• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tracking Algorithm Based on Improved Interacting Multiple Model Particle Filter

    2019-07-25 03:13:58HailinFengandJuanliGuo

    Hailin Feng and Juanli Guo

    (School of Mathematics and Statistics,Xidian University,Xi’an 710126,China)

    Abstract:Measurements are always interfered with glint noise in a radar target tracking system,which makes the performance of traditional filtering fall sharply and even divergent.Against this problem,a new Interactive Multiple Model Particle Filter(IMMPF)algorithm is proposed for target tracking by introducing PF into Interactive Multiple Model(IMM).Different from the general method to select importance density function from PF,the particles are extracted from observation likelihood function within depending on observation noises.Observation noise is modelled,and the latest observation is fused,then the target can be effectively tracked.Finally,the optimized method is simulated with respect to bearings-only tracking of maneuvering target in a glint noise environment.Compared with the existing filtering algorithms,it turns out that the developed filtering algorithm is more efficient and closer to the real-time tracking requirement of high maneuvering targets.

    Keywords:observation noise;interactive multiple model;target tracking;particle filter

    1 Introduction

    In recent years,there are a lot of researches on the target tracking,but most studies on maneuvering target tracking are based on the assumption of Gaussian white noise.While in the actual radar target tracking system,the scattering of target in different positions and random fluctuating of target with radar echo make the measuring errors,which cause the observation noise called glint noise.The long tail glint noise dissatisfy the Gaussian white noise assumption and cannot be described by Gaussian distribution,so modeling of glint noise is an essential issue in current research of maneuvering target tracking.But up to now,the results of maneuvering target tracking in glint noise environment are really rare.So, this problem has become a difficult point in nonlinear non-Gaussian system,as well as a research hotspots in the field of target tracking[1-2].

    For maneuvering target tracking,IMM is a common effective algorithm,in which multiple models transformation are achieved by Markov chain[3-6].But the standard IMM is put forward based on linear Kalman Filter(KF)or Extended Kalman Filter(EKF),which can only deal with a simple linear system with Gaussian assumption.For nonlinear systems with non-Gaussian hypothesis, the performance showed by the standard IMM is poor.

    The emergence of PF gradually solves the state estimation problem of nonlinear non-Gaussian system,more and moreattention hasbeen paid to the application of PF in target tracking[7-13].IMMPF algorithm was presented to track the maneuvering target based on some previous work[14-15].However,the system state transition probability in these papers was selected as the importance density function of standard PF,without usingthe latest observation information,the resulting particle samples are often concentrated atthe tailof posterior probability distribution,which leads to the blindness of selecting particle,so it can easily cause particle degradation and cannot meet the filtering performance.To solve this problem,Ref.[16]developed an Interacting Multiple Model Iterative Extended Kalman Particle Filter,in which the importance density function was generated by Iterated Extended Kalman Filter,and it improved tracking accuracy of maneuvering target to a certain extent.

    In addition,due to the poor tracking performance of the standard PF in the glint noise environment[17],some improvements have been made to describe the real noise density function and obtain the more liable state estimation in the presence of glint noise[18].

    It is worth emphasizing that most of researches about IMM and PF are only for maneuvering target tracking,or state estimation of nonlinear systems.And the existed research in view of glint noise are just dealing with the target state estimation in a single model without considering the maneuvering targets.Thus we aim at solving the problem of maneuvering target tracking affected by glint noise and optimizing the selection of importance density function of PF in IMMPF,the main contributions of this paper are:1)observation noises are modeled as mixture Gaussian modelfor processing the glintnoise; 2) the importance density function that we choose fuses the latest observations and it is easier to sample in PF;3)the improved PF is extended into the IMM in dealing with the tracking of high maneuvering target.

    The outline of the rest of this paper is as follows:Section 2 is a brief introduction of system model and observation noise model;the selection of importance density function and the updating ofimportance weights are given in Section 3,as well as the algorithm design in this paper;Section 4 provides the numerical simulation to prove effectiveness of the obtained algorithm;Section 5 draws the conclusions.

