• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stream-Based Data Sampling Mechanism for Process Object

    2019-07-18 01:59:44YongzhengLinHongLiuZhenxiangChenKunZhangandKunMa
    Computers Materials&Continua 2019年7期

    Yongzheng Lin, Hong Liu, , Zhenxiang Chen, Kun Zhang and Kun Ma

    Abstract: Process object is the instance of process.Vertexes and edges are in the graph of process object.There are different types of the object itself and the associations between object.For the large-scale data, there are many changes reflected.Recently, how to find appropriate real-time data for process object becomes a hot research topic.Data sampling is a kind of finding c hanges o f p rocess o bjects.T here i s r equirements f or s ampling to be adaptive to underlying distribution of data stream.In this paper, we have proposed a adaptive data sampling mechanism to find appropriate data to m odeling.First of all, we use concept drift to make the partition of the life cycle of process object.Then, entity community detection is proposed to find changes.Finally, we propose stream-based real-time optimization of data sampling.Contributions of this paper are concept drift, community detection, and stream-based real-time computing.Experiments show the effectiveness and feasibility of our proposed adaptive data sampling mechanism for process object.

    Keywords: Process object, data sampling, big data, data stream, clustering, stream processing.

    1 Introduction

    Process object is the instance of process [Du, Qu and Hua (2017)].Vertexes and edges are in the graph of process object with the dependency and constraint on the entity and association [Srikant and Agrawal (1996)].There are different of process objects, such as social networking, logistics exchange, industrial process in factory.In the area of learning process at school, data of process object are generated from the teaching and learning [Xia, Yang, Wang et al.(2012)].Hidden and latent knowledge and rule could be analyzed and extracted.For the improvement, the mechanism should be researched.In this paper, we attempt to improve the performance of data sampling of process object and reducing the workload of the management.

    In the process graph, there are implicit as well as explicit associations among entities [Stefan, Athitsos and Das (2013)].Explicit association could be found using experiences and rules.However, the challenging is how to model implicit associations from real-time data.For big data,the sampling is more challenging to be adaptive to the current underlying distribution of data stream.

    In this paper, an adaptive real-time data sampling mechanism to find appropriate data is proposed.First of all, we use concept drift to make the partition of the life cycle of process object.The state of process object is delivered to different evolution stages.The process object should be sampled for modeling the evolution.In the process object graph,association occurs between entities.Then,entity community detection is proposed to find changes.Relevant entities are gathered together to create a community with the properties of behaviour similarity and associations in a same evolution stage.Next, the knowledge could be discovered from the communities.

    This paper is an extended version from the conference paper [Lin, Liu, Chen et al.(2018)].We further develop the work on community detection and stream-based real-time computing.First, we have reorganized the structure of the paper, which would help the readers to gain insight into our motivations.Second, we propose stream-based data sampling mechanism using stream computing paradigm.

    The organization of the paper is as follows.In Section 2, we present the related work of data sampling for process object.Section 3 introduces the architecture of adaptive sample mechanism for process object.First, we partition the life cycle of process object using concept drift.Second,we propose entity community detection in the same evolution stages.The third is our improved stream-based real-time data sampling using stream processing paradigm.Compared with traditional implementation, stream-based implementation is faster.Experimental results are shown to prove the effectiveness.Conclusions and future work is outlined in the last section.

    2 Related works

    Similar with workflow,process object is the instance of process.In the process object graph,there are entities and associations among them.

    2.1 Association discovery of process object

    Association discovery of process object is a hot research area [Song, Guo, Wang et al.(2014)][Zhu,Du,Qu et al.(2016)].Recently,there are many methods to find explicit and implicit knowledge among correlations and associations [Du, Qu and Hua (2017)] [Hua,Du,Qu et al.(2017)].A scheme which can discover the state association rules of process object is proposed [Song, Guo, Wang et al.(2014)].The hidden close relationships of different links in process object can be found using this method.The state association rules that can be obtained in accordance with rules.Another improvement of this work is using the local density of each sample point and the distance from the other sample points to determine the number of clustering centers in the grid[Hua,Du,Qu et al.(2017);Zhu,Du,Qu et al.(2016)].However, the evolution stage of process object is not considered.With more data, evolution is common in reality.Therefore, we aim to make stage modeling of process object.

