• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the Effect of Two-Dimensional Helicopter V-buoy’s Way of Water Entry on Water Impact

    2019-07-25 03:14:08QingtongChenandGuanggenYang

    Qingtong Chenand Guanggen Yang

    (China Helicopter Research and Development Institute,Jingdezhen 333000,Jiangxi,China)

    Abstract:To analyze the effect of the way of water entry on water impact,the FLUENT software was adopted to simulate a two-dimensional(2D)helicopter V-buoy’s free fall and forced fall at a constant velocity.Combining with the UDF program and the dynamic mesh model,the standard k - ε turbulence model was used and the VOF technique was adopted to capture free surface.The physical parameters such as velocity and force were calculated and compared with those results of boundary element method with good agreement obtained.It was found that the force of 2D V-buoy at a constant velocity was much greater than that in free fall motion.Meanwhile,the maximum pressure coefficients Cpmaxin both cases were almost equal and the dimensionless water-entry depths y'corresponding to Cpmaxwere also similar.

    Keywords:helicopter;2D V-buoy;the way of water entry;water impact;FLUENT;VOF

    1 Introduction

    Water entry is generally considered important in navalarchitecture,ocean engineering and costal engineering.However, it is equally important in aerospace engineering.One classic example in aerospace engineering is helicopter ditching,which is a coupling process ofthe fluid and the body movement.Fluid exerts a great slamming force on helicopter and changes its motion. Meanwhile,helicopter significantly changes the boundary conditions of flow field.How a helicopter ditches,namely,its way of water entry,is of great concern because it influences the force on helicopter and is essential in terms of structural design and safety.

    Acknowledging that the way of water entry is important to helicopter ditching,the way a 2D V-buoy enters into water is used as the research object in this paper.Extensive researches including experimental studies and numerical simulations have been carried out to solve the problems of helicopter’s and wedge’s waterentry. In particular, some key problems concerning helicopter’s ditching in emergency were studied[1].Li et al.[2]studied the scaled model test of helicopter ditching and their main concerns were on load test methods.The authors in Refs.[3 - 4]estimated the impact loads of a ditching helicopter with a V-shape bottom and a flat bottom respectively,by using the empirical formula.Helicopter’s impact on calm water was simulated[5]based on the SPH-FEM method.The inflation of the emergent airbag and the ditching process of helicopter were studied[6]by using software ANSYS/LS-DYNA.Zhang et al.[7]studied the water entry of a wedge by using model test and numerical simulation.The PIV techniques were used in the model tests and the VOF method was adopted in numerical simulation.More studies on water entry of a body can be referred to reviews by Wu and Xu[8-12].

    In the paper,different ways of water entry of a 2D helicopter V-buoy was simulated and its effects on the impact loads were analyzed.Specifically,the water entry of a 2D V-buoy in free fall motion and forced fall motion at a constant velocity was calculated numerically by using the software FLUENT and VOF technique.The velocity,acceleration and slamming force were calculated and compared with the results by Wu[9].Based on the validation of the numerical model,the influence of the way of water entry on slamming force F,slamming pressure and pressure coefficient Cpwere discussed.

    2 Numerical Simulation Methods

    2.1 Fluent Software Basic Equations

    Fluent software basic equations include continuity equation,N-S equation and energy conservation equation.In this paper,energy transformation is not involved,so energy conservation equation does not need to be solved.

    Continuity equation:

    Navier-Stokes equations with constant viscous coefficient:

    where u,v,w are the components of velocity in the x,y, z directions respectively; fx, fy, fzare the components of the volume force in the x, y, z direction respectively;p is the pressure;ρ is the density and μ is the kinetic viscosity coefficient of the fluid.

    2.2 Treatment Methods of Free Surface

    The VOF technique is a numerical method used for constructing and capturing the free surface in computational fluid dynamics(CFD).It can deal with steady and transient problems of air-fluid interface.The basic principle of VOF is used to determine the free surface and track fluid changes by studying the fraction function S.If S=1,it means that the grid unit is occupied by the specified phase fluid.If S=0,it means that the grid unit has no specified phase fluid.If 0<S <l,it means that the grid unit is called interphasal interface.S function can be expressed as follows[13]:

    2.3 Motion Equations of Udf Program

    The velocity of V-buoy when entering water can be calculated as follows:

    where v0is the speed of 2D V-buoy in the last timestep,F(xiàn) is the force on 2D V-buoy,m is the mass of V-buoy,and Δt is the time-step.