    2 Model Building

    2.1 Tracking Model

    Assume that the target in thetwo-dimensional plane does nonlinear motion with turns,the motion equation and observation equation are respectively as follows:

    The state vector of the target at time instant k in the l-th model is given as

    where the components xl(k) and yl(k) represent position coordinates of the moving target,whereas,are the velocity coordinates,φ is called angular velocity for the motion that indicates the maneuvering of the target.The measurement vector Zl(k)is obtained by the sensor.The corresponding matrices Fl(k),H(k)and Bl(k)in the system models(1)and(2)are known as state transition matrix,measurement matrix and noise input matrix,respectively.W(k)and V(k)are random noises which are called processnoise and observation noise,respectively.Theirprobability distributions which depend on sensor measurement and system update are unknown or given.

    The transition probability between the system models is defined as follows:

    In this way,the state X(k)of the target can be estimated by initializing X(0)and model probabilitywith the combination of the observation value Z(k).Then, the targettracking can be achieved.

    2.2 Observation Noise Model

    Glint noise cannot be described by Gaussian distribution because of its own characteristics,so the modeling of glint noise is mainly realized by the combination of the Gaussian distribution and other noise distribution.Therefore, by establishing the relationship between observation noise and the observation likelihood function,a glint noise model based on Gaussian mixture distribution is obtained.

    In general,observation likelihood function can be constituted by Eq.(4), which is a Gaussian distribution density,with the assumption that the observation noises are white noises with zero mean and covariance of R.

    where j=1,2,…,N represents the number of particles.

    But for non-Gaussian non-stationary glint noise,Gaussian distribution cannot approximately describe the observation likelihood function.We endeavor to explore the central relationship between observation likelihood function and observation noise to design another approximation method.Based on the conclusion from Ref.[19],the observation likelihood of the j-th particle can be described as:

    For each particle,noise samples are defined as:

    and for the j-th particle,its observation likelihood function is:

    Thus the construction of the observation likelihood function can be converted to the modeling of observation noise.

    Suppose that K is a non-Gaussian non-stationary glint noise having a non-zero mean.The PDF at instant k can be presented as a Gaussian mixture with K weighted Gaussian components:

    where pi(vk)is called probability density function of the i-th Gaussian components at the instant k ,μi,k,are mean,variance and the weight of the each component,respectively.i=1,2,…,K ,.For each noise sample,we have:

    As a result,the probability of the i-th component based on the j-th noise sample can be computed through the Bayes rule:

    And allthe distribution parametersofeach Gaussian component are derived below.

    First,the Gaussian component of the observation noise model is initialized and for k=1,2,… ,the prior distribution parameters of each component are estimated.

    Initialize the prior weight as:

    When K is an odd number,the priori mean is set as:

    and when K is even,the priori mean is expressed as:

    where

    The prior variance is:

    Secondly,calculate the j-th observation noise samples:

    where

    Then the conditional probability of each noise component are calculated by the prior parameters:

    Next,the posterior parameters of each noise component are updated.The posteriorweightis expressed as:

    The posterior mean is:

    and the posterior variance is built as:

    3 IMMPF Algorithm Based on Mixture Gaussian Glint Noise Model

    After establishing the Gaussian mixture model of observation noise,a new IMMPF is developed in this paper by improving the likelihood PF in the IMM.That is to say,particles are extracted from observation likelihood function that depends on the observation noise,and the latest observation information is fused into the importance density function,so as to get a posteriori probability distribution which is more in line with the real state of the target.At the same time,interactive operation of each particle with the estimation of other models is taken to reflect the impact of each model on different particles.Not only can it solve the problem of glint noise,but also overcome the influence of the sudden maneuver of the target.

    3.1 Updating Weights in the PF

    The estimation performance of the PF mainly depends on the importance density function we have selected,and the minimization ofthe weighted variance isthe centralrule ofselecting optimal importance density function.According to the theorem of Ref.is an optimal importance density function based on the minimizing variance of importance weights,and the corresponding importance weight is updated as follows:

    However,there are two problems need to be solved in optimal importance density function.One is the difficulty to sample from the non-standard distribution,which makes it hard to get the posterior distribution of the state.Another is the difficulty of integrating,namely,when the importance weight is updated as shown in Eq.(22),the following integral are required:

    But the integral is always non-analytic which leads to a large amount of calculation and even the filter is difficult to achieve.

    To overcome the difficulties caused by the above problems,it is necessary to improve the PF according to the selection of importance density function.So,some researchers first select

    as anotherimportance density function,and the corresponding important weight is updated to:

    As a result,the sampling is prone to implement.But in the actual environment with glint noise,the latest observations cannot be fused by priori distribution,and sample particles may driftin posterior distribution,which can lead to the degradation of filtering performance.