    2.2 Concept drift of process object

    Concept drift means that the statistical properties of the target variable [Gama, ?liobait˙e,Bifet et al.(2014)].Concept drift in data stream is used to find appropriate partition of life cycle of evolved process object.The generation of concept drift is caused by the not identical dynamic data streams.This causes problems because the predictions become less accurate as time passes.The detection of concept drift becomes a hot research topic[Ross,Tasoulis and Adams (2011)].Some methods discussed blocking input data in big data streams.But the challenges are how to find changes in high-dimensional data space.In this situation,it will lead to more errors in data sampling.Another method is a sequential change detection model.It can offer statistically sound guarantees on false positive and false negative by using reservoir sampling[Pears,Sakthithasan and Koh(2014)].Another method is Just-In-Time (JIT) classifiers [Wang, Park, Yeon et al.(2017)].It is used to detect concept drifts contains two ways based on Intersection of confidence intervals(ICI).Therefore, it is necessary to research concept drift to address high speed issues.Recent work focused on combining method with a grouping attribute of constraint and penalty regression using concept drift[Wang,Park,Yeon et al.(2017)].Following methods could be used in evolution stages partition[Tennant,Stahl,Rana et al.(2017);Sidhu and Bhatia(2017); Sethi and Kantardzic (2018); Duda, Jaworski and Rutkowski (2017); Sethi and Kantardzic(2018)].

    2.3 Clustering optimization

    Clustering optimization cab be used to find similar entities in the same evolution stages[Gong, Zhang and Yu (2017); Hyde, Angelov and MacKenzie (2017); Puschmann,Barnaghi and Tafazolli(2017);Bodyanskiy,Tyshchenko and Kopaliani(2017)].There are some latest work on data stream clustering in entity community detection[de Andrade Silva,Hruschka and Gama (2017); Hyde, Angelov and MacKenzie (2017); Yarlagadda,Jonnalagedda and Munaga(2018)].

    The size of the sliding windows are used according to the window itself[Bifet and Gavalda(2007)].It recalculated based on the observed rate of the data.Other methods are algorithm for both infinite windows and sliding windows cases [Chen and Zhang (2018); Gemulla and Lehner (2008)].They aim to address the issue of sampling without replacement for timestamp-based windows.

    There are more work process clustering object modeling [Song, Guo, Wang et al.(2014);Hua, Du, Qu et al.(2017); Du, Qu and Hua(2017)].However, they lack on the evolution stage of process object.The similar entities in the same evolution stages of process object should be considered.Another real-time clustering technique is stream computing.Several researchers have improved current method using stream computing framework [Ma and Yang(2017)].But few research focus on data sampling with stream processing.In stream computing paradigm,it means accepting incoming data,and processing data in the business processing unit.

    3 Adaptive data sampling

    The architecture of our adaptive data sampling is proposed in this section.First,we present the basic definition of process object.Then,we present the adaptive data sampling process.

    3.1 Basic definition

    Process object is the instance of process.In the process graph,the process object consists of n links,and each link contains one or more sampling points.Xi(i ∈(1,n))is a link edge of the process object, and the generall system sampling period is T, and ti(i ∈(1,m))is sampling time and T =ti+1-ti.The process object can be defined as

    where xi(tm)is sample value of i-th link edge with sampling time tm.In reality,delay time exists between links in process objects during propagation.For any two links Xiand Xj,a change in link Xiwill cause corresponding change in link Xjwhen Xiis in upstream and is an ancestor of Xj.

    Links in the process object has some relations with other entities.It means that the link edge in process object is generalized to entity.That is to say that the entity will respond according to the changes of neighbors.This reveals some underlying evolution rule of process object.Process object is also the instance of a group entities and its associations.The explicit or implicit association among entities could affect the evolution of the global process object.The relationship strength of association could change over time.Local changes might affect the global evolution of process object.That is to say that local changes could be detected by the global status change of process object.For a individual entity, its status could be defined by its observed value.

    Definition 1(Process Object).Process object is the instance of a group entities and its associations,which could be modeled as a heterogeneous information network GProcessObject(Xentity,Eassocation).Given a fixed time interval, the status of links and entities are monitored and collected.The local status of entity xicould be represented as a vector χi={xi(t1),xi(t2),...,xi(tm),...}.The global status of process object at time ticould be represented as a vector ωti={x1(ti),x2(ti),...,xn(ti)},where n is the number of entities in process object.If there is a relationship from entity χito χj,there is a changeable function χj=f(χi).This function is one attribute of the association.

    Figure 1: Process of adaptive data sampling

    The status of certain entity might be affected by a association chain of entities.Changes in one certain entity may affect other entities, and the change and evolution of local entities may cause the global process object evolve with time.Besides, it may evolve through different stages when process object is running.For example,the performance and association between entities may be different when process object lies in different stages.There might be an evolution of local association among entities.This instable state makes the complexity of data sampling.

    Next, we propose the adaptive data sampling mechanism for modeling the evolution of process object dynamically and precisely.The motivation of our methods is to find the appropriate samples representing the evolution of process object according to the dynamic feature of big data stream.

    3.2 Data sampling process

    The adaptive data sampling process is shown in Fig.1.It consists of the following steps.

    3.2.1 Life cycle recognition and evolution stages partition

    The life cycle of process object contains different continuous evolution stage.The performance and status of process object in different evoluton stage is different.For modeling the process object accurately, data should be sampled from different evolution stages.So the first step is to recognize the life cycle of process object and partition the life cycle into different evolution stages according to the status of process object.