    2.4 Slamming Coefficient

    To make it general,it is usually necessary to describe the hydrodynamic parameters in dimensionless during the slamming of V-buoy[14].Three dimensionless parameters are adopted in this paper,including the dimensionless water depth y',the pressure coefficient CPand the slamming parameter F'.

    where ρ is density;V(t)is velocity of the body which varies in free fall motion;t is time;p is pressure;y is submergence depth,which isthe heightofthe intersection point between body and free surface over the bottom point of the V-buoy;F is the slamming force on V-buoy.The meaning of each parameter is shown in Fig.1.

    Fig.1 Parameters involved in describing water impact

    3 Numerical Simulation

    3.1 Numerical Model and Calculation Domain

    2D V-buoy with deadrise angle 30°and mass 100 kg is selected as the body.The measuring point A is located at the surface of the 2D V-buoy and the distance between point A and the bottom point of the V-buoy is 0.3 m,as shown in Fig.2.The size of the calculation domain is 7 m×4.5 m and the water depth is 3 m,as shown in Fig.3.In order to save compute time,the buoy is located at free water surface.The initial velocity of the body entering water is -5 m/s,which changes in free fall motion but is kept constant for forced fall motion.The coordinates O-xy is shown in Fig.3 and the origin O is located at the bottom point of the V-buoy which lies on the calm water surface initially.

    Fig.2 Model of the 2D V-buoy

    Fig.3 Computational domain

    3.2 Mesh and Boundary Conditions

    Meshing is the most important step in numerical modeling.The quality of mesh can affect the accuracy of results and solution time.The dynamic meshing technology is adopted here to prevent the surrounding meshes of the body from stretching when V-buoy falls.The dynamic mesh updating method used in this paper is Dynamic Layering Method.

    The calculation domain is divided intothree parts:the upper,middle and lower parts.The middle part is the moving domain near the body,which is also defined as the independent flow domain,and has the same falling speed with the body,so as to ensure the quality of the grids around the falling body is unchanged and guarantee the computational accuracy.All the three parts are discredited in structured grids,which can greatly reduce the number of meshes and solution time.The grid of the middle part has a greater density than those of the other parts,so that accuracy can be enhanced.The mesh is shown in Fig.4 and Fig.5.

    Fig.4 Meshes of the flow field

    Fig.5 Meshes around the 2D V-buoy

    The boundary condition of the 2D V-buoy and the bottom surface are rigid wallsurfaces.The boundary condition of the top surface of the calculation domain is pressure-outlet.The boundary condition of left and right faces of the calculation domain are symmetric boundary condition.

    3.3 Influence of Mesh

    The number of meshes is crucial for calculating precision and calculating time.This paper adopts three kinds of meshes to study their effect.Table 1 shows the influence of different numbers of grids.

    Table 1 Influence of mesh

    By calculation,when the number of grids remains around 49086,the calculated value of Fmaxcoincides well with the theoretical value and the error is within 5%.So in the subsequent calculation,the number of grids remains around 49086.

    3.4 Numerical Simulation Results

    The water entry of a V-buoy in either free fall or forced fall motion is calculated based on FLUENT together with UDF program and standard k-ε turbulence model,and the free surface is tracked with VOF method.For the specific numerical procedure,it is described in Ref.[15].

    For water entry of a V-buoy in free fall motion,the numerical simulation was calculated over 750 time steps.The size of time-step was 0.0001 s and each time step iterated 50 times.The simulation cost 74 min by using 4-AMD opteron 2350 processors.

    For forced fall motion at a constant velocity,the numerical simulation was calculated over 600 time steps.The size of a time-step was 0.0001 s and each time step iterated 50 times.The simulation cost 41 min by using 4-AMD opteron 2350 processors.

    Figs.6-8 show the variation of velocity,acceleration and fluid force of the body in free fall motion together with water depth respectively.As can be seen from Fig.6,the calculated velocities in this paper is very close to the numerical results by the model ofWu[9]and the experimentalresultsof Yettou[16].From Fig.7 and Fig.8,it can be seen that the acceleration and fluid force of the V-buoy increase to peaksbefore decrease,although the velocity decreases monotonously in Fig.6.The calculated accelerationsin this paper also agree with the numerical results generated by Wu’s model of and the experimental results in general.

