• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Super-Resolution Reconstruction of Images Based on Microarray Camera

    2019-07-18 01:59:28JianchengZouZhengzhengLiZhijunGuoandDonHong
    Computers Materials&Continua 2019年7期

    Jiancheng Zou , Zhengzheng Li Zhijun Guo and Don Hong

    Abstract: In the field of images and imaging, super-resolution (SR) reconstruction of images is a technique that converts one or more low-resolution (LR) images into a highresolution (HR) image.The classical two types of SR methods are mainly based on applying a single image or multiple images captured by a single camera.Microarray camera has the characteristics of small size, multi views, and the possibility of applying to portable devices.It has become a research hotspot in image processing.In this paper, we propose a SR reconstruction of images based on a microarray camera for sharpening and registration processing of array images.The array images are interpolated to obtain a HR image initially followed by a convolution neural network (CNN) procedure for enhancement.The convolution layers of our convolution neural network are 33× or 11× layers, of which the 11× layers are used to improve the network performance particularly.A bottleneck structure is applied to reduce the parameter numbers of the nonlinear mapping and to improve the nonlinear capability of the whole network.Finally, we use a 3× 3 deconvolution layer to significantly reduce the number of parameters compared to the deconvolution layer of FSRCNN-s.The experiments show that the proposed method can not only ameliorate effectively the texture quality of the target image based on the array images information, but also further enhance the quality of the initial high resolution image by the improved CNN.

    Keywords: Super-resolution reconstruction, microarray camera, convolution neural network.

    1 Introduction

    Super-resolution (SR) reconstruction is an image processing technique that converts one or more low-resolution (LR) images into high-resolution (HR) images.SR reconstruction of images has always been a hot topic in the field of image processing.Harris-Goodman spectrum extrapolation method [Harris (1964)], which realized SR in practical applications, became of great interest in SR research.Subsequently, Kim et al.[Kim and Su (1993)] extended the observation model and Gerchberg [Gerchberg (1974)] presented a SR method for continuous energy decline setting.Wadaka et al.[Wadaka and Sato (1975)] proposed a superimposed sinusoidal template method.Nevertheless, the abovementioned methods were used to obtain HR images from a single image in the frequency domain and the effects were not satisfactory.Until 1980, in order to solve the problem of low resolution in remote sensing image processing, Huang et al.[Huang and Tsai (1981)] first used multi-frame image sequences for SR reconstruction and got significant improvements.In 1986, Park et al.[Park, Min and Kang (2003)] proposed the maximum likelihood restoration method (Poisson-ML) based on Poisson distribution.Irani et al.[Irani and Peleg (1991)] developed a method to enhance resolution by image registration.Lecun et al.[Lecun, Bottou and Bengio (1998)] applied gradient-based learning for character recognition.Furthermore, Freeman et al.[Freeman, Jones and Pasztor (2002)] suggested sample-based SR reconstruction and Glasner et al.[Glasner, Bagon and Irani (2009)] combined traditional multi-image SR reconstruction with sample-based SR reconstruction.

    With the development of deep learning, SR reconstruction technology has made breakthroughs.Krizhevshy et al.[Krizhevshy, Sutskever and Hinton (2012)] successfully classified images using deep convolution neural network (CNN).Meng et al.[Meng, Steven, Wang et al.(2018)] proposed a fusion steganographic algorithm based on faster regions with CNN features (Faster R-CNN).Cui et al.[Cui, Chang and Shan (2014)] presented deep network cascade (DNC) using small-scale parameters of each layer to enhance the resolution of images layer by layer.Osendorfer et al.[Osendorfer, Soyer and Smagt (2014)] proposed deconvolution network which learns the nonlinear mapping from LR space to HR space, and ultimately achieves the goal of improving the resolution.Dong et al.[Dong, Chen and He (2014); Dong, Chen and Tang (2016)] suggested that convolution neural network can be applied to SR reconstruction to generate HR image from a single LR image faster (SRCNN and FSRCNN-s).The reconstruction effect of this method is remarkable, but it cannot eliminate the noises in the LR image.

    There is a way to improve the performance of SR using array images captured simultaneously by cameras.In recent years, binocular camera mode became popular.The main purpose of this camera is to imitate a few of the binocular visual characteristics of the human eye, and the camera will be adjusted to distance measurement and depth information acquisition.The array camera is usually composed of multiple lenses.The main difference from binocular lenses is that the array camera intends to mimic some of the visual features of the insect compound eye.This requires multiple cameras to be arrayed into an array form.

    Currently, Stanford University, Pelican, Microsoft and other companies have invested in research on array cameras.Among them, Pelican introduced an array camera named PiCam [Kartik, Dan, Andrew et al.(2013)].The camera is composed of sixteen sublenses arranged in 44× planes with the characteristics of ultra-thin thickness and high performance.Pelican has achieved good results in depth maps and SR reconstruction using array cameras.They use the disparity relationship between multi-scene images to obtain the depth map of the scene, and then use the depth information of the depth map to further synthesize high-quality HR images.In addition, Wilburn et al.[Wilburn, Joshi and Vaish (2004)] put forward a method of high-speed video capture using array cameras.By increasing the number of lens in array camera, the target of acquiring thousands of frames per second can be achieved.The array images used in this paper are captured by a microarray camera produced by ourselves.Unlike the array lenses produced by pelican, our array camera can output color images, which effectively cuts down the disadvantage of light and motion led by time delays and guarantees the efficiency of image registration.The space of the device in exchange for the advantages of the time, improve the speed and effectiveness of registration.