    3.2.2 Entity community detection and ranking

    In different evolution stages, the association between entities is different.The impact and role of entity in different evolution stage is different.Then in a certain evolution stage,the relevant entities are partitioned into community based on their behaviour similarity and associations.These communities are the sources of data sampling.

    3.2.3 Data sampling and evaluation

    After evolution stages partition and entity community detection,data sampling is processed to sample appropriate data for modeling process object.

    3.2.4 Stream-based sata sampling and evaluation

    For big data stream environment of process object, a streaming processing architecture is proposed for sampling efficiently.More details are shown in Section 4.

    3.3 Evolution stages partition

    The process object evolves along with time.There are many stages where the performance of process object is different.The underlying data representing the evolution stage is also different.For modeling the evolution of process object, the stages of evolution should be partitioned.Then data could be sampled through different evolution stages accordingly.

    For data stream, concept drift could be detected and the evolution of data stream could be partitioned into different stages.For process object, the evolution life cycle could be partitioned into different stages.In a certain evolution stage, the process object lies in a steady state.When concept drift occurs,it means that process object move from one steady state to another new steady state.The data belonging to the same steady state could be collected and sampled for modeling the steady state of process object.Based on this idea,a evolution stage partition mechanism is proposed,as shown in Algorithm 3.1.

    Using the topology of process object, the exit entity could be found.Based on concept drift in data stream, a fitting function could be used to detect change of underlying data distribution.When the fitting function is no longer available for the newly data vector of process object, it means that the process object is moving from one old steady state to another new state.A new evolution stage is found.Along with the time, the evolution stages is recorded into the set StagePartitions.

    3.4 Entity community detection

    Data could be sampled from the different evolution stage.However,in the same evolution stage, the importance and influence of entities are different.So the entities in the same evolution stage could be grouped into different clusters.Data could be sampled from these clusters to model in a certain steady stage.

    For finding the similar entities in the same evolution stage, a entity community detection algorithm is proposed,as shown in Algorithm 3.2.

    Consider the χiis a time-series data about entity Xi.In process object,association between entities are not in real-time fashion.There is time delay when change propogate[Du, Qu and Hua (2017); Hua, Du, Qu et al.(2017); Song, Guo, Wang et al.(2014); Zhu, Du,Qu et al.(2016)].So when compute the similarity between entities, it is important to take into account the time delay of associations.Based on previous work [Du, Qu and Hua (2017); Hua, Du, Qu et al.(2017); Song, Guo, Wang et al.(2014); Zhu, Du, Qu et al.(2016)], the time delay between entities could be found.Then the similarity matrix based on Dynamic Time Warping(DTW) could be adjusted into a more appropriate state.Then k-means clustering methods could be used to find the entity communities in a certain evolution stage.

    Algorithm 3.1 Evolution Stage Partition Algorithm for Process Object.Input:The continuous data vector from process object view,{ωti};The continuous data vector from entity view,{χi};Stage Similarity Threshold,TStageThreshold;Output:The Stages Partition Set,StagePartitions;1: StagePartitions=?;2: Get the exit entity xn according to the topology of process object;3: Initialize currentStage;4: Fitting a initial function χn =f(χ1,χ2,...,χn-1);5: while new data vector ωti arrived do 6:if SIMILARITY between χn,ti and χn′ = f(χ1,χ2,...,χn-1) below Tthreshold then 7:Process object is still in a steady state;8:Prepare for next data vector ωti+1;9:else 10:Process object is moving to a new steady state;11:Prepare for fitting a new function for new steady state;12:Add the old steady state into set StagePartitions;13:end if 14: end while 15: return StagePartitions;

    3.5 Data sampling

    After the evolution stages partition and entity community detection, the whole big data stream could be partitioned into different groups, which contain rich information about evolution of process object.Then the next step is to choose appropriate data for modeling.For finding appropriate data for process object modeling,a adaptive sampling algorithm is proposed,as shown in Algorithm 3.3.

    The proposed algorithm firstly use Algorithm 3.1 and Algorithm 3.2 to get the evolution stage partition and the community set in each evolution stage.Then based on the average of dispersion degree of community set in certain evolution stage, the sliding window mechanism is proposed to get the appropriate window that contain the data varies greatly.It means that it contain much more rich information,which could be use for process modeling.

    Algorithm 3.2 Entity community detection for process object.Input:Entity vector set in a certain evolution stage Sj,{χi|χi=(xi,tm,xi,tm+1,...,xi,tn),[tm,tn]=TimeRange(Sj)};The number of entity community,m;Output:Entity community set,EntityCommunity;1: Compute similarity matrix of{χi}using Dynamic Time Warping;2: Correct the Similarity Matrix by time delay influence;3: Choose m points in{χi};4: Using classification such as k-means to finding cluster EntityCommunity considering time delay;5: Return EntityCommunity;

    Figure 2: Stream topology of data sampling.