    Fig.9 shows thechangeofdimensional and dimensionless fluid force of V-buoy in forced fall motion along with the change of water depth.As can be seen from Fig.9,the dimensional slamming force increases as the submergence depth increases,and then the force begins to decline when the fluid separates from the V-buoy around h=0.23 m.For water entry of a V-buoy at a constant velocity,F(xiàn)altinsen provided an estimated formula[14]to predictthe slamming parameter F'as F/ρv3t.F'is only related to the deadrise angle and is an constant for a given deadrise angle.According to Faltinsen[14], the slamming parameter F'is 14.139 when the deadrise angle is 30°,as shown in Fig.8.It can be seen that before the separation of fluid from the body,our calculated value of F'coincides well with the estimated value of Faltinsen[14].After separation of fluid,the calculated F'decreases but the estimated one keeps constant because the formula does not consider the separation of fluid.

    Fig.6 Time history of the velocity of the V-buoy in free fall motion

    Fig.7 Time history of the acceleration of the V-buoy in free fall motion

    Fig.8 Time history of the force of the V-buoy in free fall motion

    Fig.9 Time history of the force of the V-buoy in constant speed motion

    Fig.10 shows the pressure distribution along the surface of a V-buoy at different times.As can be seen from Fig.10,for water entry of a V-buoy in free fall motion,the peak pressure value decreases as the body enters water before the motion direction of the body changes.The position corresponding to the peak pressure moves along the edge of the V-buoy,and the maximum slamming pressure occurs near the intersection point between the body and free surface.For water entry of a V-buoy at a constant velocity,the pressure peak value increases as the body enters water before the fluid separates from the body.The position corresponding to peak pressure moves along the edge of the V-buoy and the maximum slamming pressure also occurs near the intersection point between the body and the free surface.

    For water entry of a V-buoy in free fall motion,the velocity of the body declines gradually under the upward fluid force,so the peak slamming pressure decreases gradually.Meanwhile,because the jet root of the fluid(as shown in Fig.1)on the body moves along the edge of the V-buoy during water entry,the position of peak pressure moves upwards correspondingly.For water entry of a V-buoy in forced motion at a constant velocity,the slamming pressure increases gradually with the increase of water depth.The position of the peak pressure moves upwards along the edge of the V-buoy while the jet root of fluid also moves along the edge of the V-buoy upwards.For the above phenomenon,because the fluid curvature changes sharply at the jet root of fluid,the velocity decreases and the pressure increases,so the peak pressure and the jet root of fluid will move upwards along the edge of the V-buoy.

    Fig.10 Pressure distribution along the V-buoy face

    Fig.11 provides the time histories of dimensional pressure at point A.It can be seen from the figure that the slamming pressure at the same point of the constant velocity motion is always greater than that of the freefall motion.

    Fig.11 Predicted pressure time histories of point A

    Fig.12 provides the relation between the pressure coefficient Cpand the dimensionless depth y'when the pressure of point A reaches the maximum value.It can be seen that both the maximum pressure coefficient Cpmaxand the dimensionless depth y'corresponding to maximum pressure coefficient Cpmaxare the same under these two conditions,which indicates that the pressure coefficient Cpmaxin free fall motion can be predicted by using the way of water entry at a constant velocity although the velocity in free motion changes.This would provide an easier way to predict the maximum pressure coefficient,because water entry at a constant velocity will be relatively easy to calculate,no matter in potential flow theory or CFD method.

    Fig.12 Pressure coefficient Cpin function of the dimensionless entry depth y'

    4 Conclusions

    In this paper,F(xiàn)LUENT software was adopted to simulate 2D helicopter V-buoy’s free fall and forced fall motion at a constant velocity.The standard k- ε turbulence model and the VOF technique were used to construct and capture the free surface,combining with UDF program and dynamic mesh technique.The physical parameters such as velocity and force were calculated and compared with those ofnumerical results by Wu et al.[8]and experimental results by El-Mahdi et al.[16]with good agreement achieved.The results of free fall and forced fall motions at the same initial falling speeds were also compared and analyzed.Some conclusions could be drawn as below:

    a)For free-fall motion,with the increase of time,the value of slamming peak pressure decreases and the position of peak pressure moves along the V-buoy edge.The maximum slamming pressure occurs in the jet root region.For forced fall motion with a constant velocity,with the increase of the time,the value of slamming peak pressure increases and the position of pressure peak moves along the V-buoy edge.The maximum slamming pressure also occurs in the jet root region.

    b)The slamming pressure P and slamming force F of the body in forced fall motion are greater than those in free fall motion.

    c)For the pressure coefficient Cp,the maximum pressure coefficient Cpmaxand its corresponding dimensionless depth y'in free fall and forced fall motions are equal.