    In this paper, we present a novel method of SR reconstruction of images based on microarray camera.First, array images from a microarray camera are performed in sharpening of the array images to enrich the texture details of the images.Then, the initial HR image is obtained by registration and interpolation of the array images.Finally, we propose an improved convolution neural network and use the network to reconstruct the initial HR image.Experiments show that the resolution and quality of the image are improved significantly.

    2 3×3 microarray camera

    In this section, a microarray camera is used for image acquisition.The 33× microarray camera is composed of nine micro-lenses arranged in a certain way as shown in Fig.1.Compared with traditional cameras, this kind of array camera has the advantages of smaller size and more lenses, so the collected images have richer information.The microarray camera is about a dime in size as a whole and can capture nine different views of the same scene synchronously.

    Figure 1: Microarray camera for this paper.(a) The overall structure of the array camera.(b) The number of lens in microarray camera

    In this paper, the image captured by Lens 5 is taken as the reference image.It has the most common areas with those images captured by the other lenses.In the case of low illumination, the camera is susceptible to illumination, resulting in noise on the captured images as shown in Fig.2.The local detail of the reference image is displayed to show the noise effect as shown in Fig.3.

    Figure 2: Array images captured by microarray camera

    Figure 3: The local detail of the array image

    3 Proposed method

    3.1 Sharpening of the array images

    Before the registration of nine array images, the geometric local adaptive sharpening (GLAS) is processed.The equation of GLAS [Zhu and Milanfar (2011)] is:

    where Y(x) is a low resolution image affected by noise and blur, and the S represents the kernel of GLAS.

    We can see that the texture information is more abundant after the sharpening of the array images as shown in Fig.4.

    Figure 4: Comparison of local details in images.(a) The reference image.(b) The reference image after sharpening

    3.2 Registration and fusion

    In this section, the other eight images are registered with the reference image respectively.We use multi-scale feature matching method [Sorgi] to detect the feature points of array images.In the scale space of this method, the image of each layer is generated by the blurring of the upper layer.In general, the Gauss function is used to convolve the image of the previous layer to get the next layer result.

    where Yl( x,y) is the image of layer l, and gδγ( x,y) refers to the filtering window with standard deviation of δ .

    In this paper, the multi-scale feature matching method is used to block the registration between the array images and the reference image.Because the parallax between each image and the reference image is small, the use of block registration can reduce the mismatching phenomenon.

    The difference between the left-top image and the center image in the fused image is expressed in purple and green respectively.From the fusion image without registration as shown in Fig.5(a), we can see that the disparity of the sphere is obvious.After registration, the fused image no longer appears double image as shown in Fig.5(b), that is, the disparity offset decreases.Therefore, this method can effectively reduce the disparity shift between the other eight images and the reference image.

    Figure 5: The comparison of fusion process.(a) The fusion result without registration of the left-top image and the center image in Fig.2(b) The fusion result with registration of the left-top image and the center image in Fig.2

    3.3 Interpolation

    Interpolation processing is carried out on the registered array images, and additional information between images is used to enrich the texture information of the reference image.By this method, an initial HR image which has more texture details than the original image as shown in Fig.6 can be generated.

    To illustrate the improvement of interpolation, we use mean, standard deviation, smoothness and entropy to measure the difference between the reference image and interpolated image.Mean and standard deviation indicate the change of brightness and darkness of the image.Smoothness and entropy represent the smoothness and texture roughness of the image respectively.The smoother the image is, the smoothness tends to be 0; the higher the texture roughness is, the greater the entropy value is.

    Table 1: Local texture contrast between the reference image and interpolated image

    As shown in Tab.1, the brightness of the image after interpolation is slightly darker than that of the reference image.Smoothness and entropy enhancement indicate that the roughness of image texture is increased.Therefore, interpolation can effectively improve the texture details of images.

    Figure 6: Comparison between the reference image and the interpolated image.(a) The reference image captured by Lens 5.(b) Interpolation result by nine array images.(c) Local details of (a).(d) Local details of (b)

    3.4 Improved convolutional neural network

    In this section, an improved convolution neural network is proposed which can achieve good results of magnification.The network has nine layers which can be divided into five main parts: feature extraction, size shrinkage, nonlinear mapping, dimension recovery, and deconvolution amplification.

    The first eight layers of the network use convolution layers for feature information processing, and the last layer uses deconvolution layer for image enlargement.All the step values of the convolution layer are set to 1, while the step size of the deconvolution is set to 3.The method in this section is consistent with FSRCNN-s in the selection of activation function: in order to avoid the “feature loss” problem caused by ReLU, PReLU is selected as activation function after each convolution layer.PReLU can be expressed as:

    Where xibe the input of the activation function on the i channel, and aiis the coefficient on negative half axis.

    In feature extraction of the input images, we apply a 3× 3 convolution layer to the network and obtain the feature information of LR image block through this layer.Because the 3× 3 size of this layer is smaller than that 5× 5 size of the first layer in FSRCNN-s, the first layer of this method has fewer network complexity parameters.And Conv1(1,3,1,0,30) is represented as the first layer.

