represents the scale factor and b represents the translation factor.Let a=2jand b=k·2j,discrete wavelet transform(DWT)can be transformed as follow:

    where k denotes the shift parameter and j denotes the resolution level.Ifthe value of j is larger, the frequency of wavelet decomposition is lower.

    An effective way to apply the wavelet transform is the multi-resolution technique based on scale function and wavelet base function,which extracts the low frequency components and the high frequency components of the series respectively.The process of multi-scales decomposition can be expressed as:

    where,V0is original signal;Viis the approximate components of signal,i=1,2,…,n;Wiis the detail components of signal,i=1,2,…,n .

    For a given section of a bus route,the bus travel time in this section at time step t can be defined as f(t),and t=1,2,…,n,f(t) ∈ L2(R) .Therefore,the bus travel time series f(t)can be treated as a signal input,which can be decomposed into different frequency bands through wavelet decomposition.The reconstruction expression of f(t)can be obtained by Mallat multi-scales analysis algorithm as follows:

    where cj,kis wavelet coefficient and dj,kis scale coefficient; φj,k(t)denotes wavelet base function and ψj,k(t)denotes scale function;Ajand Djare the approximate and detail sequences of original data after reconstruction,respectively.The flow chart of Mallat wavelet decomposition is shown in Fig.1.

    Fig.1 Mallat wavelet decomposition

    2.2 Support Vector Regression

    For the case of regression problems,suppose that given a series of data points,namely{(x1,y1),(x2,y2),…,(xn,yn)}(xiis the input vector;yirelates to the target value;and n is the number of observation).In order to solve nonlinear regression problems,a set of non-linear transfer functions are used to map the input space into high dimension feature space,where theoretically a simple linear regression can be found to approximate a given sample.According to statistical learning theory[23],the linear estimation function of SVR can be formulated as follows:

    whereφ(x)denotes a non-linear transfer function in the feature space; ω is weight vector,b is a constant.The coefficients ω and b can be calculated by minimizing the regularized risk function:

    After optimizing above equation by Lagrange function and condition,a non-linear regression function can be given as:

    where αiandare two Lagrange multipliers.k(xi,is a kernel function which describes the inner products in the high dimension feature space.By using kernel functions,all calculation processes can be finished directly in the input space without mapping into the high dimension feature space.The structure of SVR is shown in Fig.2.

    Fig.2 The topology structure of SVR

    The performance and efficiency of SVM depends greatly on the kernel function,so choosing the kernel function and corresponding parameters properly according to different problems is very important.The common kernel functions are shown in Table 1.

    Table 1 Common kernel functions of SVR

    3 Model Development in Bus Travel Time Prediction

    In this study,a hybrid WT-SVR model is used for predicting bus travel time,which is formed by combining the model of support vector machine with wavelet transform technique.The details of model input and details regarding the wavelet decomposition are discussed briefly in this section.

    Considered to the variation of bus running,four input variables and an output variable are used,which are advised by Ji et al.[24].Firstly,bus travel time is non-stationary and fluctuates during a day.Especially at morning and afternoon peak hours,the bus travel times will increase significantly;then,different road segments have different number of intersections,road segment length,traffic conditions,and traffic flow composition.All these differences can result in the changes of bus travel times.Thus,the time of day should be classified into several periods,and road segments should also be considered as input factors in this model.Moreover, bus travel time is easily influenced by many random factors such as traffic flow,ridership,weather,stops delay and traffic signals delay,but it is very difficult to estimate the traffic condition of road segments by obtaining this information in real time.Based on the research of Yu[25],this paper chooses the latest bus travel time of the predicted section and the latest bus travel time of the previous section to represent the current traffic condition of predicted section and the running status of the bus,assuming that the latest travel time can be obtained by bus information system in real time.Therefore,four input variables include time of day(x1),road segment(x2),the latest bus travel time of at predicted section(x3)and the latest bus travel time of current bus at preceding segment(x4);y denotes output vector,which represents the bus travel times from stop i to stop j.While a bus reaches the stop i,the latest travel time from stop i- 1 to stop i will be updated.

    For a bus route,the bus travel time series at each segment can be decomposed into sub-series component(approximation components A's and detail components D's) using wavelet multi-scales decomposition beforehand.The input data such as the latest bus travel time in current section and the latest bus travel time in preceding section can be obtained by the corresponding bus travel time sub-series.The sub-series(A's and D's)components of future travel time at predicted section are predicted by different SVR models separately.Finally,the prediction result is the aggregation of each model outputs.