    The method and conclusions presented in this paper would provide a basic theoretical support for ditching simulation of helicopters.

    看片在线看免费视频| 国产精品永久免费网站| 可以免费在线观看a视频的电影网站| 在线播放国产精品三级| 亚洲精品一卡2卡三卡4卡5卡| 亚洲 国产 在线| 久久精品国产清高在天天线| 日本a在线网址| 中文字幕精品亚洲无线码一区 | 一本综合久久免费| 男女午夜视频在线观看| 亚洲中文av在线| 日韩高清综合在线| 午夜久久久久精精品| 韩国av一区二区三区四区| 亚洲国产高清在线一区二区三 | 国产日本99.免费观看| 午夜成年电影在线免费观看| 成人亚洲精品一区在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲欧洲精品一区二区精品久久久| 岛国在线观看网站| 久久亚洲精品不卡| 欧美激情高清一区二区三区| 亚洲av美国av| 精品一区二区三区四区五区乱码| 99久久国产精品久久久| 亚洲人成伊人成综合网2020| 可以免费在线观看a视频的电影网站| 99热这里只有精品一区 | xxxwww97欧美| 法律面前人人平等表现在哪些方面| 久久久久国产一级毛片高清牌| 麻豆国产av国片精品| 麻豆成人午夜福利视频| 丝袜人妻中文字幕| 成人午夜高清在线视频 | 中文字幕人妻熟女乱码| 黄色视频,在线免费观看| 精品国产乱码久久久久久男人| 天天添夜夜摸| 久久久水蜜桃国产精品网| tocl精华| 国内精品久久久久久久电影| 亚洲五月天丁香| 亚洲av日韩精品久久久久久密| 精品国产美女av久久久久小说| 91麻豆精品激情在线观看国产| 男女床上黄色一级片免费看| 视频区欧美日本亚洲| 欧美成人性av电影在线观看| www.精华液| 手机成人av网站| 99re在线观看精品视频| 视频在线观看一区二区三区| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 久久久久久久久久黄片| 88av欧美| 亚洲第一av免费看| 国内毛片毛片毛片毛片毛片| 午夜福利高清视频| 村上凉子中文字幕在线| 色综合亚洲欧美另类图片| 老汉色av国产亚洲站长工具| 精品免费久久久久久久清纯| 别揉我奶头~嗯~啊~动态视频| 欧美中文日本在线观看视频| 91老司机精品| 不卡av一区二区三区| 成人av一区二区三区在线看| 亚洲成人精品中文字幕电影| 中文字幕人妻丝袜一区二区| 国内毛片毛片毛片毛片毛片| 国产成人系列免费观看| 久久久久久国产a免费观看| 精品免费久久久久久久清纯| 欧美人与性动交α欧美精品济南到| 亚洲国产精品久久男人天堂| 一区二区三区国产精品乱码| 老司机深夜福利视频在线观看| 看免费av毛片| 一级毛片高清免费大全| 精品不卡国产一区二区三区| 亚洲 国产 在线| 亚洲第一青青草原| 黄频高清免费视频| 精品熟女少妇八av免费久了| 国产久久久一区二区三区| 国产1区2区3区精品| 久热爱精品视频在线9| 国产精品久久久久久亚洲av鲁大| av欧美777| 搡老妇女老女人老熟妇| 中文字幕精品亚洲无线码一区 | 成年免费大片在线观看| 国产精品久久电影中文字幕| 人妻丰满熟妇av一区二区三区| 欧美日韩精品网址| 此物有八面人人有两片| 婷婷六月久久综合丁香| 成在线人永久免费视频| 制服诱惑二区| 三级毛片av免费| 久久伊人香网站| 欧美国产精品va在线观看不卡| 亚洲电影在线观看av| 国产男靠女视频免费网站| 草草在线视频免费看| av有码第一页| 亚洲一码二码三码区别大吗| 好男人在线观看高清免费视频 | 午夜福利18| 在线永久观看黄色视频| 