    We use the second convolution layer to reduce the dimension of feature extraction: the 3× 3 convolution layer reduces the dimension of vector feature information of LR image from 30 to 6.This layer is used Conv2(30,3,1,0,6) for presentation.After second layer, a 1× 1 convolution layer is added to the convolution neural network.Although the nonlinear capacity of the network will promote as the number of convolution layers increases (i.e., the number of activation functions), arbitrary addition of convolution layers will lead to the difficulty of convergence.At the same time, this will also lead to the complexity of the reconstruction process.In order to avoid the problem of increasing network complexity and keep the spatial dimension of feature information unchanged as much as possible [Lin, Chen and Yan (2015)], we need to select smaller convolution layers, such as 11× convolution layer which only improves 166 ×× for the complexity of the overall convolution network.This layer is called Conv3(6,1,1,0,6).

    In the nonlinear mapping, we use the “bottleneck” [He, Zhang and Ren (2015)] construction structure (three-tier stacking structure) to promote the nonlinear capacity of the network to construct complex functions.The “bottleneck” construction structure can be broken down into three parts: 11× , 33× , 11× three convolution layers.Among them, the second level output dimension of “bottleneck” construction structure is reduced by half than that of the previous level.These three layers can reduce feature dimension, transform feature information and restore feature dimension respectively.It should be noted that the filling values of the two 11× convolution layers are both set to 1, so the width and height of the generated image blocks will be expanded after the fourth and the sixth "bottleneck" structures are constructed.The three layers are represented by using Conv4(6,1,1,1,3), Conv5(3,3,1,0,3), and Conv3(3,1,1,1,6), respectively.

    The structure and function of the seventh layer are similar to those of the third layer.The purpose of this layer is to increase the nonlinear capacity of the network through the 1× 1convolution layer.The eighth layer of the network is for dimension recovery.The 3× 3layer restores the image feature information dimension of the previous layers from 6 to 30.The two layers are expressed as Conv7(6,1,1,0,6), Conv8(6,3,1,0,30).

    The last layer uses the deconvolution layer to magnify the image feature information and generate the corresponding HR image.The layer is used Deconv9(30,3,3,1,1) for presentation.Because this layer uses a 33× deconvolution layer instead of 99× deconvolution layer in FSRCNN-s, the main parameters of network complexity in this layer are greatly reduced:

    4 Experimental results

    4.1 Convolution neural network configuration and training

    In order to prove the superiority of the convolutional neural network proposed in this paper, the same data set as FSRCNN-s is used for network training in experimental comparison.In this section, 91-image and General-100 image data sets are used as training images, and Set5 data sets are selected as test images.Furthermore, the above training images are enhanced by scaling and rotating the images in data sets as shown in Fig.7.

    Figure 7: Data enhancement is done in two ways.(a) The original image is scaled in 0.6, 0.7, 0.8, 0.9 ratio.(b) The original image rotates at 90 degrees, 180 degrees and 270 degrees

    After the data enhancement process of training images, the grayscale images of these images are taken as original HR images.After that, the original HR gray-scale images are scaled 2 or 3 times, and then the size is restored by bi-cubic interpolation method.We use these restored images with obvious texture blurring as LR images.Finally, the LR and the original HR images are segmented by 102/192and 72/192ratio respectively under the conditions of double and triple enlargement.

    The method of training convolution neural network is Caffe [Jia, Yang and Shelhamer (2014)].The deconvolution layer initialization is set to Gauss type and 0.001 standard deviation value.When training convolution neural network [He, Zhang and Ren (2015)], only 91-image data sets are used for training.The initial learning rate of convolution layer is set to 0.001, and that of deconvolution layer is set to 0.0001.When the network is nearly saturated, 91-image and General-100 enhanced data sets are used as training data.At this point, we need to change the learning rate of convolution layer to 0.0005 and the deconvolution layer to 0.00005.

    Figure 8: With the increase of iteration times, the change of average PSNR.(a) Set5 data sets as test images.(b) Set14 data sets as test images

    In the initial stage of training convolution neural network with three times amplification condition, only 91-image data set is used for training.When the number of iterations reaches 2 million, PSNR grows slowly and shows a smooth trend.After that, the training data sets are replaced by 91-image and General-100 enhanced data sets.The PSNR values of Set5 and Set14 test images show a short-term sharp increase.After that, the PSNR values gradually promote with the increase of iteration times until they approach the smooth state again.

    4.2 Convolution neural network reconstruction experiment

    In this section, Set5, Set14 and array images were reconstructed with bi-cubic interpolation, SRCNN, FSRCNN-s and improved convolutional neural network respectively.The performance of the above four reconstruction algorithms is evaluated by PSNR index.We compared the average reconstruction time of SRCNN, FSRCNN-s and convolutional neural network proposed in this paper as shown in Tab.2.

    The computer used in this experiment is 64 bits, with the Intel Core i5-4590 3.30GHz processor and the 4GB memory.

    The size of the array images is 1200×1600, so the number of pixels is close to 2 million in each image.Then the convolution neural network reconstruction method is used to reconstruct the array images, which generates approximately 18 million pixels of each HR image, and verifies that the resolution of HR images has been improved to a certain extent.From Tab.3, it can be seen that the sharpness and the resolution of LR images acquired by microarray camera are obviously improved after reconstruction by convolution neural network.