    4 Stream-based real-time optimization of adaptive data sampling

    4.1 Stream topology

    We design a stream-based topology to implement real-time computing of data sampling.The stream topology is shown in Fig.2.In streaming computing, a stream topology includes several processing element of data sampling.Each processing element of data sampling contains specific implementation of processing logic, and links between nodes contains how the relation how in-stream data is passed.The input is time series stream data some point,including the collecting digital data from sensors and a timestamp.Stream data in this topology is an unbounded sequence of tuples.The output of stream of stream computing in the topology is the sampling series stream data.Business of processing is capsulated in top-level abstraction of processing element.The processing stream is passed by the emition of the input, the it is processed by processing element.For stream-based real-time optimization of adaptive data sampling.For data migration strategy, processing elements include concept drift detection,similarity computing for entities,entity community detection, entity community ranking, entity community evaluation, data assessment in evolution,and data sampling based on entropy.

    Algorithm 3.3 Adaptive data sampling for process object.Input:The continuous data vector from process object view,{ωti};The continuous data vector from entity view,{χi};Stage Similarity Threshold,TStageThreshold;The number of entity community in each evolution stage,m;Output:Sample Data Set,SampleData;1: Call Algorithm 3.1 to get the stages partition set StagePartition={Stagei};2: Call Algorithm 3.2 to get the entity community set EntityCommunityi in evolution stage Stagei;3: for each community cm,iin EntityCommunityi in every stage Stagei do 4:Initialize a sliding window;5:Get the average dispersion degree of communities in EntityCommunityi;6:Slide the window to make the dispersion degree maxmum;7:Get data from the max dispersion degree window as samplei for Stagei;8:Add samplei to SampleData 9: end for 10: Return SampleData;

    4.2 Processing element

    These processing elements have abstract interfaces to help developers add the implementation of business logic to complete the sampling processing of process object.A source of data streams from sensor process object with timestamps is emitted to the stream processing framework, then grouped to make adaptive data sampling.An input element reads tuples of sensor process objects,and emits them as a stream.The subsequent processing element of the stream processing framework consumes any number of input streams to implement adaptive data sampling discusses in Section 3,and possibly emits new streams.Complex adaptive data sampling requires multiple steps and processing elements to generate the sampling result.

    In the stream topology, there are several processing elements that are implementing the abstract interface of stream computing.In order to accelerate the parallel sampling, we group process object before emitting to the stream topology.Concept drift detection is to discover the change of stable state of process object,and similarity computing for entities is to discover the variation tendency of process object.Then,entity community is detected.Afterwards, entity community is ranked and evaluated.Finally, the sampling result is got based on the entropy.

    5 Experiments and analysis

    In this section, experiments and analysis are made to demonstrate the effectiveness of the proposed adaptive data sampling mechanism.

    Figure 3: Mean Value Evaluation.

    There has been a lot of public data set on the web,such as UCI machine learning repository[Dheeru and Karra Taniskidou (2017).The PM2.5 Data Set [Liang, Zou, Guo et al.(2015)in UCI machine learning repository is chose for experiments.The data time period is between Jan 1st, 2010 to Dec 31st, 2014.The attributes include row number, year,month,day,hour,PM2.5 concentration,dew point,temperature,pressure,combined wind direction,cumulated hours of snow and cumulated hours of rain.

    Considering the PM2.5 data set, the PM2.5 concentration, dew point and temperature interact.In the proposed approach, these could be modeled as entities in process object.The association between entities could be modeled through process object.In our setting,the PM2.5 concentration is the focus,which could be the exit entity or dependent variable in process object.Other entities could be independent variables.

    Given the simple random sampling,simple stratified sampling,and adaptive data sampling,the accuracy of sampling is compared.Data samples should preserve the synopsis of all data.Consider the mean value and median value, experiments are made to make a comparison between these three data samplings,as shown in Fig.3 and Fig.4.

    The PM2.5 data set contains 41,757 data records.The three sampling mechanism is used to sample data at different scales,from 100 samples to 1000 samples.As we can see from the experiment result,the adaptive data sampling could get a more accurate synopsis of the PM2.5 data set.

    6 Conclusion

    In the evolution of different stages, the status of process object is not stable.Data should be sampled from incoming streams for modeling.In this paper, we attempt to propose a adaptive data sampling mechanism.Although experimental results are effective, some future work,such as the role of entity and association among entities,is also needed.

    Figure 4: Median Value Evaluation.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China (No.61472232), Natural Science Foundation of Shandong Province of China (No.ZR2017BF016), and the Science and Technology Program of University of Jinan (No.XKY1623).