美女高潮到喷水免费观看| 免费女性裸体啪啪无遮挡网站| 一区二区三区精品91| 亚洲成a人片在线一区二区| 成人18禁在线播放| 国产午夜福利久久久久久| 女同久久另类99精品国产91| 亚洲中文字幕一区二区三区有码在线看 | 村上凉子中文字幕在线| 亚洲精品国产精品久久久不卡| 日韩大码丰满熟妇| 在线看三级毛片| 国产麻豆成人av免费视频| 99久久精品国产亚洲精品| 国产精品亚洲av一区麻豆| 成人18禁高潮啪啪吃奶动态图| 老司机深夜福利视频在线观看| 999精品在线视频| 国产精品久久久久久精品电影 | 欧美乱码精品一区二区三区| 久久国产精品男人的天堂亚洲| 精品久久久久久久末码| 亚洲av片天天在线观看| 国产精品久久久久久精品电影 | 亚洲人成网站在线播放欧美日韩| 色婷婷久久久亚洲欧美| 俄罗斯特黄特色一大片| 在线观看免费日韩欧美大片| 国产麻豆成人av免费视频| 亚洲欧美激情综合另类| 最近最新中文字幕大全电影3 | 悠悠久久av| 岛国视频午夜一区免费看| 亚洲国产精品成人综合色| 最新美女视频免费是黄的| 欧美一区二区精品小视频在线| 精品久久久久久久毛片微露脸| 久久草成人影院| 精品少妇一区二区三区视频日本电影| 国产精品自产拍在线观看55亚洲| 观看免费一级毛片| 亚洲全国av大片| 国产黄色小视频在线观看| 国产成人啪精品午夜网站| 亚洲 欧美 日韩 在线 免费| 国产精品自产拍在线观看55亚洲| 国产aⅴ精品一区二区三区波| 男人舔女人的私密视频| 中国美女看黄片| 精品国内亚洲2022精品成人| 国产野战对白在线观看| 国产午夜精品久久久久久| 在线观看一区二区三区| 国产精品亚洲av一区麻豆| 久久这里只有精品19| 亚洲欧美日韩高清在线视频| 一二三四在线观看免费中文在| 女人高潮潮喷娇喘18禁视频| 久久香蕉国产精品| 精品熟女少妇八av免费久了| 欧美国产日韩亚洲一区| 午夜福利在线在线| 18美女黄网站色大片免费观看| 99精品在免费线老司机午夜| 久久精品aⅴ一区二区三区四区| 给我免费播放毛片高清在线观看| 日韩国内少妇激情av| 国产91精品成人一区二区三区| 国产国语露脸激情在线看| 亚洲午夜理论影院| 日本精品一区二区三区蜜桃| 老司机福利观看| 亚洲精品中文字幕在线视频| 母亲3免费完整高清在线观看| 免费观看精品视频网站| 久久精品aⅴ一区二区三区四区| 久久久国产成人免费| 搞女人的毛片| 久久久水蜜桃国产精品网| 91麻豆av在线| 天天躁夜夜躁狠狠躁躁| 99riav亚洲国产免费| 成人一区二区视频在线观看| 黄色女人牲交| 国产成人欧美在线观看| 99久久久亚洲精品蜜臀av| 国产黄色小视频在线观看| 日本一本二区三区精品| 欧美av亚洲av综合av国产av| 操出白浆在线播放| 女同久久另类99精品国产91| 欧美成人性av电影在线观看| 日日夜夜操网爽| 精华霜和精华液先用哪个| 制服诱惑二区| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线| 丰满的人妻完整版| 精品久久久久久久人妻蜜臀av| 美女扒开内裤让男人捅视频| 日韩大尺度精品在线看网址| 国产精品一区二区精品视频观看| 成人国产综合亚洲| 亚洲国产精品sss在线观看| 欧美性猛交╳xxx乱大交人| 国内精品久久久久久久电影| 韩国av一区二区三区四区| 午夜福利18| 免费女性裸体啪啪无遮挡网站| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| 国产一区二区激情短视频| 成熟少妇高潮喷水视频| 人人妻人人澡欧美一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 夜夜躁狠狠躁天天躁| 天天躁狠狠躁夜夜躁狠狠躁| bbb黄色大片| 欧美精品亚洲一区二区| 