    Table 2: The average PSNR values and time of four reconstruction methods

    Table 3: Wedge comparison of LR and HR images

    After reconstructed by the improved convolution neural network method, the edge details of the image are clearer and the blurring phenomenon in the image is obviously reduced as shown in Fig.9.

    Figure 9: Comparison of reconstruction results by two methods.(a) Reconstructed by bicubic interpolation method.(b) Reconstructed by improved convolutional neural network

    4.3 SR reconstruction for interpolation results

    In this section, the array images have been sharpened, registered and interpolated.Then, the interpolated image is reconstructed by using the three-fold magnification model parameters of the improved convolution neural network.The original image captured by Lens 5 is compared with the reconstructed image in detail as shown in Fig.10.

    Figure 10: Comparison of reconstruction results with original in detail.(a) The original image of Lens 5.(b) The final HR image processed by our method

    From Fig.10, we can see that the image edge details after processing by convolution neural network are clearer and richer.The texture details of the sphere are clearer, and the noise is significantly reduced.

    SSIM and PSNR image evaluation standards need to take the original image as a prerequisite to measure the effect of improving the original image.The array images used in this paper cannot be evaluated using SSIM and PSNR because there is no original image.Gray evaluation gradient (GMG) is an effective method to measure the effect in the condition of no original image.The formula is as follows:

    where X(i+1,j),X(i,j),X (i,j+1) are the gray values of the corresponding points of the images, and MN is the size of the images.

    Table 4: The GMG comparison between the original image and the reconstruction result

    5 Conclusion

    In this paper, firstly, we use a microarray camera to capture the scene images, then the array images are sharpened.Afterwards the array images are registered by multi-scale feature registration method, and the initial estimated HR image is obtained by interpolating the additional information in the array images.Finally, an improved convolutional neural network reconstruction algorithm is proposed and used to further enhance the quality of the initial estimated HR image.Experiments show that the proposed method is effective.

    Acknowledgement:The work of this paper is supported by the National Natural Science Foundation of China under grant numbers 61572038, and the Innovation Project Foundation NCUT.

    References

    Cui, Z.; Chang, H.; Shan, S.(2014): Deep network cascade for image super-resolution.European Conference on Computer Vision, pp.49-64.

    Dong, C.; Chen, C.L.; He, K.(2014): Learning a deep convolutional network for image super-resolution.European Conference on Computer Vision, pp.184-199.

    Dong, C.; Chen, C.L.; Tang, X.(2016): Accelerating the super-resolution convolutional neural network.European Conference on Computer Vision, pp.391-407.

    Freeman, W.T.; Jones, T.R.; Pasztor, E.C.(2002): Example-based super-resolution.Computer Graphics & Applications, vol.22, no.2, pp.56-65.

    Gerchberg, R.W.(1974): Super-resolution through error energy reduction.Optica Acta: International Journal of Optics, vol.21, no.9, pp.709-720.

    Glasner, D.; Bagon, S.; Irani, M.(2009): Super-resolution from a single image.International Conference on Computer Vision, pp.349-356.

    Harris, J.L.(1964): Diffraction and resolving power.Journal of the Optical Society of America, vol.54, pp.931-933.

    He, K.; Zhang, X.; Ren, S.(2015): Deep residual learning for image recognition.IEEE Computer Society, pp.770-778.

    He, K.; Zhang, X.; Ren, S.(2015): Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification.Proceedings of the IEEE International Conference on Computer Vision, pp.1026-1034.

    Huang, T.S.; Tsai, R.Y.(1981): Image sequence analysis: motion estimation.Image Sequence Analysis, pp.1-18.

    Irani, M.; Peleg, S.(1991): Improving resolution by image registration.Cvgip Graphical Models & Image Processing, vol.53, no.3, pp.231-239.

    Jia, Y.; Shelhamer, E.(2014): Caffe: convolutional architecture for fast feature embedding.ACM International Conference on Multimedia, pp.675-678.

    Kartik, V.; Dan, L.; Andrew, M.; Gabriel, M.; Priyam, C.(2013): PiCam: an ultrathin high performance monolithic camera array.ACM Transactions on Graphics, vol.32, no.6, pp.1-13.

    Kim, S.P.; Su, W.Y.(1993): Recursive high-resolution reconstruction of blurred multiframe images.IEEE Transactions on Image Processing, vol.2, no.4, pp.534-539.

    Krizhevsky, A.; Sutskever, I.; Hinton, G.E.(2012): Image-Net classification with deep convolutional neural networks.International Conference on Neural Information Processing Systems, pp.1097-1105.

    Lecun, Y.; Bottou, L.; Bengio, Y.(1998): Gradient-based learning applied to document recognition.Proceedings of the IEEE, vol.86, no.11, pp.2278-2324.

    Lin, M.; Chen, Q.; Yan, S.(2015): Network in network.Computer Science.

    Meng, R.; Steven G.R.; Wang, J.; Sun, X.(2018): A fusion steganographic algorithm based on Faster R-CNN.Computers, Materials & Continua, vol.55, no.1, pp.1-16.