    With respect to the model parameters,radial basis function (RBF) is selected as the kernel function,which is able to fit high-dimension data with a few hyperparametersthusreducing the complexity of prediction model.The definition of RBF kernel function can be expressed as:

    k(xi,x)=exp(- γ||x - xi||2),γ > 0(10)

    When RBF kernel is used,three SVR parameters including penalty parameter C and kernel function's parameter γ and tube size ε are considered.The general accuracy of prediction depends on a proper setting of these parameters,and the best combination of parameters(C ,γ and ε )can be determined by the methods such as k-fold cross validation(CV),genetic algorithm (GA),and particle swarm optimization(PSO).For simplicity,five-fold cross validation is chosen to optimize the parameters of all SVR models.

    The structure of prediction model is shown in Fig.3,of which details are demonstrated as follows.

    Fig.3 Diagram of bus travel time prediction model based on wavelet transform and SVR

    1)The bus route under study is separated into k segments according to the bus stops.For the convenience of this study,the time of day variable is classified into peak hours(7 ∶00-9 ∶00 a.m.a(chǎn)nd 17 ∶00-19 ∶00 p.m.)and off-peak hours.

    2)The original bus travel time data is decomposed into a set of various subsequences using wavelet multiresolution technique and single branch reconstruction method.

    3)Afterwavelettransform,each sub-series components are learned and trained separately by supportvectorregression models.The parameters including penalty parameterC,kernelfunction's parameter γ and tube size ε are optimized by crossvalidation and grid search approach.

    4)The final predicting results is obtained by the combination of prediction results from all SVR models,which can be expressed as

    where f(*) denotesnon-linearmapping function trained by SVR;D denotes detail components of predict value and A denotes approximation components of predict value;n is decomposition level.

    5)Performance measures are conducted by comparing the final forecasting value with ANN and SVR prediction results.

    4 Numerical Test

    4.1 Study Area and Data

    To evaluate the applicability of proposed WTSVR model for bus travel time prediction,a southeastbound corridor on Daqiao Rd.a(chǎn)nd a northwestbound from Jianning Rd.to Rehe Rd.of bus No.550 in Nanjing,China were selected,as experimental route sections.The route of Bus No.550 is 10.2 km length and has 27 bus stops in the upstream direction,which starts from Taifeng Road terminus to Mochou Lake Park terminus.The bus headway varies from about 10 min in peak hours and about 15 min in offpeak hours.The study region of bus No.550 in this paper starts from Qiaobei Coach station to Agricultural Trade Center stops,which is divided into two sections as shown in Fig.4.

    Fig.4 Layout of study area of bus No.550

    a)Section I: from QiaobeiCoach Station to Daqiao Hotel stop.

    b)Section II: from Daqiao Hotel stop to Agricultural Trade Center stop.

    The buses on this route are equipped with the GPS and AVL devices that can obtain the real-time travel time information.The bus travel time data was collected from November 2,2015 to November 10,2015 in weekdays during the bus operation time(05∶10 am -21∶10 pm).Afterpreprocessing of collected data,a total of 560 sets of data are valid,and each set of data contains the travel time of a bus through a road segment.All the bus travel time data sets are divided into two parts for training and testing.The bus travel time observations from the six weekdays from November 2,2015 to November 9,2015 are set as training set,and the data of November 10,2015 is set as the testing set.To avoid numerical difficulties,normalization ofthe samplesisconducted before modeling as follows:

    where,xidenotes the ith value of the input or output data set X={x1,x2,…,xn} .

    4.2 Model Identification

    4.2.1 WT-SVR model

    The history and real-time bus travel time data series are decomposed into several components by wavelet transform at different levels,and each subseries componentispredicted by differentSVR models.The decomposed level is themost key parameter in wavelet transform.If the decomposed level is too low,high-frequency noise remains in the low-frequency components,which will directly affect the prediction accuracy of low-frequency components;but when the level is too large,the complexity and training time of the model will be increased.Thus,in this study 'db3'function is selected as the mother wavelet and decomposed level is three,according to the requirement ofmulti-scale decomposition and single branch reconstruction.All levels components received by decomposition are forecasted respectively by SVR models.At last,the future bus travel time is equal to the summation of prediction results of each component.During the process,RBF is selected as kernel function of SVR models.The best combination of parameters for each SVR is shown in Table 2.