    亚洲精品乱久久久久久| 精品熟女少妇av免费看| 一二三四中文在线观看免费高清| 亚洲国产毛片av蜜桃av| 欧美 日韩 精品 国产| 国产精品久久久久久精品古装| 欧美xxxx黑人xx丫x性爽| 人妻系列 视频| 久久精品久久久久久久性| 精品亚洲成国产av| 国产伦精品一区二区三区四那| 91狼人影院| 亚洲第一区二区三区不卡| 久久99热这里只有精品18| 亚洲美女视频黄频| 亚洲欧美一区二区三区黑人 | 永久免费av网站大全| 又大又黄又爽视频免费| 我要看日韩黄色一级片| 国产片特级美女逼逼视频| 免费看日本二区| 午夜免费观看性视频| 国产一区二区三区综合在线观看 | 国产成人aa在线观看| 久久精品国产a三级三级三级| 亚洲三级黄色毛片| 三级国产精品欧美在线观看| 黑人高潮一二区| 日本爱情动作片www.在线观看| 精品一区二区三区视频在线| 亚洲熟女精品中文字幕| 一边亲一边摸免费视频| 色婷婷久久久亚洲欧美| 亚洲精品国产av蜜桃| 久久毛片免费看一区二区三区| 日本黄大片高清| 亚洲伊人久久精品综合| 在线观看免费高清a一片| 欧美日韩在线观看h| 婷婷色综合大香蕉| 国产综合精华液| 国产精品久久久久久精品电影小说 | 街头女战士在线观看网站| 日日撸夜夜添| 中文字幕精品免费在线观看视频 | 日韩不卡一区二区三区视频在线| 国产av国产精品国产| videossex国产| 26uuu在线亚洲综合色| 久久久久久久久久成人| 国产亚洲一区二区精品| 人妻少妇偷人精品九色| 80岁老熟妇乱子伦牲交| 中文天堂在线官网| 午夜激情久久久久久久| 精品一区二区三区视频在线| 日韩一区二区三区影片| av国产精品久久久久影院| 亚洲国产色片| 91在线精品国自产拍蜜月| 超碰av人人做人人爽久久| 国产精品99久久99久久久不卡 | 欧美一级a爱片免费观看看| 成年免费大片在线观看| 春色校园在线视频观看| 丰满少妇做爰视频| 国产亚洲最大av| 久久久久精品久久久久真实原创| 欧美日韩视频高清一区二区三区二| 在线免费观看不下载黄p国产| 国产色爽女视频免费观看| 中国美白少妇内射xxxbb| 国产成人精品久久久久久| 亚洲在久久综合| 只有这里有精品99| 免费大片18禁| 亚洲国产成人一精品久久久| 国产av精品麻豆| 99热国产这里只有精品6| 欧美一区二区亚洲| 中文字幕免费在线视频6| 久久av网站| 蜜臀久久99精品久久宅男| 日本猛色少妇xxxxx猛交久久| 中文字幕精品免费在线观看视频 | 精品午夜福利在线看| 一区二区三区乱码不卡18| 纯流量卡能插随身wifi吗| 伦精品一区二区三区| 午夜日本视频在线| 欧美性感艳星| 国产爽快片一区二区三区| 日韩,欧美,国产一区二区三区| 中文欧美无线码| 亚洲国产精品一区三区| 中文字幕制服av| 中国美白少妇内射xxxbb| 在线观看免费日韩欧美大片 | 黑人高潮一二区| 亚洲精品国产av成人精品| 亚洲不卡免费看| 亚洲成色77777| 美女主播在线视频| 好男人视频免费观看在线| 黄色欧美视频在线观看| 99精国产麻豆久久婷婷| 大码成人一级视频| 狂野欧美激情性bbbbbb| 国产又色又爽无遮挡免| 欧美日韩在线观看h| 久久青草综合色| 纯流量卡能插随身wifi吗| 国产一区二区三区综合在线观看 | 精品亚洲乱码少妇综合久久| 男女免费视频国产| a级毛片免费高清观看在线播放| 国产成人aa在线观看| 国产午夜精品一二区理论片| 男的添女的下面高潮视频| 日韩不卡一区二区三区视频在线| 免费观看的影片在线观看| tube8黄色片| 午夜免费观看性视频| 国产伦理片在线播放av一区| 91狼人影院| 亚洲精华国产精华液的使用体验| tube8黄色片| 中文字幕制服av| 国产片特级美女逼逼视频| 久久毛片免费看一区二区三区| 人妻一区二区av| 人体艺术视频欧美日本| 欧美精品一区二区大全| 在线免费观看不下载黄p国产| 狂野欧美白嫩少妇大欣赏| 免费黄频网站在线观看国产| 国产伦理片在线播放av一区| 天堂中文最新版在线下载| 国产午夜精品久久久久久一区二区三区| 亚洲综合色惰| 91久久精品国产一区二区三区| 视频中文字幕在线观看| 在线免费观看不下载黄p国产| 黄色欧美视频在线观看| 免费看光身美女| 国产免费福利视频在线观看| 亚洲欧美成人综合另类久久久| 国产视频首页在线观看| 国产精品久久久久久av不卡| 99久国产av精品国产电影| 国产v大片淫在线免费观看| 亚洲av成人精品一区久久| 亚洲国产精品999| 国产av码专区亚洲av| 