    Osendorfer, C.; Soyer, H.; Smagt, P.V.D.(2014): Image super-resolution with fast approximate convolutional sparse coding.International Conference on Neural Information Processing, pp.250-257.

    Park, S.C.; Min, K.P.; Kang, M.G.(2003): Super-resolution image reconstruction: a technical overview.IEEE Signal Processing Magazine, vol.20, no.3, pp.21-36.

    Sorgi, L.:Multiscale stereo features matching.Features.

    Wadaka, S.; Sato, T.(1975): Super-resolution in incoherent imaging system.Journal of the Optical Society of America, vol.65, no.3, pp.354-355.

    Wilburn, B.; Joshi, N.; Vaish, V.(2004): High-speed videography using a dense camera array.IEEE Computer Vision and Pattern Recognition, vol.2, pp.294-301.

    Zhu, X.; Milanfar, P.(2011): Restoration for weakly blurred and strongly noisy images.IEEE Workshop on Applications of Computer Vision, pp.103-109.

    国产精品自产拍在线观看55亚洲 | 亚洲第一欧美日韩一区二区三区 | 日韩视频在线欧美| 精品国产一区二区三区久久久樱花| 嫁个100分男人电影在线观看| av网站在线播放免费| 9191精品国产免费久久| 国产高清视频在线播放一区| 国产在线观看jvid| 十八禁高潮呻吟视频| 日韩一卡2卡3卡4卡2021年| 国产精品美女特级片免费视频播放器 | 亚洲午夜理论影院| 国产av国产精品国产| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜添小说| 国精品久久久久久国模美| 天天躁日日躁夜夜躁夜夜| 丝袜美足系列| 怎么达到女性高潮| 91精品国产国语对白视频| 亚洲综合色网址| 成人三级做爰电影| 欧美大码av| 18禁裸乳无遮挡动漫免费视频| 日日摸夜夜添夜夜添小说| 亚洲国产欧美日韩在线播放| 国产精品九九99| 99香蕉大伊视频| 制服人妻中文乱码| 亚洲精品国产区一区二| 大香蕉久久网| 99精品久久久久人妻精品| 精品国产乱子伦一区二区三区| 一级a爱视频在线免费观看| 欧美在线黄色| 18禁美女被吸乳视频| 亚洲伊人久久精品综合| 中文字幕精品免费在线观看视频| 人人妻,人人澡人人爽秒播| 欧美激情极品国产一区二区三区| 久久久精品国产亚洲av高清涩受| 超碰成人久久| av欧美777| 亚洲av日韩在线播放| 日韩大片免费观看网站| 免费日韩欧美在线观看| 国产主播在线观看一区二区| 最新的欧美精品一区二区| 国产精品 欧美亚洲| 国产精品国产高清国产av | 中文字幕人妻丝袜制服| 精品午夜福利视频在线观看一区 | videosex国产| 久久这里只有精品19| 国精品久久久久久国模美| 久久久久久久大尺度免费视频| 99国产精品免费福利视频| 久久性视频一级片| 窝窝影院91人妻| 不卡一级毛片| av有码第一页| 欧美黄色淫秽网站| 9热在线视频观看99| 男女无遮挡免费网站观看| 亚洲精品中文字幕一二三四区 | 黄片小视频在线播放| 亚洲一区二区三区欧美精品| 精品国产乱子伦一区二区三区| 亚洲精品中文字幕在线视频| 欧美日本中文国产一区发布| 成人国产av品久久久| www.999成人在线观看| 久久午夜亚洲精品久久| 日日夜夜操网爽| 久久久久久久大尺度免费视频| 日韩熟女老妇一区二区性免费视频| 欧美日韩一级在线毛片| 香蕉久久夜色| 啦啦啦免费观看视频1| 男女免费视频国产| 国产高清videossex| 亚洲欧美精品综合一区二区三区| 国产精品二区激情视频| 夜夜夜夜夜久久久久| 一区二区三区乱码不卡18| 精品亚洲成国产av| 一级片免费观看大全| 夫妻午夜视频| 黄色 视频免费看| 久久久久精品人妻al黑| aaaaa片日本免费| 国产免费视频播放在线视频| 亚洲欧美精品综合一区二区三区| 欧美精品一区二区免费开放| 交换朋友夫妻互换小说| 亚洲精品自拍成人| 欧美日韩一级在线毛片| 亚洲综合色网址| 黄色视频在线播放观看不卡| 国产欧美亚洲国产| 亚洲免费av在线视频| 无限看片的www在线观看| 午夜福利欧美成人| 中文欧美无线码| 久久人人爽av亚洲精品天堂| 久久婷婷成人综合色麻豆| 女性生殖器流出的白浆| 熟女少妇亚洲综合色aaa.| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 亚洲五月婷婷丁香| 女人爽到高潮嗷嗷叫在线视频| 波多野结衣av一区二区av| 日本a在线网址| 美女扒开内裤让男人捅视频| 婷婷成人精品国产| 51午夜福利影视在线观看| 欧美另类亚洲清纯唯美| 婷婷成人精品国产| 亚洲欧美一区二区三区黑人| √禁漫天堂资源中文www| 久热爱精品视频在线9| 亚洲成人国产一区在线观看| 亚洲国产av影院在线观看| 国产在视频线精品| 欧美黄色片欧美黄色片| 免费不卡黄色视频| 一边摸一边抽搐一进一出视频| 80岁老熟妇乱子伦牲交| 亚洲国产av新网站| 欧美黑人欧美精品刺激| 无人区码免费观看不卡 | 久久久国产精品麻豆| 99热网站在线观看| 亚洲五月色婷婷综合| a级片在线免费高清观看视频| 制服诱惑二区| 老司机亚洲免费影院| 久久精品aⅴ一区二区三区四区| 国产精品偷伦视频观看了| 99国产精品99久久久久| 欧美黑人精品巨大| 国产国语露脸激情在线看| 久久 成人 亚洲| 精品少妇内射三级| 精品国产一区二区三区久久久樱花| 天堂动漫精品| 一夜夜www| 亚洲av欧美aⅴ国产| 久久久国产成人免费| 欧美日韩一级在线毛片| 久久久久久亚洲精品国产蜜桃av| 久久久久视频综合| 高清av免费在线| 亚洲午夜精品一区,二区,三区| 国产一卡二卡三卡精品| 免费不卡黄色视频| 超碰97精品在线观看| 极品教师在线免费播放| 成人18禁高潮啪啪吃奶动态图| 悠悠久久av| 国产精品.久久久| 亚洲成国产人片在线观看| 久久国产精品影院| 黄色视频,在线免费观看| 久久久国产一区二区| 午夜两性在线视频| 国内毛片毛片毛片毛片毛片| 国产精品 欧美亚洲| 欧美日韩亚洲高清精品| 亚洲一码二码三码区别大吗| 久久人人爽av亚洲精品天堂| 美女午夜性视频免费| 超色免费av| 美女福利国产在线| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 搡老熟女国产l中国老女人| 国产欧美日韩精品亚洲av| 国产欧美日韩精品亚洲av| 香蕉国产在线看| 午夜久久久在线观看| 99国产精品99久久久久| 精品人妻熟女毛片av久久网站| 少妇裸体淫交视频免费看高清 | 18禁观看日本| 久久亚洲精品不卡| 肉色欧美久久久久久久蜜桃| 女人精品久久久久毛片| 天天躁日日躁夜夜躁夜夜| 日本vs欧美在线观看视频| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 极品教师在线免费播放| 日本vs欧美在线观看视频| 亚洲 欧美一区二区三区| 成人特级黄色片久久久久久久 | 欧美激情高清一区二区三区| 嫁个100分男人电影在线观看| 国产精品免费大片| 国产精品免费视频内射| 精品亚洲成a人片在线观看| 亚洲,欧美精品.| 精品免费久久久久久久清纯 | 高清在线国产一区| 精品少妇内射三级| 纯流量卡能插随身wifi吗| 亚洲第一青青草原| 一级,二级,三级黄色视频| 日韩中文字幕视频在线看片| 中文字幕高清在线视频| 久久人妻av系列| 丝袜美腿诱惑在线| 精品人妻在线不人妻| 黄片小视频在线播放| 一二三四社区在线视频社区8| 99久久无色码亚洲精品果冻| bbb黄色大片| 亚洲男人的天堂狠狠| 看片在线看免费视频| 成人高潮视频无遮挡免费网站| 熟女电影av网| 国产真人三级小视频在线观看| 国产精品精品国产色婷婷| 精品无人区乱码1区二区| 色综合欧美亚洲国产小说| 国产成人av激情在线播放| 波多野结衣巨乳人妻| 亚洲av片天天在线观看| 日韩精品中文字幕看吧| 亚洲精品一区av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品美女特级片免费视频播放器 | 亚洲一区二区三区不卡视频| 亚洲国产精品999在线| 长腿黑丝高跟| 免费看十八禁软件| 国产视频内射| 91老司机精品| 91九色精品人成在线观看| 曰老女人黄片| 99久久久亚洲精品蜜臀av| 国产欧美日韩一区二区三| 变态另类丝袜制服| 欧美色视频一区免费| 99国产综合亚洲精品| 久久久久九九精品影院| 午夜激情福利司机影院| 久久午夜综合久久蜜桃| 国产精品98久久久久久宅男小说| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区91| 精品日产1卡2卡| 国产av麻豆久久久久久久| 好男人电影高清在线观看| 国产精品,欧美在线| 99精品久久久久人妻精品| 国产成人精品久久二区二区免费| 国产精品亚洲一级av第二区| svipshipincom国产片| 免费看光身美女| 在线视频色国产色| 宅男免费午夜| 一边摸一边抽搐一进一小说| 国产 一区 欧美 日韩| 亚洲 欧美 日韩 在线 免费| 天堂动漫精品| 午夜精品在线福利| 日本一本二区三区精品| 久久久久久九九精品二区国产| 淫秽高清视频在线观看| 午夜精品在线福利| 亚洲欧美日韩高清在线视频| 