    Therefore,the importance weight of the PF is improved and the observation likelihood function is converted to the probability density of observation noise,and from which the particles are extracted.So that,the improved importance weightwhich is updated to:

    With the above improvements,the PF has the following advantages: 1) the latestobservation information can be fused into the importance density function and get the posteriori probability distribution which is more in line with the target's state in a glint noise environment;2) it can avoid the drift of particles in the posterior distribution and particle impoverishment;3) the computational complexity caused by a large number of particles is greatly reduced;4)the tracking accuracy is improved as well as the problem caused by glint noise is solved.

    Then,we integrate the modified PF which the important weight is improved into the IMM to develop a novel IMMPF algorithm.And it is used to realize the exactly real-time tracking of the high maneuvering targets in the glint noise environment as well as the accurate estimation of targetstates.A detailed description of the IMMPF is given below.

    3.2 Implementation of the new IMMPF

    Aiming at the problem of maneuvering target tracking under the mixture Gaussian noise model that we have discussed,the IMMPF is put forward and the main steps include:Interaction,filtering,probability updatingofmodels and outputting.The detailed processes are as follows:

    (1)Interaction: initialize the state vectorand its covariancefor k=1.

    and then normalizing the importance weight:

    The estimation of state and its covariance are:

    (3)The probability updating of models:

    Likelihood function of the model is calculated as:

    where

    Thus,the probability of each model is updated to:

    (4)Outputting:

    4 Simulation and Result Analysis

    The proposed algorithm is simulated and analyzed in this section,including the presented IMMPF and conventionalIMM algorithm.The simulation is completed by MATLAB 2014 to compare the performance for maneuvering target tracking in glint noise environment.The parameters and system model in the simulation are as follows:

    In order to simplify the simulation implementation and make the result easy to observe,the number of particlesin IMMPF and the conventionalIMM algorithm are set as 200 and 100, respectively.Besides,simulations of both algorithms are executed independently for 150 Monte Carlo runs.To evaluate the performance of this algorithm intuitively,we select the root mean square error(RMSE)of the target’s location estimation as the evaluation index.

    The system model for moving target is:

    where Xk=is the state variable,xkand ykare the position of the target in the Cartesian coordinate systemare the components of velocity in both directions.Under the assumption of targets with uniform velocity,the state transition matrix F is specified as:

    where T represents the observation period ofthe sensor.

    When in anticlockwise or clockwise motion,F(xiàn) is defined as:

    where φ denotes the steering angular velocity( φ > 0 corresponds to anticlockwise motion,while φ < 0 means clockwise motion).F3is the same as F2except that φ < 0.The following equation

    refers to the noise gain matrix.The process noise wkfollows the Gaussian distribution with zero mean and covariance of Qi(i=1,2,3) ,where

    Sensor is be situated at(0,0)to measure the angle between the target and x axis,the observation period T=1s,and observation model is:y

    where vkdenotes the glint noise existing in each viewing angle.

    The trajectory of the target is set as follows:the initial state for target is(6000 m,20 m/s,6000 m,20 m/s) .In the first 25 sample intervals,the target is turning anticlockwise at the turn rate of 0.1 rad/s ,then going to do uniform linear motion for 10 sampling intervals,and in the last 25 intervals,the targetturns clockwise,and the turning rate is 0.1 rad/s .

    The initialprobabilities ofeach modelare specified as: μ0,1=0.2,μ0,2=0.2 and μ0,3=0.6,and the model transition probability matrix is:

    The simulation results are shown in Figs.1-2.

    Curves in Fig.1 are target's true trajectory,observation samples,the estimation by some existed filtering algorithms and the result of presented IMMPF in this paper, respectively.It can beseen that throughout the tracking process,the estimation by IMMPF we have proposed is closer to the true trajectory of the target than any other algorithm.Although target is turning,the IMMPF also estimates the target state more accurately and tracks the target better than the existed algorithms because there is no major deviation from the actual trajectory.That is to say,the improved IMMPF can flexibly deal with the maneuvering problem of target tracking and the glint noise,and the tracking result is satisfactory.