亚洲真实伦在线观看| 看非洲黑人一级黄片| 高清av免费在线| 久久6这里有精品| 熟女人妻精品中文字幕| 日日啪夜夜爽| 国产伦理片在线播放av一区| 日本-黄色视频高清免费观看| 亚洲一区二区三区欧美精品| 精品一区二区免费观看| 99久久中文字幕三级久久日本| 久久6这里有精品| 亚洲精品乱码久久久v下载方式| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频 | 久久久色成人| av线在线观看网站| 国产精品99久久久久久久久| 日日撸夜夜添| 日韩一区二区三区影片| 三级经典国产精品| 国产成人精品婷婷| 亚洲精品456在线播放app| 少妇高潮的动态图| xxx大片免费视频| 国产中年淑女户外野战色| 国产成人精品福利久久| 日本猛色少妇xxxxx猛交久久| 青春草国产在线视频| 欧美人与善性xxx| 国产一区二区三区av在线| 国模一区二区三区四区视频| 少妇的逼水好多| 久久国产乱子免费精品| 卡戴珊不雅视频在线播放| 国产爽快片一区二区三区| 亚洲av日韩在线播放| 噜噜噜噜噜久久久久久91| 美女高潮的动态| 大陆偷拍与自拍| 亚洲精品国产成人久久av| 高清毛片免费看| av在线蜜桃| 伦理电影免费视频| av在线app专区| 亚洲精品久久久久久婷婷小说| 国产免费视频播放在线视频| av视频免费观看在线观看| 男女下面进入的视频免费午夜| 2021少妇久久久久久久久久久| 色5月婷婷丁香| 深夜a级毛片| 高清不卡的av网站| 如何舔出高潮| 不卡视频在线观看欧美| 两个人的视频大全免费| av免费在线看不卡| 毛片女人毛片| 国产精品麻豆人妻色哟哟久久| 波野结衣二区三区在线| 日韩av免费高清视频| 香蕉精品网在线| 夜夜看夜夜爽夜夜摸| av一本久久久久| 亚洲av不卡在线观看| 欧美精品一区二区大全| 男男h啪啪无遮挡| h视频一区二区三区| 在线观看一区二区三区| 久久久久性生活片| 边亲边吃奶的免费视频| 毛片一级片免费看久久久久| 亚洲国产精品999| 18禁裸乳无遮挡动漫免费视频| 久久精品久久久久久久性| 欧美区成人在线视频| 欧美一区二区亚洲| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久影院| 嘟嘟电影网在线观看| 欧美xxⅹ黑人| 日本爱情动作片www.在线观看| 中文字幕久久专区| 欧美日韩精品成人综合77777| 麻豆成人午夜福利视频| 精品国产露脸久久av麻豆| 一本色道久久久久久精品综合| 黄色视频在线播放观看不卡| 18禁动态无遮挡网站| 嫩草影院新地址| 久久久久久久大尺度免费视频| 91狼人影院| 婷婷色综合大香蕉| 国产在视频线精品| 国产欧美日韩精品一区二区| 久久99精品国语久久久| 日本av手机在线免费观看| 国产精品久久久久久久久免| 国产欧美亚洲国产| 久久99热这里只有精品18| 免费观看的影片在线观看| 成人美女网站在线观看视频| 欧美最新免费一区二区三区| 美女主播在线视频| 色5月婷婷丁香| 午夜福利高清视频| 夫妻午夜视频| 少妇熟女欧美另类| h视频一区二区三区| 亚洲av日韩在线播放| 日本wwww免费看| 欧美日韩国产mv在线观看视频 | 1000部很黄的大片| 国产精品人妻久久久影院| 五月天丁香电影| 99久久精品一区二区三区| 蜜臀久久99精品久久宅男| 2021少妇久久久久久久久久久| 亚洲最大成人中文| 亚洲av电影在线观看一区二区三区| 在线观看人妻少妇| 亚洲伊人久久精品综合| 99热这里只有精品一区| 亚洲欧美精品专区久久| 最近2019中文字幕mv第一页| 欧美日韩一区二区视频在线观看视频在线| 国产成人a∨麻豆精品| 色5月婷婷丁香| 自拍欧美九色日韩亚洲蝌蚪91 | 久久鲁丝午夜福利片| 亚洲内射少妇av| 老师上课跳d突然被开到最大视频| 国产一区二区三区av在线| 高清欧美精品videossex| 久久国产精品男人的天堂亚洲 | 国产高潮美女av| 男人狂女人下面高潮的视频| 亚洲成人手机| 欧美日韩视频精品一区| 国产综合精华液| 又大又黄又爽视频免费| 国产老妇伦熟女老妇高清| 久久久精品免费免费高清| 精品国产露脸久久av麻豆| 中文天堂在线官网| 国产综合精华液| 国产精品久久久久久久久免| 日韩成人伦理影院| 亚洲熟女精品中文字幕| 午夜老司机福利剧场| 在线精品无人区一区二区三 | 国产精品99久久99久久久不卡 | 日韩视频在线欧美| 老女人水多毛片| 少妇精品久久久久久久| av线在线观看网站| 