    Table 2 Parameters selection of each SVR model

    4.2.2 SVR model

    For the purpose of investigating the performance ofthe model,the proposed WT-SVR model is compared with the normal SVR and BPANN,which are trained and tested with the same data sets.The normal support vector regression model consists of four model inputs(x1,x2,x3,x4)and one output vector(y)without wavelet decomposition.The best combination of parameters for SVR is C=1,γ =0.062 5 and ε =0.003 125 .

    4.2.3 ANN model

    The ANN model with the hyperbolic tangent sigmoid transfer function is used in this study,which consists of an input layer,a hidden layer,and an output layer.Different number of neurons in the hidden layer is tested in the back-propagation neural network model in order to identify the suitable welltrained one.By trial and error process the optimal number of neurons in the hidden layer is determined to be 8.The final ANN architecture consists of the same input features as the SVR and the model parameters are optimized by the back propagation algorithm.

    4.3 Results and Discussion

    In order to evaluate the performance of the prediction,the performance measurement of proposed WT-SVR model is mean absolute percentage error(EMAP),mean absolute error(EMA)and the root mean square error(ERMS).The formula can be expressed as follows:

    where,yiis the observed value in future;s the predicted value of yi.The smaller that the value of EMA, EMAPand ERMSare, the better thatthe performance of the prediction is.

    The future travel time of bus can be forecasted by WT-SVR model proposed in the above section,and the prediction results of two testing sections in the bus route NO.550 are shown in Fig.5.it can be seen that the proposed hybrid model can capture the underlying dynamics of bus travel time variations and achieve high fitness in both two sections,with the regression coefficient R square 0.754 7 and 0.630 6 respectively.Considering the different traffic conditions on the two testing sections,difference between R square can be easily understood.There are many traffic signal intersections and bus stops in section II,which may cause the travel time of this section to be more fluctuant and non-stationary than section I.

    Additionally,traditional BP neural networks and support vector regression model are also experimented with in this paper as comparisons.Fig.6 gives the absolute error of prediction for ANN,SVR and hybrid WT-SVR model in the testing links of the bus No.550.The maximum prediction error of ANN,SVR and WT-SVR are 244,223 and 167 respectively for section I and 331,256 and 140 respectively for section II.It is observed that the hybrid WT-SVR model is able to forecast accurately and gain a lower prediction error in almost all trips when compared to other models.Moreover,Table 2 gives a comparison of EMA,EMAPand ERMSobtained by the WT-SVR,SVR,and ANN models for two testing sections.In comparison with single SVR model,the proposed hybrid model gives a decrease in EMA,EMAPand ERMSvalues of 15 seconds,2%and 20 seconds respectively for section I and 18 seconds,2.5%and 23 seconds for section II.Similarlywhen compared toBPANN model,EMA,EMAPand ERMSvalues for WT-SVR are lowered by 26 seconds,4% and 30 seconds respectively for section I and 31 seconds,4.5%and 45 seconds for section II.According to Lewis[26],a EMAPvalue of less than 10%can be considered quite accurate.As shown in Table 3,the EMAPvalues of the two reference models constructed in this paper are close to 10%or even greater than 10%indicating that their performance is between"more accurate"and"accurately accurate".However,the EMAPvalues of the WT-SVR shows that its predictive performance is"pretty accurate".It shows that the prediction results of the model constructed in this paper are more accurate and reliable,which is feasible and effective in bus travel-time prediction.For the arrival time forecast of passengers issued to passengers,the value of the information depends heavily on the reliability of the forecast results,reducing the prediction error can prevent passengers from missing the bus due to wrong information and improve the availability of information.