    Fig.1 Target trajectory and the estimated trajectory

    Fig.2 RMSE of target location estimation

    Curves in Fig.2(a)and(b)refer to the RMSE of the conventional PF,IMM,IMMPF1 improved by the previousresearchers and the IMMPF we have proposed,respectively.It's obvious that he RMSE of the presented method is much smaller during the tracking,and that the IMMPF performs still relatively stable and the superiority is more obvious even if the target suddenly maneuvers.

    Furthermore,the importance density function we have selected in this paper reduces the computation load of a single PF,so the computational complexity of the whole IMMPF algorithm in which multiple PF are executed simultaneously is lower than that of the existed IMMPF1.

    Overall,the introduced IMMPF has good tracking performance and feasibility as well as strong robustness.What’s more,the tracking accuracy of maneuvering targets in the glint noise environment is better than that of the conventional algorithms,getting an expected tracking effect.

    5 Conclusions

    A novel IMMPF algorithm is improved based on the mixture Gaussian glint noise model in this paper so that the problem ofmaneuvering targettracking affected by glint noise is solved.The discussion and simulation indicate that it is of great significance to use the proposed scheme to track the maneuvering targets with glint noise.Furthermore,the IMMPF has the characteristics offaster convergence rate and robust adaptation,which can deal with the nonlinear non-Gaussian systems very well.