午夜亚洲福利在线播放| 午夜日韩欧美国产| 天堂√8在线中文| 成熟少妇高潮喷水视频| 色在线成人网| 免费在线观看成人毛片| 久久久久久九九精品二区国产 | 久久久国产成人免费| 欧美激情久久久久久爽电影| 精品国产乱码久久久久久男人| 夜夜躁狠狠躁天天躁| 一a级毛片在线观看| 中文字幕精品亚洲无线码一区 | cao死你这个sao货| 国产一区二区激情短视频| 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影| 国产黄色小视频在线观看| 亚洲精品av麻豆狂野| 婷婷六月久久综合丁香| 欧美另类亚洲清纯唯美| 91在线观看av| 一进一出好大好爽视频| 国产激情久久老熟女| 人人妻,人人澡人人爽秒播| 午夜免费激情av| 欧美精品啪啪一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 免费观看精品视频网站| 亚洲久久久国产精品| 一卡2卡三卡四卡精品乱码亚洲| 自线自在国产av| 桃红色精品国产亚洲av| 亚洲五月色婷婷综合| 51午夜福利影视在线观看| 成人精品一区二区免费| АⅤ资源中文在线天堂| 九色国产91popny在线| 美女大奶头视频| 无人区码免费观看不卡| 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| 亚洲国产欧美网| 亚洲男人天堂网一区| 熟女少妇亚洲综合色aaa.| av中文乱码字幕在线| 99在线视频只有这里精品首页| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 国产成人精品久久二区二区免费| 亚洲精品美女久久久久99蜜臀| 欧洲精品卡2卡3卡4卡5卡区| avwww免费| 国产亚洲欧美98| 精品电影一区二区在线| 午夜精品久久久久久毛片777| 成年版毛片免费区| 日韩欧美免费精品| 热re99久久国产66热| 男女床上黄色一级片免费看| 国产在线精品亚洲第一网站| 18禁国产床啪视频网站| 欧美大码av| 亚洲精品久久成人aⅴ小说| 国产区一区二久久| 村上凉子中文字幕在线| 在线av久久热| 嫩草影视91久久| 久久久国产成人免费| 亚洲三区欧美一区| 桃红色精品国产亚洲av| 亚洲电影在线观看av| 色精品久久人妻99蜜桃| 亚洲欧美精品综合一区二区三区| 色播亚洲综合网| 搞女人的毛片| 亚洲性夜色夜夜综合| a级毛片a级免费在线| 19禁男女啪啪无遮挡网站| 伦理电影免费视频| 一a级毛片在线观看| 三级毛片av免费| 欧美精品啪啪一区二区三区| 免费看a级黄色片| 少妇熟女aⅴ在线视频| 日韩成人在线观看一区二区三区| 亚洲狠狠婷婷综合久久图片| 特大巨黑吊av在线直播 | 色综合站精品国产| 老司机福利观看| 亚洲国产欧美日韩在线播放| 日韩欧美免费精品| 女人爽到高潮嗷嗷叫在线视频| 国产黄a三级三级三级人| 91老司机精品| 国产成年人精品一区二区| 中文字幕最新亚洲高清| 91麻豆精品激情在线观看国产| 国产精品久久电影中文字幕| 黄色女人牲交| www.精华液| 国产又色又爽无遮挡免费看| 国产激情久久老熟女| 亚洲国产看品久久| 成人亚洲精品av一区二区| 美女免费视频网站| 午夜福利成人在线免费观看| 精华霜和精华液先用哪个| 久久久国产成人精品二区| 人人妻,人人澡人人爽秒播| 国产麻豆成人av免费视频| 午夜福利高清视频| 精品一区二区三区四区五区乱码| 亚洲精品一区av在线观看| 亚洲人成伊人成综合网2020| 91成人精品电影| 国产日本99.