    Fig.5 Prediction results of WT-SVR in two testing sections

    Fig.6 Prediction error of three models in testing sections

    Table 3 Comparison of WT-SVR with ANN and SVR models

    5 Conclusions

    In this paper,the applicability of a hybrid WTSVR model has been investigated for predicting the bus travel time of the route No.550 in Nanjing,China.TheWT-SVR modelwasdevelopedby integrating wavelet transform technique with support vector regression model.In the developed model,the original traveltime data were decomposed into approximate components and detail components by wavelet transform,and SVR model was constructed for each components of future travel time.The model was tested using four input variables including time of day,road segment,and the latest travel time of previous section as well as the latest travel time in predicted section,which isalso compared with regular SVR and ANN model with the same dataset.From the results,it was determined that bus travel time prediction based on the wavelet SVR provided higher accuracy when compared to regular SVR and ANN models,as the wavelet transform can capture travel time variations in different scale and thus enhances the forecasting ability ofSVR model.Therefore,the proposed model can greatly improve the prediction performance of bus travel times,which would contribute to the increase of the service level and predictive reliability.

    免费观看的影片在线观看| 免费在线观看成人毛片| 大香蕉97超碰在线| 亚洲精品影视一区二区三区av| 亚洲婷婷狠狠爱综合网| 在线 av 中文字幕| 国产精品熟女久久久久浪| av一本久久久久| 亚洲精品成人久久久久久| 男人舔奶头视频| av在线观看视频网站免费| 午夜福利在线在线| 国产伦精品一区二区三区视频9| 校园人妻丝袜中文字幕| 亚洲欧美清纯卡通| 大片免费播放器 马上看| 在线观看美女被高潮喷水网站| 99热网站在线观看| 国产精品人妻久久久影院| 亚洲自偷自拍三级| 日韩三级伦理在线观看| 校园人妻丝袜中文字幕| 高清毛片免费看| 另类亚洲欧美激情| 国产成人精品一,二区| 美女视频免费永久观看网站| 99热6这里只有精品| 免费看av在线观看网站| 99久久人妻综合| 久久精品国产鲁丝片午夜精品| 男人添女人高潮全过程视频| 欧美变态另类bdsm刘玥| 欧美潮喷喷水| 国产色婷婷99| 秋霞伦理黄片| 亚洲国产日韩一区二区| 伊人久久精品亚洲午夜| 