    啦啦啦观看免费观看视频高清| 最新中文字幕久久久久| 听说在线观看完整版免费高清| 卡戴珊不雅视频在线播放| 成年免费大片在线观看| 成人午夜精彩视频在线观看| 又粗又爽又猛毛片免费看| 亚洲熟妇中文字幕五十中出| 在线免费十八禁| 亚洲图色成人| 国产老妇女一区| 国产精品福利在线免费观看| 中国国产av一级| 能在线免费观看的黄片| 国产亚洲av片在线观看秒播厂 | 国产精品,欧美在线| 国产女主播在线喷水免费视频网站 | 我要看日韩黄色一级片| 亚洲内射少妇av| 成年女人永久免费观看视频| 欧美性感艳星| 免费搜索国产男女视频| 性色avwww在线观看| 亚洲综合精品二区| 丰满少妇做爰视频| 久久久久网色| 麻豆精品久久久久久蜜桃| 国产91av在线免费观看| 精品99又大又爽又粗少妇毛片| 国产亚洲av片在线观看秒播厂 | 日韩欧美国产在线观看| 国产精品麻豆人妻色哟哟久久 | 美女国产视频在线观看| 一本久久精品| 啦啦啦韩国在线观看视频| 永久网站在线| 久久精品综合一区二区三区| 成年免费大片在线观看| 九草在线视频观看| 国产伦精品一区二区三区视频9| 99国产精品一区二区蜜桃av| 在线播放国产精品三级| 99久久九九国产精品国产免费| 日韩中字成人| av国产久精品久网站免费入址| 内地一区二区视频在线| 少妇高潮的动态图| 日日撸夜夜添| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 91av网一区二区| 亚洲av一区综合| 桃色一区二区三区在线观看| 国产毛片a区久久久久| av免费观看日本| 嫩草影院新地址| 国产一级毛片在线| 日日摸夜夜添夜夜添av毛片| 不卡视频在线观看欧美| 黄色日韩在线| 黄片无遮挡物在线观看| 婷婷六月久久综合丁香| 国产高清视频在线观看网站| 国产高清国产精品国产三级 | 99久久无色码亚洲精品果冻| 人妻少妇偷人精品九色| 欧美成人a在线观看| 99在线人妻在线中文字幕| 嫩草影院精品99| 国产成年人精品一区二区| 久久久精品94久久精品| 久久久久久国产a免费观看| 精品一区二区免费观看| 国产成人福利小说| 一夜夜www| 国产精品久久视频播放| 免费大片18禁| 午夜老司机福利剧场| 亚洲欧美一区二区三区国产| 国产乱人偷精品视频| 亚洲丝袜综合中文字幕| 99热精品在线国产| 成人一区二区视频在线观看| 欧美激情久久久久久爽电影| 黄色日韩在线| 日本免费在线观看一区| 久久精品人妻少妇| av在线蜜桃| 只有这里有精品99| 男人舔女人下体高潮全视频| 99热网站在线观看| 日韩欧美三级三区| 婷婷六月久久综合丁香| 精品久久久久久久久av| 麻豆国产97在线/欧美| 亚洲18禁久久av| 看非洲黑人一级黄片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久网色| 久久久国产成人精品二区| 欧美97在线视频| 不卡视频在线观看欧美| 永久免费av网站大全| 汤姆久久久久久久影院中文字幕 | 中文天堂在线官网| 国内揄拍国产精品人妻在线| 九九热线精品视视频播放| 欧美成人一区二区免费高清观看| 51国产日韩欧美| 国产91av在线免费观看| 国产伦精品一区二区三区四那| 国产精品一区二区在线观看99 | 在线a可以看的网站| 国产爱豆传媒在线观看| 免费av毛片视频| 国产精品人妻久久久影院| 欧美激情在线99| 中文字幕精品亚洲无线码一区| av在线老鸭窝| 国产伦一二天堂av在线观看| 亚洲成色77777| 午夜福利在线观看免费完整高清在| 欧美日本亚洲视频在线播放| 国产精品一区二区三区四区久久| 激情 狠狠 欧美| 丝袜美腿在线中文| 亚洲一区高清亚洲精品| 精品久久久久久久久久久久久| 国产精品不卡视频一区二区| 九九在线视频观看精品| 精品人妻视频免费看| 天堂√8在线中文| 久久99热这里只频精品6学生 | 中文资源天堂在线| 麻豆久久精品国产亚洲av| 看非洲黑人一级黄片| 乱人视频在线观看| 久久久色成人| 国产色爽女视频免费观看| 国产午夜精品一二区理论片| 在线观看一区二区三区| 亚洲欧美一区二区三区国产| 波野结衣二区三区在线| 狂野欧美激情性xxxx在线观看| 婷婷色av中文字幕| 99视频精品全部免费 在线| 国产亚洲91精品色在线| 欧美成人免费av一区二区三区| 三级男女做爰猛烈吃奶摸视频| av又黄又爽大尺度在线免费看 | 亚洲电影在线观看av| a级毛片免费高清观看在线播放| 美女高潮的动态| 精品酒店卫生间| 七月丁香在线播放| 久久精品夜色国产| 欧美最新免费一区二区三区| 