免费观看| 欧美又色又爽又黄视频| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看 | 成人欧美大片| av有码第一页| 久久精品国产综合久久久| 国产一区二区激情短视频| 亚洲第一电影网av| 夜夜看夜夜爽夜夜摸| 一级黄色大片毛片| 巨乳人妻的诱惑在线观看| 99在线视频只有这里精品首页| 麻豆一二三区av精品| 99re在线观看精品视频| 视频在线观看一区二区三区| 国产精品电影一区二区三区| 久久狼人影院| 亚洲精品久久国产高清桃花| 波多野结衣巨乳人妻| 黄色 视频免费看| 久久久精品欧美日韩精品| 欧美丝袜亚洲另类 | 国产精品综合久久久久久久免费| 91av网站免费观看| 亚洲av电影不卡..在线观看| 99久久久亚洲精品蜜臀av| 久久性视频一级片| 国产精品99久久99久久久不卡| 亚洲中文av在线| 日本在线视频免费播放| 午夜影院日韩av| 俄罗斯特黄特色一大片| 色尼玛亚洲综合影院| ponron亚洲| 麻豆av在线久日| 国产亚洲精品一区二区www| 在线视频色国产色| 真人一进一出gif抽搐免费| 色综合婷婷激情| АⅤ资源中文在线天堂| 久久国产精品人妻蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品美女特级片免费视频播放器 | 亚洲专区中文字幕在线| 一个人免费在线观看的高清视频| 午夜久久久久精精品| 国产精品久久久av美女十八| 久久午夜亚洲精品久久| 亚洲最大成人中文| 嫩草影院精品99| 制服人妻中文乱码| 亚洲成av片中文字幕在线观看| 50天的宝宝边吃奶边哭怎么回事| 成人免费观看视频高清| 中国美女看黄片| 午夜日韩欧美国产| 国产精品,欧美在线| 久久久久久大精品| 精品久久久久久久久久免费视频| 国产av在哪里看| 香蕉国产在线看| 国产精品1区2区在线观看.| 亚洲真实伦在线观看| 亚洲精品久久成人aⅴ小说| 国产熟女午夜一区二区三区| 白带黄色成豆腐渣| 亚洲中文av在线| 亚洲第一电影网av| 国产精品久久久av美女十八| 国产成人av教育| 久久精品91蜜桃| 亚洲精华国产精华精| www日本在线高清视频| 女性生殖器流出的白浆| 香蕉久久夜色| 国产精品 国内视频| 亚洲国产高清在线一区二区三 | 脱女人内裤的视频| 欧美日韩亚洲综合一区二区三区_| 少妇熟女aⅴ在线视频| 精品久久久久久久末码| 午夜免费观看网址| 国产精品一区二区免费欧美| 久久久久久大精品| 色老头精品视频在线观看| 免费看十八禁软件| 久久久久久九九精品二区国产 | 老司机深夜福利视频在线观看| 啪啪无遮挡十八禁网站| 不卡一级毛片| xxxwww97欧美| 两个人免费观看高清视频| 欧美久久黑人一区二区| 国产黄a三级三级三级人| 国产熟女xx| av视频在线观看入口| 黑人巨大精品欧美一区二区mp4| 色精品久久人妻99蜜桃| 老司机在亚洲福利影院| 波多野结衣高清作品| 女性生殖器流出的白浆| 午夜成年电影在线免费观看| 美女免费视频网站| 热99re8久久精品国产| 777久久人妻少妇嫩草av网站| 国产一区二区三区在线臀色熟女| 免费观看精品视频网站| 免费av毛片视频| 国产亚洲欧美98| 国产精品久久久久久亚洲av鲁大| 麻豆成人午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | 伦理电影免费视频| 国产精品日韩av在线免费观看| 一本大道久久a久久精品| 色播亚洲综合网| 欧美日韩黄片免| 国产日本99.