久久久欧美国产精品| 极品少妇高潮喷水抽搐| 男女无遮挡免费网站观看| 欧美日本视频| 波野结衣二区三区在线| 午夜福利网站1000一区二区三区| 国产精品福利在线免费观看| 少妇丰满av| av免费在线看不卡| xxx大片免费视频| 国产欧美另类精品又又久久亚洲欧美| 一级a做视频免费观看| 婷婷色综合www| 久久精品国产a三级三级三级| 青春草亚洲视频在线观看| 性色avwww在线观看| 97在线人人人人妻| 亚洲欧美精品自产自拍| 亚洲内射少妇av| 亚洲精品日本国产第一区| 国产日韩欧美在线精品| 永久免费av网站大全| 午夜激情久久久久久久| 久久人人爽人人片av| 国产又色又爽无遮挡免| 亚洲熟女精品中文字幕| 91精品伊人久久大香线蕉| 亚洲精品国产av蜜桃| 国产精品一区二区三区四区免费观看| av免费在线看不卡| 欧美xxxx性猛交bbbb| 久久久精品免费免费高清| 亚洲激情五月婷婷啪啪| 国产亚洲最大av| 亚洲欧美一区二区三区国产| 国产探花极品一区二区| 久久久成人免费电影| 丰满少妇做爰视频| 免费人成在线观看视频色| 午夜福利网站1000一区二区三区| 亚洲最大成人av| 人妻系列 视频| 国产精品不卡视频一区二区| 哪个播放器可以免费观看大片| 精品少妇久久久久久888优播| 国产一级毛片在线| 成年版毛片免费区| 久久久成人免费电影| 日韩欧美精品免费久久| 国产高清三级在线| 日韩欧美 国产精品| 麻豆国产97在线/欧美| 熟女人妻精品中文字幕| 91狼人影院| 97人妻精品一区二区三区麻豆| 嫩草影院新地址| 亚洲国产成人一精品久久久| 亚洲经典国产精华液单| 草草在线视频免费看| 97热精品久久久久久| 老师上课跳d突然被开到最大视频| 你懂的网址亚洲精品在线观看| 国产精品国产三级国产av玫瑰| 亚洲四区av| 国产免费又黄又爽又色| 国产一区二区三区av在线| 亚洲欧美日韩卡通动漫| 精品一区二区三卡| 中文欧美无线码| 欧美zozozo另类| 久久久久久久久久久丰满| 插逼视频在线观看| 欧美国产精品一级二级三级 | 大码成人一级视频| 国产精品一二三区在线看| 亚洲,欧美,日韩| 在线观看一区二区三区| 在现免费观看毛片| 国产伦在线观看视频一区| 成人黄色视频免费在线看| 国产精品久久久久久av不卡| 久久精品熟女亚洲av麻豆精品| 日韩欧美 国产精品| 在线观看国产h片| 免费看日本二区| 日韩,欧美,国产一区二区三区| 成人国产麻豆网| 99久久精品国产国产毛片| 精品视频人人做人人爽| 亚洲精品日韩av片在线观看| 国产老妇伦熟女老妇高清| a级一级毛片免费在线观看| 2021天堂中文幕一二区在线观| 91在线精品国自产拍蜜月| 亚洲精品一区蜜桃| 欧美精品一区二区大全| 日韩成人av中文字幕在线观看| 亚洲不卡免费看| 亚洲第一区二区三区不卡| 亚洲欧洲日产国产| 成年av动漫网址| 天堂中文最新版在线下载 | 丝瓜视频免费看黄片| 日本免费在线观看一区| 色视频在线一区二区三区| 国产久久久一区二区三区| 亚洲欧美一区二区三区黑人 | 亚洲国产av新网站| 人妻少妇偷人精品九色| 国产精品.久久久| 亚洲一级一片aⅴ在线观看| 亚洲国产色片| 亚洲色图av天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久a久久爽久久v久久| 亚洲经典国产精华液单| 一级a做视频免费观看| 女人被狂操c到高潮| 国产精品国产av在线观看| 在线观看av片永久免费下载| 涩涩av久久男人的天堂| 青春草视频在线免费观看| 欧美xxⅹ黑人| 又粗又硬又长又爽又黄的视频| 舔av片在线| 亚洲av免费高清在线观看| 国产亚洲av片在线观看秒播厂| 国产老妇女一区| 国产精品一及| 91在线精品国自产拍蜜月| 午夜精品国产一区二区电影 | 在线观看av片永久免费下载| a级毛片免费高清观看在线播放| 久久精品夜色国产| 免费少妇av软件| 永久免费av网站大全| 久久久久久国产a免费观看| 久久久久性生活片| 成人欧美大片| 日韩av在线免费看完整版不卡| 爱豆传媒免费全集在线观看| 嫩草影院入口| 尤物成人国产欧美一区二区三区| 不卡视频在线观看欧美| 亚洲欧美中文字幕日韩二区| 一级爰片在线观看| 欧美最新免费一区二区三区| 亚洲精品日韩av片在线观看| 