国产视频首页在线观看| 精品人妻一区二区三区麻豆| 亚洲乱码一区二区免费版| 99久久无色码亚洲精品果冻| 国产成人午夜福利电影在线观看| 国产成人91sexporn| 中文乱码字字幕精品一区二区三区 | 国产伦一二天堂av在线观看| 亚洲怡红院男人天堂| 国产淫片久久久久久久久| 久久久久免费精品人妻一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | or卡值多少钱| 级片在线观看| 91午夜精品亚洲一区二区三区| 天美传媒精品一区二区| 免费人成在线观看视频色| 亚洲自拍偷在线| 一级毛片我不卡| 99久久精品一区二区三区| 国产精品福利在线免费观看| 日韩欧美精品免费久久| 麻豆成人av视频| 精品久久久久久电影网 | 国产三级在线视频| 国产精品熟女久久久久浪| 免费av观看视频| 精品国产三级普通话版| 成人性生交大片免费视频hd| 少妇高潮的动态图| 嫩草影院精品99| 亚洲图色成人| 亚洲成人精品中文字幕电影| 1024手机看黄色片| 国产精品.久久久| 精品久久久久久久久av| 久久久久久国产a免费观看| 欧美成人免费av一区二区三区| 午夜福利在线观看免费完整高清在| av在线天堂中文字幕| 亚洲精品乱码久久久v下载方式| 国产精品一区二区性色av| 国产精品女同一区二区软件| 国产探花在线观看一区二区| 亚洲欧美成人综合另类久久久 | 少妇人妻一区二区三区视频| 亚洲国产色片| .国产精品久久| 亚洲精品国产成人久久av| 亚洲美女搞黄在线观看| 日本与韩国留学比较| 能在线免费看毛片的网站| 97超碰精品成人国产| 亚洲国产精品专区欧美| 男人狂女人下面高潮的视频| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频 | 久久精品国产鲁丝片午夜精品| 亚洲精品自拍成人| 午夜福利视频1000在线观看| 亚洲av中文字字幕乱码综合| 美女国产视频在线观看| 亚洲av不卡在线观看| 国产女主播在线喷水免费视频网站 | 欧美成人a在线观看| 美女被艹到高潮喷水动态| 少妇人妻一区二区三区视频| 国产美女午夜福利| 免费观看在线日韩| 亚洲五月天丁香| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜| 99在线视频只有这里精品首页| 亚洲欧美日韩东京热| 亚洲内射少妇av| 欧美成人午夜免费资源| 精品人妻视频免费看| 久久久色成人| 国产av码专区亚洲av| 激情 狠狠 欧美| 亚洲人成网站高清观看| 少妇被粗大猛烈的视频| 51国产日韩欧美| 三级男女做爰猛烈吃奶摸视频| 中国国产av一级| 国产一区有黄有色的免费视频 | 美女黄网站色视频| 99热这里只有精品一区| 波多野结衣高清无吗| 亚洲va在线va天堂va国产| 国产伦在线观看视频一区| 久久久久久久久久黄片| 国产精品永久免费网站| 国产亚洲5aaaaa淫片| 99久久精品国产国产毛片| 熟妇人妻久久中文字幕3abv| 中文字幕熟女人妻在线| 精品国内亚洲2022精品成人| 日日撸夜夜添| 国产在线一区二区三区精 | 亚洲国产色片| 欧美日韩一区二区视频在线观看视频在线 | 免费无遮挡裸体视频| 丰满乱子伦码专区| 一级毛片aaaaaa免费看小| 婷婷六月久久综合丁香| 亚洲av不卡在线观看| 亚洲精品乱码久久久久久按摩| 最后的刺客免费高清国语| 欧美人与善性xxx| 国产黄a三级三级三级人| 99久久成人亚洲精品观看| 国产精品福利在线免费观看| 秋霞在线观看毛片| ponron亚洲| 在线观看美女被高潮喷水网站| 亚洲国产成人一精品久久久| 国产黄片美女视频| 午夜a级毛片| av国产久精品久网站免费入址| 精品久久久久久久久久久久久| 欧美最新免费一区二区三区| 日韩大片免费观看网站 | 精品久久久噜噜| 成年女人看的毛片在线观看| 精品一区二区免费观看| 国产在视频线精品| 国产一区有黄有色的免费视频 | 日韩,欧美,国产一区二区三区 | 中文字幕制服av| 97超碰精品成人国产| 亚洲精品乱码久久久久久按摩| 床上黄色一级片| 乱系列少妇在线播放| 日韩欧美在线乱码| 神马国产精品三级电影在线观看| 91久久精品国产一区二区三区| 1024手机看黄色片| 国产精品不卡视频一区二区| 久久久精品94久久精品| 国产免费又黄又爽又色| 爱豆传媒免费全集在线观看| 国产大屁股一区二区在线视频| 最新中文字幕久久久久| 成人亚洲精品av一区二区| 国产三级中文精品| 午夜激情福利司机影院| 午夜日本视频在线| 亚洲人与动物交配视频| 91午夜精品亚洲一区二区三区| 