波多野结衣高清无吗| 偷拍熟女少妇极品色| 亚洲第一欧美日韩一区二区三区| 岛国在线观看网站| 国产一区在线观看成人免费| 嫩草影院入口| 男女那种视频在线观看| 国内精品美女久久久久久| 国产黄a三级三级三级人| 久久这里只有精品19| netflix在线观看网站| 成人三级黄色视频| 国产精品久久视频播放| 两个人看的免费小视频| 91在线观看av| 夜夜夜夜夜久久久久| 精品日产1卡2卡| 国内精品一区二区在线观看| 午夜影院日韩av| 91av网站免费观看| 久久精品国产99精品国产亚洲性色| 真人做人爱边吃奶动态| 全区人妻精品视频| 国产一区二区在线观看日韩 | 久久香蕉精品热| 久久精品aⅴ一区二区三区四区| 国产黄色小视频在线观看| 黄色片一级片一级黄色片| 黑人欧美特级aaaaaa片| 757午夜福利合集在线观看| 久久亚洲精品不卡| 精品熟女少妇八av免费久了| 色老头精品视频在线观看| 97超视频在线观看视频| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看| 久久国产乱子伦精品免费另类| 综合色av麻豆| 久久这里只有精品19| 亚洲国产精品合色在线| 亚洲,欧美精品.| 在线免费观看不下载黄p国产 | 午夜日韩欧美国产| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| 色av中文字幕| 日韩中文字幕欧美一区二区| 亚洲熟妇熟女久久| 特大巨黑吊av在线直播| 白带黄色成豆腐渣| 色播亚洲综合网| 天天一区二区日本电影三级| 精品国产乱码久久久久久男人| 亚洲av片天天在线观看| 九九热线精品视视频播放| 99热精品在线国产| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 黄色女人牲交| 午夜久久久久精精品| 亚洲欧美日韩无卡精品| 禁无遮挡网站| 亚洲最大成人中文| 亚洲 欧美 日韩 在线 免费| 91在线观看av| 国产真人三级小视频在线观看| 欧美乱妇无乱码| 又黄又粗又硬又大视频| 草草在线视频免费看| 99热6这里只有精品| 日本黄色视频三级网站网址| 亚洲18禁久久av| 老司机午夜福利在线观看视频| 成人特级黄色片久久久久久久| 亚洲精品粉嫩美女一区| www国产在线视频色| 精品不卡国产一区二区三区| 最近视频中文字幕2019在线8| 很黄的视频免费| 少妇熟女aⅴ在线视频| 欧美午夜高清在线| 后天国语完整版免费观看| 亚洲一区二区三区不卡视频| 变态另类丝袜制服| 欧美国产日韩亚洲一区| 亚洲美女黄片视频| 丝袜人妻中文字幕| 久久久久性生活片| 中文字幕久久专区| 少妇丰满av| 久9热在线精品视频| 国产精品99久久99久久久不卡| 亚洲中文av在线| 高清在线国产一区| 999久久久国产精品视频| 狠狠狠狠99中文字幕| 人妻丰满熟妇av一区二区三区| av欧美777| 久9热在线精品视频| 婷婷精品国产亚洲av| 村上凉子中文字幕在线| 我要搜黄色片| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 成人亚洲精品av一区二区| 久久久久亚洲av毛片大全| 18禁裸乳无遮挡免费网站照片| 窝窝影院91人妻| 国产欧美日韩一区二区三| 又爽又黄无遮挡网站| 成年女人看的毛片在线观看| 我要搜黄色片| 91老司机精品| 欧美又色又爽又黄视频| 桃红色精品国产亚洲av| 亚洲中文日韩欧美视频| 一区福利在线观看| 国内精品久久久久久久电影| 午夜两性在线视频| 亚洲欧美日韩卡通动漫| 欧美日本视频| 日本精品一区二区三区蜜桃| 色av中文字幕| www.自偷自拍.com| 麻豆av在线久日| 国产精品乱码一区二三区的特点| 亚洲精品粉嫩美女一区| 亚洲av电影不卡..在线观看| 草草在线视频免费看| svipshipincom国产片| 他把我摸到了高潮在线观看| 精品国产乱子伦一区二区三区| 日韩三级视频一区二区三区| 欧美日本视频| 99国产精品一区二区蜜桃av| 婷婷精品国产亚洲av| 丝袜人妻中文字幕| 国产高潮美女av| 99热6这里只有精品| 午夜福利18| 成人三级做爰电影| 国产91精品成人一区二区三区| 亚洲在线自拍视频| 九九热线精品视视频播放| 91九色精品人成在线观看| 亚洲性夜色夜夜综合| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久久电影 | 欧美一级毛片孕妇| 天堂av国产一区二区熟女人妻| 久久久国产欧美日韩av| 国产成人影院久久av| 久久精品亚洲精品国产色婷小说| 1024香蕉在线观看| 国产69精品久久久久777片 | 中国美女看黄片| 国产成人av激情在线播放| 久久这里只有精品中国| 女人被狂操c到高潮| 不卡一级毛片| 夜夜爽天天搞| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲熟妇中文字幕五十中出| 午夜久久久久精精品| 亚洲国产看品久久| 免费在线观看成人毛片| 欧美日韩瑟瑟在线播放| 噜噜噜噜噜久久久久久91| 