免费观看性生交大片5| 性色av一级| 91精品一卡2卡3卡4卡| 亚洲av国产av综合av卡| 国国产精品蜜臀av免费| 国产淫片久久久久久久久| 男女那种视频在线观看| 国内精品美女久久久久久| 2018国产大陆天天弄谢| av女优亚洲男人天堂| 亚洲三级黄色毛片| 亚洲精品,欧美精品| 久久精品久久精品一区二区三区| 欧美成人精品欧美一级黄| 精品少妇黑人巨大在线播放| 纵有疾风起免费观看全集完整版| 在线a可以看的网站| 国产精品福利在线免费观看| 亚洲国产精品成人综合色| 久久精品国产鲁丝片午夜精品| 蜜桃亚洲精品一区二区三区| 五月开心婷婷网| av免费观看日本| 日产精品乱码卡一卡2卡三| 人体艺术视频欧美日本| 日韩一区二区视频免费看| 国产黄色免费在线视频| 久久6这里有精品| 欧美高清性xxxxhd video| 国产精品.久久久| 免费不卡的大黄色大毛片视频在线观看| 欧美xxxx黑人xx丫x性爽| 精品国产三级普通话版| 狠狠精品人妻久久久久久综合| 婷婷色综合大香蕉| a级一级毛片免费在线观看| 国产成人精品一,二区| 国产一区有黄有色的免费视频| 在线观看一区二区三区激情| 国产色爽女视频免费观看| 亚洲国产精品国产精品| 免费黄频网站在线观看国产| 另类亚洲欧美激情| 日本熟妇午夜| 夜夜看夜夜爽夜夜摸| 欧美亚洲 丝袜 人妻 在线| 3wmmmm亚洲av在线观看| 国内揄拍国产精品人妻在线| 大片电影免费在线观看免费| 噜噜噜噜噜久久久久久91| 嫩草影院新地址| 国模一区二区三区四区视频| 中文乱码字字幕精品一区二区三区| 免费黄色在线免费观看| 免费看av在线观看网站| 中文字幕免费在线视频6| 能在线免费看毛片的网站| 亚洲欧美清纯卡通| 国产精品一二三区在线看| 亚洲天堂国产精品一区在线| 欧美变态另类bdsm刘玥| 精品酒店卫生间| 国产精品一区二区性色av| 深夜a级毛片| 国产精品爽爽va在线观看网站| 校园人妻丝袜中文字幕| 韩国av在线不卡| 亚洲精品乱码久久久v下载方式| 成人午夜精彩视频在线观看| 国产欧美亚洲国产| 亚洲av欧美aⅴ国产| 97人妻精品一区二区三区麻豆| 国产男人的电影天堂91| 青青草视频在线视频观看| 日韩亚洲欧美综合| 欧美高清性xxxxhd video| 欧美高清成人免费视频www| 精品国产露脸久久av麻豆| 日日啪夜夜撸| 中国三级夫妇交换| 99九九线精品视频在线观看视频| 久久国内精品自在自线图片| 日本黄色片子视频| 成人综合一区亚洲| 色综合色国产| 亚洲av中文av极速乱| 成人国产av品久久久| 舔av片在线| 最后的刺客免费高清国语| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区四那| www.av在线官网国产| 亚洲精品亚洲一区二区| 亚洲伊人久久精品综合| 欧美一区二区亚洲| 一本一本综合久久| 久久久久久久久久久丰满| 国产伦理片在线播放av一区| 国产免费一级a男人的天堂| 欧美bdsm另类| 少妇的逼好多水| 91久久精品国产一区二区成人| 亚洲人与动物交配视频| 日韩电影二区| 美女脱内裤让男人舔精品视频| 少妇人妻一区二区三区视频| 国产男人的电影天堂91| 国产精品久久久久久av不卡| 免费看av在线观看网站| 成人美女网站在线观看视频| 日韩,欧美,国产一区二区三区| 久久久午夜欧美精品| 国产亚洲91精品色在线| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲网站| 亚洲av成人精品一区久久| 伦理电影大哥的女人| 久久99精品国语久久久| 九色成人免费人妻av| 性色avwww在线观看| 亚洲精品国产av蜜桃| 欧美激情国产日韩精品一区| 亚洲精品久久久久久婷婷小说| 啦啦啦在线观看免费高清www| 成人无遮挡网站| 成人亚洲精品av一区二区| 亚洲人成网站在线观看播放| 成人毛片60女人毛片免费| 99久久中文字幕三级久久日本| 日日摸夜夜添夜夜爱| 啦啦啦啦在线视频资源| 久久久精品免费免费高清| 日本-黄色视频高清免费观看| 99热国产这里只有精品6| 亚洲av电影在线观看一区二区三区 | 欧美日韩精品成人综合77777| 啦啦啦在线观看免费高清www| 欧美日韩国产mv在线观看视频 | 99热6这里只有精品| 