2021少妇久久久久久久久久久| 国产精品一区二区在线观看99 | 午夜精品在线福利| 中文亚洲av片在线观看爽| 久久6这里有精品| 亚洲欧美成人精品一区二区| 综合色av麻豆| kizo精华| av在线天堂中文字幕| 成人午夜精彩视频在线观看| 国产一区二区亚洲精品在线观看| 国产激情偷乱视频一区二区| 天堂√8在线中文| 真实男女啪啪啪动态图| 国产精品一及| 国产大屁股一区二区在线视频| 国内揄拍国产精品人妻在线| 亚洲美女搞黄在线观看| eeuss影院久久| 国产单亲对白刺激| 亚洲成人中文字幕在线播放| 久热久热在线精品观看| eeuss影院久久| 男人狂女人下面高潮的视频| 亚洲成人中文字幕在线播放| 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看 | 中文资源天堂在线| 美女xxoo啪啪120秒动态图| 波多野结衣巨乳人妻| 变态另类丝袜制服| 可以在线观看毛片的网站| 精品午夜福利在线看| 日韩欧美国产在线观看| 在线免费观看的www视频| 久久精品国产亚洲av天美| 91av网一区二区| 色视频www国产| 国产三级中文精品| 99热这里只有是精品在线观看| 国产乱人视频| 舔av片在线| 精品久久久噜噜| 国产精品人妻久久久影院| 高清毛片免费看| 国产精品一区二区性色av| 国产免费视频播放在线视频 | 三级男女做爰猛烈吃奶摸视频| 免费大片18禁| 亚洲欧美日韩东京热| 观看美女的网站| 麻豆成人av视频| 国产精品女同一区二区软件| 日本熟妇午夜| 丝袜美腿在线中文| av天堂中文字幕网| 春色校园在线视频观看| 我的老师免费观看完整版| 午夜福利视频1000在线观看| 身体一侧抽搐| 久99久视频精品免费| 精品国产露脸久久av麻豆 | 久久久国产成人免费| 国产极品精品免费视频能看的| 久久久久九九精品影院| 人妻夜夜爽99麻豆av| 中文乱码字字幕精品一区二区三区 | 亚洲av中文av极速乱| 亚洲欧美一区二区三区国产| 国产亚洲5aaaaa淫片| 老司机影院成人| 亚洲经典国产精华液单| 国产亚洲午夜精品一区二区久久 | 久久久久久国产a免费观看| 午夜福利成人在线免费观看| 男的添女的下面高潮视频| 日本爱情动作片www.在线观看| 又黄又爽又刺激的免费视频.| 亚洲欧美精品专区久久| 男人的好看免费观看在线视频| 久久久欧美国产精品| 婷婷六月久久综合丁香| 国产老妇伦熟女老妇高清| 内射极品少妇av片p| 国产精品久久久久久精品电影| 精品无人区乱码1区二区| 欧美最新免费一区二区三区| 97在线视频观看| 尤物成人国产欧美一区二区三区| 国产av在哪里看| 国产亚洲av嫩草精品影院| 欧美日韩国产亚洲二区| 国产精品人妻久久久影院| 国产v大片淫在线免费观看| 欧美一区二区精品小视频在线| 在线观看66精品国产| 亚洲欧洲国产日韩| 国产视频内射| 小说图片视频综合网站| 床上黄色一级片| 直男gayav资源| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费| 可以在线观看毛片的网站| 免费看a级黄色片| 免费大片18禁| 十八禁国产超污无遮挡网站| 亚洲精品乱码久久久久久按摩| 午夜老司机福利剧场| 欧美一级a爱片免费观看看| 只有这里有精品99| 久久久久九九精品影院| 国产亚洲精品av在线| 97超视频在线观看视频| 精品无人区乱码1区二区| 亚洲中文字幕日韩| 日日干狠狠操夜夜爽| 天堂av国产一区二区熟女人妻| 亚洲综合色惰| 免费看av在线观看网站| 成年女人看的毛片在线观看| 亚洲高清免费不卡视频| 亚洲av成人精品一区久久| 色吧在线观看| 日韩欧美国产在线观看| 久久久久久伊人网av| 蜜桃久久精品国产亚洲av| 深夜a级毛片| 精品久久久久久成人av| 亚洲自偷自拍三级| 精品久久久久久久人妻蜜臀av| 男女国产视频网站| 国产免费男女视频| 成人无遮挡网站| 建设人人有责人人尽责人人享有的 | 黄色一级大片看看| 一边摸一边抽搐一进一小说| 国产免费一级a男人的天堂| 中文字幕精品亚洲无线码一区| 国产真实伦视频高清在线观看| 一级黄片播放器| 纵有疾风起免费观看全集完整版 | 色综合站精品国产| 国产亚洲av片在线观看秒播厂 | 亚洲精品aⅴ在线观看| 一本久久精品| 亚洲经典国产精华液单| 国产高清有码在线观看视频| 国产成人一区二区在线| 久久久精品94久久精品| 秋霞伦理黄片| 国产欧美另类精品又又久久亚洲欧美| av黄色大香蕉| 久久婷婷人人爽人人干人人爱| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 