免费观看| 国产精品香港三级国产av潘金莲| 人人澡人人妻人| 黑丝袜美女国产一区| 免费无遮挡裸体视频| 一本一本综合久久| 久久久国产欧美日韩av| 中文在线观看免费www的网站 | 三级毛片av免费| 99re在线观看精品视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲av电影在线进入| 亚洲av五月六月丁香网| 国产熟女午夜一区二区三区| 搡老岳熟女国产| 精品第一国产精品| 久久中文字幕人妻熟女| 欧美成人午夜精品| 精品一区二区三区四区五区乱码| 婷婷六月久久综合丁香| 久久国产亚洲av麻豆专区| 满18在线观看网站| 黄色 视频免费看| 国产精品亚洲av一区麻豆| 一进一出好大好爽视频| 色播在线永久视频| 老鸭窝网址在线观看| 亚洲成人久久性| 十分钟在线观看高清视频www| 久久99热这里只有精品18| 免费一级毛片在线播放高清视频| 亚洲av第一区精品v没综合| 欧美三级亚洲精品| 欧美黄色淫秽网站| 久久久久久久久久黄片| 国产精品亚洲美女久久久| 一边摸一边抽搐一进一小说| 欧美又色又爽又黄视频| 久久久久精品国产欧美久久久| 国产精品九九99| 色老头精品视频在线观看| 久9热在线精品视频| 国产在线观看jvid| 精品国产乱子伦一区二区三区| 俄罗斯特黄特色一大片| 夜夜看夜夜爽夜夜摸| 两人在一起打扑克的视频| 亚洲激情在线av| 黑人操中国人逼视频| 久久精品成人免费网站| 国产av在哪里看| 午夜久久久久精精品| 亚洲精品美女久久av网站| 99国产精品99久久久久| 日韩视频一区二区在线观看| 亚洲成国产人片在线观看| 黄片播放在线免费| 一区二区日韩欧美中文字幕| 欧美国产日韩亚洲一区| 日韩 欧美 亚洲 中文字幕| 亚洲人成伊人成综合网2020| 国产高清视频在线播放一区| 俺也久久电影网| 不卡av一区二区三区| 国产亚洲精品久久久久5区| 不卡av一区二区三区| 亚洲av第一区精品v没综合| 又黄又爽又免费观看的视频| 国产精品 国内视频| 麻豆成人av在线观看| 青草久久国产| 丝袜在线中文字幕| 无人区码免费观看不卡| 午夜福利18| 成人三级做爰电影| 99re在线观看精品视频| 成熟少妇高潮喷水视频| 在线视频色国产色| 热99re8久久精品国产| 国产高清视频在线播放一区| 亚洲人成伊人成综合网2020| 日韩成人在线观看一区二区三区| 人人妻人人澡人人看| 国内少妇人妻偷人精品xxx网站 | 午夜福利在线在线| 久久精品国产99精品国产亚洲性色| av在线播放免费不卡| 亚洲国产精品久久男人天堂| 国产精品免费一区二区三区在线| 夜夜躁狠狠躁天天躁| 国产亚洲欧美在线一区二区| 韩国av一区二区三区四区| 桃红色精品国产亚洲av| 美女大奶头视频| 成人一区二区视频在线观看| a级毛片在线看网站| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全电影3 | 看黄色毛片网站| www.www免费av| 天天躁狠狠躁夜夜躁狠狠躁| 欧美最黄视频在线播放免费| 亚洲黑人精品在线| 人人妻,人人澡人人爽秒播| 精品第一国产精品| 国产97色在线日韩免费| 一区福利在线观看| 精品久久久久久久久久免费视频| 老汉色av国产亚洲站长工具| 欧美中文日本在线观看视频| 亚洲国产日韩欧美精品在线观看 | 91成年电影在线观看| 99久久99久久久精品蜜桃| 91av网站免费观看| av免费在线观看网站| 成年人黄色毛片网站| 999久久久国产精品视频| 最新在线观看一区二区三区| 在线观看一区二区三区| 久久人妻av系列| 色综合站精品国产| 久久久久国产精品人妻aⅴ院| 日本一区二区免费在线视频| 免费电影在线观看免费观看| 亚洲自偷自拍图片 自拍| 可以在线观看的亚洲视频| 中文字幕人成人乱码亚洲影| 午夜日韩欧美国产| 成年人黄色毛片网站| 国产主播在线观看一区二区| 好看av亚洲va欧美ⅴa在| 亚洲一卡2卡3卡4卡5卡精品中文| 在线永久观看黄色视频| 欧美 亚洲 国产 日韩一| 黄色片一级片一级黄色片| 亚洲激情在线av| 欧美日韩瑟瑟在线播放| 亚洲欧美激情综合另类| 长腿黑丝高跟| 亚洲五月色婷婷综合| 99久久综合精品五月天人人| 琪琪午夜伦伦电影理论片6080| 一区二区三区激情视频| 亚洲国产中文字幕在线视频|