联通29元200g的流量卡| 最近中文字幕2019免费版| 免费观看a级毛片全部| 激情 狠狠 欧美| 国产 精品1| 80岁老熟妇乱子伦牲交| 寂寞人妻少妇视频99o| 色吧在线观看| 少妇裸体淫交视频免费看高清| 亚洲欧美一区二区三区国产| 国产成人精品一,二区| 亚洲第一区二区三区不卡| 国产成人91sexporn| 69av精品久久久久久| 一级av片app| 内射极品少妇av片p| 久久99蜜桃精品久久| 亚洲精品国产色婷婷电影| 久久久久网色| 中文字幕人妻熟人妻熟丝袜美| 欧美人与善性xxx| 亚洲一区二区三区欧美精品 | 国产大屁股一区二区在线视频| 成年版毛片免费区| 日韩伦理黄色片| 精品久久久久久久久av| 热99国产精品久久久久久7| 亚洲人成网站高清观看| 成人亚洲欧美一区二区av| 少妇人妻 视频| 最近中文字幕高清免费大全6| 欧美3d第一页| 伦精品一区二区三区| 只有这里有精品99| 美女xxoo啪啪120秒动态图| 秋霞在线观看毛片| 99久久九九国产精品国产免费| 26uuu在线亚洲综合色| av国产精品久久久久影院| 国产精品一二三区在线看| 日韩国内少妇激情av| 中文欧美无线码| 少妇裸体淫交视频免费看高清| 性色av一级| 在线精品无人区一区二区三 | 亚洲av欧美aⅴ国产| 丰满乱子伦码专区| 成年免费大片在线观看| 日韩在线高清观看一区二区三区| 亚洲精品日韩在线中文字幕| 97在线视频观看| 51国产日韩欧美| 美女主播在线视频| 久久韩国三级中文字幕| 国产在线一区二区三区精| 欧美日韩综合久久久久久| 我的女老师完整版在线观看| 毛片女人毛片| 80岁老熟妇乱子伦牲交| 少妇人妻一区二区三区视频| 嫩草影院入口| 精品久久久噜噜| 亚洲熟女精品中文字幕| 成人无遮挡网站| 99久久精品一区二区三区| 亚洲欧美精品专区久久| 91久久精品国产一区二区成人| av在线app专区| 国产爱豆传媒在线观看| 国产视频首页在线观看| 亚洲精品中文字幕在线视频 | av又黄又爽大尺度在线免费看| 亚洲精品第二区| 日韩,欧美,国产一区二区三区| 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的 | 日本午夜av视频| 卡戴珊不雅视频在线播放| 国产免费又黄又爽又色| 久久国产乱子免费精品| 男男h啪啪无遮挡| 国产色婷婷99| 国产真实伦视频高清在线观看| 国产成人a∨麻豆精品| 成人综合一区亚洲| 国产黄频视频在线观看| 国产在视频线精品| 亚洲欧美成人精品一区二区| 少妇人妻 视频| 好男人在线观看高清免费视频| kizo精华| 少妇人妻 视频| 欧美xxxx性猛交bbbb| 成人亚洲精品一区在线观看 | 免费高清在线观看视频在线观看| 日本爱情动作片www.在线观看| 日本三级黄在线观看| 街头女战士在线观看网站| 大片免费播放器 马上看| 看黄色毛片网站| 国内揄拍国产精品人妻在线| 老司机影院成人| 在线精品无人区一区二区三 | 亚洲自偷自拍三级| 韩国高清视频一区二区三区| 精品国产一区二区三区久久久樱花 | 国产亚洲一区二区精品| 老司机影院毛片| 搡老乐熟女国产| 老师上课跳d突然被开到最大视频| 亚洲精品视频女| 毛片一级片免费看久久久久| 黄色欧美视频在线观看| 哪个播放器可以免费观看大片| 久久久色成人| 成年版毛片免费区| 亚洲精品国产色婷婷电影| 久久精品国产鲁丝片午夜精品| 天天躁夜夜躁狠狠久久av| 美女内射精品一级片tv| 美女被艹到高潮喷水动态| 最新中文字幕久久久久| 亚洲欧美一区二区三区国产| 色综合色国产| 久久久久久久午夜电影| 国产日韩欧美亚洲二区| 午夜福利在线在线| 禁无遮挡网站| 搞女人的毛片| 丰满乱子伦码专区| 高清在线视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品乱久久久久久| 一本一本综合久久| 精品少妇黑人巨大在线播放| 国产精品人妻久久久影院| 国产高清三级在线| 免费高清在线观看视频在线观看| 久久国内精品自在自线图片| 欧美激情久久久久久爽电影| 有码 亚洲区| 亚洲美女搞黄在线观看| 午夜福利网站1000一区二区三区| 卡戴珊不雅视频在线播放| 久久久欧美国产精品| 国产精品秋霞免费鲁丝片| 丝袜脚勾引网站| 