99热全是精品| 91午夜精品亚洲一区二区三区| av女优亚洲男人天堂| 久久精品91蜜桃| 亚洲精品国产av成人精品| 国产爱豆传媒在线观看| 欧美成人精品欧美一级黄| 高清日韩中文字幕在线| 国产在线男女| 一区二区三区四区激情视频| 精品熟女少妇av免费看| 秋霞在线观看毛片| 国产精品av视频在线免费观看| 老女人水多毛片| 男女边吃奶边做爰视频| 岛国毛片在线播放| 97热精品久久久久久| 网址你懂的国产日韩在线| 国产免费视频播放在线视频 | 亚洲国产精品sss在线观看| a级毛色黄片| 国内揄拍国产精品人妻在线| 精品国内亚洲2022精品成人| 久久99热这里只频精品6学生 | 91在线精品国自产拍蜜月| 老司机影院毛片| 水蜜桃什么品种好| 国产不卡一卡二| 久久久久久久亚洲中文字幕| 久久久精品欧美日韩精品| h日本视频在线播放| 国产精品熟女久久久久浪| 亚洲精品乱码久久久久久按摩| 中文字幕亚洲精品专区| 国产精品人妻久久久影院| 日韩成人伦理影院| 午夜老司机福利剧场| 91午夜精品亚洲一区二区三区| 一级av片app| 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 卡戴珊不雅视频在线播放| 两个人的视频大全免费| 蜜桃亚洲精品一区二区三区| 五月玫瑰六月丁香| 搞女人的毛片| 最近手机中文字幕大全| 2021天堂中文幕一二区在线观| 日本三级黄在线观看| 国产精品三级大全| 国产精品.久久久| 国产真实乱freesex| av免费观看日本| 国产一区有黄有色的免费视频 | av在线播放精品| 欧美+日韩+精品| 日日干狠狠操夜夜爽| www.av在线官网国产| 午夜亚洲福利在线播放| 伦精品一区二区三区| 久久综合国产亚洲精品| 亚洲精华国产精华液的使用体验| 久久精品综合一区二区三区| 午夜视频国产福利| 久久精品影院6| 国产色婷婷99| 亚洲av免费在线观看| 夜夜爽夜夜爽视频| 麻豆国产97在线/欧美| 免费av观看视频| 99九九线精品视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 精品免费久久久久久久清纯| 久久久久国产网址| 少妇猛男粗大的猛烈进出视频 | 亚洲成人久久爱视频| 91午夜精品亚洲一区二区三区| 非洲黑人性xxxx精品又粗又长| 2022亚洲国产成人精品| 又爽又黄无遮挡网站| 国产 一区精品| 亚洲国产精品久久男人天堂| 亚洲综合色惰| 国产成人a区在线观看| 亚洲av成人av| 午夜视频国产福利| 我要搜黄色片| 国产精品一区二区三区四区免费观看| 国产成人a∨麻豆精品| 精品国产露脸久久av麻豆 | 最近视频中文字幕2019在线8| 高清视频免费观看一区二区 | 免费观看的影片在线观看| 永久免费av网站大全| 三级毛片av免费| 亚洲国产精品sss在线观看| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 国产精品麻豆人妻色哟哟久久 | 综合色丁香网| 三级经典国产精品| 国产精华一区二区三区| 国产爱豆传媒在线观看| 建设人人有责人人尽责人人享有的 | 一个人看的www免费观看视频| 亚洲va在线va天堂va国产| 男的添女的下面高潮视频| 亚洲一区高清亚洲精品| 99久久精品热视频| 精品久久久噜噜| 乱人视频在线观看| 国产精品国产高清国产av| 久久国内精品自在自线图片| 91av网一区二区| av专区在线播放| av国产久精品久网站免费入址| 国产精品福利在线免费观看| 国产色婷婷99| 性插视频无遮挡在线免费观看| 午夜福利在线在线| 亚洲av成人精品一区久久| 欧美激情在线99| 午夜日本视频在线| 国产色爽女视频免费观看| av视频在线观看入口| 亚洲精品亚洲一区二区| 国产色爽女视频免费观看| 成人午夜高清在线视频| 欧美又色又爽又黄视频| 一级爰片在线观看| 丝袜美腿在线中文| 国产亚洲5aaaaa淫片| 国产色婷婷99| 亚洲婷婷狠狠爱综合网| 亚洲精品,欧美精品| 亚洲三级黄色毛片| 精品久久久久久久末码| 91aial.com中文字幕在线观看| 中文字幕久久专区| 性插视频无遮挡在线免费观看| 欧美日本亚洲视频在线播放| 中文字幕久久专区| 好男人视频免费观看在线| 少妇人妻一区二区三区视频| 成人午夜精彩视频在线观看| 久久久久九九精品影院| 久久精品国产自在天天线| 亚洲欧美成人精品一区二区| 1024手机看黄色片| 亚洲伊人久久精品综合 | 国产精品爽爽va在线观看网站| 日本-黄色视频高清免费观看|