可以在线观看毛片的网站| 美女高潮喷水抽搐中文字幕| 国产v大片淫在线免费观看| 色在线成人网| 两人在一起打扑克的视频| 国产高清视频在线播放一区| 露出奶头的视频| 1024手机看黄色片| 精品久久久久久成人av| 国产成人系列免费观看| 禁无遮挡网站| 国产精品乱码一区二三区的特点| 18禁美女被吸乳视频| 无限看片的www在线观看| 国产午夜精品久久久久久| 99精品在免费线老司机午夜| 亚洲成人中文字幕在线播放| 三级毛片av免费| 亚洲 国产 在线| 狂野欧美白嫩少妇大欣赏| 国产乱人伦免费视频| а√天堂www在线а√下载| 国产av麻豆久久久久久久| 深夜精品福利| 国内久久婷婷六月综合欲色啪| 18禁美女被吸乳视频| 亚洲欧美日韩高清在线视频| 他把我摸到了高潮在线观看| 免费搜索国产男女视频| bbb黄色大片| 国产亚洲av高清不卡| 亚洲九九香蕉| 国产人伦9x9x在线观看| 国产伦精品一区二区三区视频9 | 国产私拍福利视频在线观看| 97超级碰碰碰精品色视频在线观看| 日本黄色视频三级网站网址| 日韩av在线大香蕉| 亚洲国产欧美网| 免费电影在线观看免费观看| 成人三级做爰电影| 国产野战对白在线观看| bbb黄色大片| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 精品国产乱子伦一区二区三区| 日韩 欧美 亚洲 中文字幕| 成年免费大片在线观看| 国产一级毛片七仙女欲春2| 亚洲欧美一区二区三区黑人| 亚洲专区字幕在线| 久久久成人免费电影| 成人三级做爰电影| 丁香欧美五月| 欧美极品一区二区三区四区| 午夜a级毛片| 日本三级黄在线观看| 色综合亚洲欧美另类图片| 制服人妻中文乱码| 亚洲精品色激情综合| 人妻丰满熟妇av一区二区三区| 老汉色av国产亚洲站长工具| 亚洲 欧美一区二区三区| 亚洲精品国产精品久久久不卡| 国产1区2区3区精品| 午夜福利免费观看在线| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 午夜日韩欧美国产| 免费大片18禁| 成人高潮视频无遮挡免费网站| 69av精品久久久久久| 国产精品亚洲美女久久久| 天堂动漫精品| 欧美一级a爱片免费观看看| 国产精品,欧美在线| 看免费av毛片| 亚洲无线在线观看| 可以在线观看毛片的网站| 国产成年人精品一区二区| 麻豆一二三区av精品| 欧美性猛交╳xxx乱大交人| 精品久久久久久久人妻蜜臀av| 宅男免费午夜| 在线免费观看不下载黄p国产 | 国产精品av视频在线免费观看| 两人在一起打扑克的视频| 99re在线观看精品视频| 亚洲欧美精品综合久久99| 男人舔女人下体高潮全视频| 国产av一区在线观看免费| 色老头精品视频在线观看| 51午夜福利影视在线观看| 亚洲av五月六月丁香网| 18美女黄网站色大片免费观看| 精品一区二区三区视频在线观看免费| 深夜精品福利| 成人一区二区视频在线观看| 亚洲精品美女久久av网站| 精品久久久久久成人av| 亚洲片人在线观看| 中出人妻视频一区二区| 久久精品国产亚洲av香蕉五月| 国内精品久久久久精免费| 十八禁网站免费在线| 麻豆一二三区av精品| 俄罗斯特黄特色一大片| 91九色精品人成在线观看| 国产高清有码在线观看视频| 老司机在亚洲福利影院| 这个男人来自地球电影免费观看| 三级国产精品欧美在线观看 | 婷婷亚洲欧美| 日韩高清综合在线| 动漫黄色视频在线观看| 成人性生交大片免费视频hd| 午夜免费成人在线视频| 国产成人欧美在线观看| 黄色女人牲交| 欧美一级a爱片免费观看看| 久久久久久久午夜电影| 国产免费男女视频| 欧美xxxx黑人xx丫x性爽| 午夜福利高清视频| 黄色片一级片一级黄色片| 人人妻,人人澡人人爽秒播| 色视频www国产| 国产精品av视频在线免费观看| 国产综合懂色| 国产成年人精品一区二区| 91老司机精品| 噜噜噜噜噜久久久久久91| 国产熟女xx| 亚洲欧美一区二区三区黑人| 国产精品98久久久久久宅男小说| 亚洲色图 男人天堂 中文字幕| 亚洲av成人不卡在线观看播放网| 99久久精品国产亚洲精品| 亚洲国产精品sss在线观看| 狂野欧美激情性xxxx| 久久精品aⅴ一区二区三区四区| 国产高清三级在线| 麻豆国产97在线/欧美| 亚洲无线观看免费| 色播亚洲综合网| 一区二区三区激情视频| 麻豆国产av国片精品| 国产精品久久久久久亚洲av鲁大| 91麻豆av在线| 久久中文看片网| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 日本一本二区三区精品| 色综合站精品国产| 岛国在线观看网站| 毛片女人毛片| 日本五十路高清| 成人三级做爰电影| 18禁国产床啪视频网站| 99热精品在线国产| 午夜亚洲福利在线播放| 搞女人的毛片| 亚洲黑人精品在线| 久久香蕉精品热| 1024手机看黄色片| 又粗又爽又猛毛片免费看| 亚洲人成电影免费在线| 欧美一区二区精品小视频在线| 99久久精品国产亚洲精品| av国产免费在线观看| 久久久久国产一级毛片高清牌| 国产高清激情床上av| 九色国产91popny在线|