99精国产麻豆久久婷婷| 国产亚洲最大av| 男女无遮挡免费网站观看| 精品久久久久久久久亚洲| 国产精品久久久久久精品电影小说 | 久久久久久国产a免费观看| 内地一区二区视频在线| 午夜日本视频在线| 男插女下体视频免费在线播放| 国产一区二区三区综合在线观看 | 人人妻人人爽人人添夜夜欢视频 | 久久精品夜色国产| 边亲边吃奶的免费视频| 丝袜美腿在线中文| 国产伦理片在线播放av一区| 国产精品三级大全| av黄色大香蕉| av播播在线观看一区| 在线免费十八禁| 网址你懂的国产日韩在线| 综合色丁香网| 国产伦精品一区二区三区四那| 亚洲av.av天堂| 国产爽快片一区二区三区| 中文欧美无线码| 少妇 在线观看| 免费观看在线日韩| 国产免费视频播放在线视频| 日韩在线高清观看一区二区三区| 国产精品人妻久久久影院| tube8黄色片| 免费播放大片免费观看视频在线观看| 黄色视频在线播放观看不卡| av福利片在线观看| 一级毛片久久久久久久久女| 波多野结衣巨乳人妻| 在线观看三级黄色| 久久久久久久久久久丰满| 国产真实伦视频高清在线观看| 亚洲人与动物交配视频| 成人毛片60女人毛片免费| 2021少妇久久久久久久久久久| 五月开心婷婷网| 黄色怎么调成土黄色| 欧美高清成人免费视频www| 伊人久久国产一区二区| 亚洲欧洲国产日韩| 欧美日韩亚洲高清精品| 亚洲精品久久久久久婷婷小说| 日韩亚洲欧美综合| 波野结衣二区三区在线| 欧美一区二区亚洲| 午夜免费男女啪啪视频观看| 五月玫瑰六月丁香| 99久久人妻综合| 日韩不卡一区二区三区视频在线| 亚洲人成网站在线播| 国产极品天堂在线| 亚洲精品日本国产第一区| 国产av码专区亚洲av| 欧美日韩国产mv在线观看视频 | 亚洲经典国产精华液单| 偷拍熟女少妇极品色| 18+在线观看网站| 国产男人的电影天堂91| videos熟女内射| 久久久久久伊人网av| 国产欧美日韩一区二区三区在线 | 神马国产精品三级电影在线观看| 简卡轻食公司| 亚洲精品亚洲一区二区| 51国产日韩欧美| 一区二区三区精品91| 欧美日韩亚洲高清精品| 又大又黄又爽视频免费| 欧美 日韩 精品 国产| 26uuu在线亚洲综合色| 熟妇人妻不卡中文字幕| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av天美| 国产伦精品一区二区三区视频9| 欧美极品一区二区三区四区| 最新中文字幕久久久久| 欧美成人午夜免费资源| eeuss影院久久| 建设人人有责人人尽责人人享有的 | 午夜亚洲福利在线播放| 日本熟妇午夜| 一二三四中文在线观看免费高清| 九草在线视频观看| 一区二区三区四区激情视频| 免费大片黄手机在线观看| 少妇猛男粗大的猛烈进出视频 | 69人妻影院| 黄色一级大片看看| 一级毛片久久久久久久久女| 久久精品国产亚洲av涩爱| av在线播放精品| 网址你懂的国产日韩在线| 性插视频无遮挡在线免费观看| 国产白丝娇喘喷水9色精品| 性插视频无遮挡在线免费观看| 少妇高潮的动态图| 国语对白做爰xxxⅹ性视频网站| 亚洲色图av天堂| 王馨瑶露胸无遮挡在线观看| 亚洲成人av在线免费| 最近手机中文字幕大全| 全区人妻精品视频| 99久久精品国产国产毛片| 麻豆久久精品国产亚洲av| 国产片特级美女逼逼视频| 午夜福利网站1000一区二区三区| 国产成人aa在线观看| 亚洲一区二区三区欧美精品 | 午夜福利高清视频| 久久久久网色| 全区人妻精品视频| 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 亚洲高清免费不卡视频| 欧美+日韩+精品| 久久精品久久精品一区二区三区| 十八禁网站网址无遮挡 | 少妇高潮的动态图| 天天躁日日操中文字幕| 亚洲av二区三区四区| 美女内射精品一级片tv| 99视频精品全部免费 在线| 色婷婷久久久亚洲欧美| 日韩人妻高清精品专区| 99热全是精品| 日韩欧美精品v在线| 亚洲美女搞黄在线观看| 久久久久久伊人网av| 联通29元200g的流量卡| 国产视频首页在线观看| 内射极品少妇av片p| 一二三四中文在线观看免费高清| 欧美日韩综合久久久久久| 久久久色成人| 亚洲一区二区三区欧美精品 | 欧美亚洲 丝袜 人妻 在线| 成人二区视频|