一个人免费看片子| 免费少妇av软件| 青春草国产在线视频| 亚洲不卡免费看| 另类亚洲欧美激情| 国产精品一区二区性色av| 中文字幕av成人在线电影| 亚洲精品视频女| 国产精品秋霞免费鲁丝片| 亚洲精品国产色婷婷电影| 一级片'在线观看视频| av福利片在线观看| 视频区图区小说| 毛片一级片免费看久久久久| 久久国产精品男人的天堂亚洲 | 成人国产av品久久久| 久久韩国三级中文字幕| 久久久久久久亚洲中文字幕| 国产伦精品一区二区三区视频9| 亚洲国产色片| 黄色一级大片看看| 一区二区三区四区激情视频| 亚洲丝袜综合中文字幕| 日韩伦理黄色片| 国产精品久久久久久精品电影小说 | 免费黄色在线免费观看| 亚洲av二区三区四区| 啦啦啦在线观看免费高清www| 色婷婷久久久亚洲欧美| 亚洲国产高清在线一区二区三| 国产精品一区二区在线不卡| 狠狠精品人妻久久久久久综合| 国产高潮美女av| 国产精品不卡视频一区二区| 久久99热这里只有精品18| 国产精品久久久久久精品电影小说 | 精品视频人人做人人爽| 天堂8中文在线网| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲成人手机| 欧美人与善性xxx| 久久久久久久久久人人人人人人| 少妇的逼好多水| 日本黄色片子视频| 国产免费福利视频在线观看| 亚洲色图综合在线观看| 国产久久久一区二区三区| 看非洲黑人一级黄片| 人妻少妇偷人精品九色| 波野结衣二区三区在线| 久久国产亚洲av麻豆专区| 80岁老熟妇乱子伦牲交| 十分钟在线观看高清视频www | 亚洲内射少妇av| 香蕉精品网在线| 男女啪啪激烈高潮av片| 丰满少妇做爰视频| 99国产精品免费福利视频| 成人18禁高潮啪啪吃奶动态图 | 日韩,欧美,国产一区二区三区| 最新中文字幕久久久久| 亚洲av综合色区一区| 欧美精品一区二区免费开放| 精品人妻熟女av久视频| 看十八女毛片水多多多| 免费观看性生交大片5| 成人午夜精彩视频在线观看| 97超视频在线观看视频| 亚洲三级黄色毛片| 精品一区二区免费观看| 亚洲国产成人一精品久久久| 日韩伦理黄色片| 久久精品久久久久久久性| 男的添女的下面高潮视频| 国内精品宾馆在线| 网址你懂的国产日韩在线| 精品久久国产蜜桃| 成人午夜精彩视频在线观看| 青春草亚洲视频在线观看| 免费看不卡的av| 亚洲精品色激情综合| 国产高清三级在线| 亚洲精品日韩av片在线观看| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 色婷婷久久久亚洲欧美| 国产成人精品福利久久| 美女xxoo啪啪120秒动态图| 最近最新中文字幕大全电影3| 久久久久久久久大av| 国产69精品久久久久777片| 高清黄色对白视频在线免费看 | 中国国产av一级| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| a级一级毛片免费在线观看| 97超视频在线观看视频| 久久精品国产a三级三级三级| 男女边摸边吃奶| 亚洲精品成人av观看孕妇| 夜夜看夜夜爽夜夜摸| 久久韩国三级中文字幕| 内射极品少妇av片p| 激情 狠狠 欧美| 大又大粗又爽又黄少妇毛片口| 九九久久精品国产亚洲av麻豆| 99久久人妻综合| av免费观看日本| 久久99热6这里只有精品| 国产精品无大码| 99热6这里只有精品| 人妻夜夜爽99麻豆av| 女人十人毛片免费观看3o分钟| 97超碰精品成人国产| 精品久久国产蜜桃| 色5月婷婷丁香| 狂野欧美激情性xxxx在线观看| 美女中出高潮动态图| 黑人猛操日本美女一级片| 久久婷婷青草| xxx大片免费视频| 美女中出高潮动态图| 777米奇影视久久| 中文在线观看免费www的网站| 亚洲精品乱久久久久久| 免费黄频网站在线观看国产| 精品一区二区免费观看| 国产日韩欧美在线精品| av又黄又爽大尺度在线免费看| 97在线人人人人妻| 18禁裸乳无遮挡动漫免费视频| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 日韩中字成人| 国产精品蜜桃在线观看| 99久久精品热视频| 国产91av在线免费观看| 最近中文字幕2019免费版| 久久久久久久久大av| 一区二区三区乱码不卡18| 久久这里有精品视频免费| 亚洲av国产av综合av卡| 超碰av人人做人人爽久久| 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区成人| 日韩国内少妇激情av| 最近最新中文字幕免费大全7| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 一边亲一边摸免费视频| 亚洲精品久久久久久婷婷小说| 国产亚洲最大av| 亚洲成人一二三区av| 国产成人精品福利久久| 只有这里有精品99| 在现免费观看毛片| 超碰97精品在线观看| 久久人妻熟女aⅴ| 日本欧美国产在线视频| 寂寞人妻少妇视频99o| 嫩草影院入口| 精品酒店卫生间| 久久青草综合色| 中文资源天堂在线| 久久久久久久精品精品| 大香蕉久久网| 男女边吃奶边做爰视频| 高清毛片免费看| 国产成人精品久久久久久| 啦啦啦中文免费视频观看日本| 国产免费又黄又爽又色| 国产精品无大码| 黄色怎么调成土黄色| 欧美一级a爱片免费观看看| 亚洲精品日韩av片在线观看| 99久久综合免费| 国产 一区 欧美 日韩| 看十八女毛片水多多多| 各种免费的搞黄视频| 我要看黄色一级片免费的| 18+在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 性色avwww在线观看| 欧美日本视频| 日本与韩国留学比较| 国产黄色视频一区二区在线观看| 亚洲激情五月婷婷啪啪| 三级国产精品片| 99热国产这里只有精品6| 精品99又大又爽又粗少妇毛片| 日韩精品有码人妻一区| 精品一品国产午夜福利视频| 亚洲国产欧美人成| 91精品一卡2卡3卡4卡| av卡一久久| 精品国产露脸久久av麻豆| 国产精品久久久久成人av| 成年美女黄网站色视频大全免费 | 看免费成人av毛片| 天堂8中文在线网| 久久婷婷青草| 18禁在线播放成人免费| 性高湖久久久久久久久免费观看| 一本久久精品| 欧美xxⅹ黑人| 日本黄色片子视频| 成人国产麻豆网| 国产乱来视频区| 日韩一本色道免费dvd| a 毛片基地| 亚洲精品视频女| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 欧美97在线视频| 天堂8中文在线网| 国产伦在线观看视频一区| 免费观看a级毛片全部| 久久久久视频综合| 一级二级三级毛片免费看| 99久久人妻综合| 久久99精品国语久久久| 久久6这里有精品| 久久精品熟女亚洲av麻豆精品| 成人国产麻豆网| 性色av一级| 黑丝袜美女国产一区| 成人18禁高潮啪啪吃奶动态图 | 蜜桃在线观看..| 99九九线精品视频在线观看视频| a级一级毛片免费在线观看| 在线观看免费高清a一片| 成人亚洲精品一区在线观看 | 国产亚洲欧美精品永久| 国产伦理片在线播放av一区| 久久久国产一区二区| 男人和女人高潮做爰伦理| 夫妻性生交免费视频一级片| xxx大片免费视频| 亚洲av不卡在线观看| 我的老师免费观看完整版| 舔av片在线| 免费看日本二区| 国产永久视频网站| 婷婷色综合www| 蜜桃久久精品国产亚洲av| 亚洲精品日韩av片在线观看| 亚洲不卡免费看| 日韩大片免费观看网站| 91狼人影院| 亚洲av免费高清在线观看| 欧美日韩精品成人综合77777| 亚洲丝袜综合中文字幕| 国产片特级美女逼逼视频| 精品国产乱码久久久久久小说| 大又大粗又爽又黄少妇毛片口| 91久久精品国产一区二区成人| 男女啪啪激烈高潮av片| 中文字幕人妻熟人妻熟丝袜美| 久久ye,这里只有精品| av网站免费在线观看视频| 免费看av在线观看网站| 国产高潮美女av| 精品99又大又爽又粗少妇毛片| 亚洲自偷自拍三级| 久久av网站| 成人无遮挡网站| 国产免费福利视频在线观看| 午夜精品国产一区二区电影| 色吧在线观看| 国产色婷婷99| av卡一久久| 欧美精品人与动牲交sv欧美| 久久久久久人妻| 亚洲国产av新网站| 久久久久久人妻| 九色成人免费人妻av| 久久av网站| 国产免费视频播放在线视频| 久久热精品热| 久久久久精品性色| 成人毛片60女人毛片免费| 午夜激情福利司机影院| 91久久精品电影网| 久久精品国产鲁丝片午夜精品| 色哟哟·www| 免费av不卡在线播放| 日本一二三区视频观看| 91久久精品电影网| 丝瓜视频免费看黄片| 一本色道久久久久久精品综合| 久久亚洲国产成人精品v| 久久午夜福利片| 国产伦在线观看视频一区| 国模一区二区三区四区视频| 亚洲电影在线观看av| 中文乱码字字幕精品一区二区三区| 日日啪夜夜撸| 国产色婷婷99| 久久久久久久精品精品| 日韩av在线免费看完整版不卡| 18禁动态无遮挡网站|