• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A High Gain, Noise Cancelling 3.1-10.6 GHz CMOS LNA for UWB Application

    2019-07-18 01:59:22XiaorongZhaoHongjinZhuPeizhongShiChunpengGeXiufangQianHonghuiFanandZhongjunFu
    Computers Materials&Continua 2019年7期

    Xiaorong Zhao, Hongjin Zhu, Peizhong Shi, Chunpeng Ge, Xiufang Qian, , Honghui Fan and Zhongjun Fu

    Abstract: With the rapid development of ultra-wideband communications, the design requirements of CMOS radio frequency integrated circuits have become increasingly high.Ultra-wideband (UWB) low noise amplifiers are a key component of the receiver front end.The paper designs a high power gain (S21) and low noise figure (NF) common gate (CG) CMOS UWB low noise amplifier (LNA) with an operating frequency range between 3.1 GHz and 10.6 GHz.The circuit is designed by TSMC 0.13 μm RF CMOS technology.In order to achieve high gain and flat gain as well as low noise figure, the circuit uses many technologies.To improve the input impedance matching at low frequencies, the circuit uses the proposed T-match input network.To decrease the total dissipation, the circuit employs current reused technique.The circuit uses he noise cancelling technique to decreases the NF.The simulation results show a flat S21>20.81 dB, the reverse isolation (S12) less than -48.929 dB, NF less than 2.617 dB, the minimum noise figure (NFmin)=1.721 dB, the input return loss (S11) and output return loss (S22) are both less than -14.933 dB over the frequency range of 3.1 GHz to 10.6 GHz.The proposed UWB LNA consumes 1.548 mW without buffer from a 1.2 V power supply.

    Keywords: Common-gate, low noise amplifier, current reuse, noise cancelling.

    1 Introduction

    The Federal Communication Commission (FCC) has approved 3.1-10.6 GHz bandwidth for commercial use in 2002, due to its low power consumption, fast transmission speed and high security [Rastegar, Saryazdi and Hakimi (2013); Lin, Hsu, Jin et al.(2007)].The UWB technology is becoming more and more popular because of its low power consumption, high confidentiality, strong penetrating ability and low radiation [Kao and Chang (2008)].

    The increasing demands for portable wireless devices are driving the development of CMOS Radio Frequency Integrated Circuits (RFICs) that require low power dissipation to maximize battery lifetime [Rastegar, Saryazdi and Hakimi (2013)].The LNA is the first stage of all UWB front-end RF receivers.Its main function is to suppress noise and amplify useful signals.These two indicators are the key factors of the whole receiver, so the performance of a low noise amplifier directly affects the performance of the entire receiver [Wang, Dinh and Teng (2014)].There are many things to consider when designing an UWB LNA, such as a high enough and flat gain, as low as possible and flat noise figure, good input and output return loss, low power consumption and other requirements over the entire operating frequency range of the UWB LNA.The LNA usually affects the NF and bandwidth in the receiver.Since many indicators cannot be optimal at the same time when designing the LNA, there is a trade-off between gain, noise and bandwidth [Wang, Hwang, Yan et al.(2011)].

    Figure 1: Proposed low power, noise canceling schematic

    Impedance and noise matching is very challenging in the design of ultra-wideband LNAs today, and will also be crucial for UWB systems [Lo and Kiang (2011)].In designing UWB systems, researchers have proposed many CMOS technologies and topologies for broadband LNA designs such as distributed amplifiers [Zhang and Kinget (2006); Heydari (2007)], resistive shunt feedback [Reiha and Long (2007)], cascade amplifiers [KeHou, JianHao, BoJiun et al.(2007)], and current reused amplifiers [Lin, Hsu, Jin et al.(2007); Khurram and Hasan (2011)].Distributed amplifiers can improve gain at higher frequencies, thus extending bandwidth.But it requires more inductors, so the amplifier is designed to be costly and consumes a lot of power, which limits its range of use.Although the resistor shunt feedback amplifier can provide good input matching, high gain and wideband performance.However, the parasitic capacitance can cause performance degradation when the amplifier is operating at high frequencies [Jung, Yun, Choi et al.(2007); Chen, Lee, Lin et al.(2008)].The current reused techniques are very useful for high gain and low power consumption of the amplifier.However, since current reused techniques requires the use of multiple transistors, it also increases the need for supply voltage, so it is not suitable for low supply voltage conditions [Khurram and Hasan (2011)].

    The input stage design of the UWB LNA is critical for forward gain, input matching, and low noise performance.Well-known common source (CS) and CG topologies are widely used by designers for UWB LNA input stages [Khurram and Hasan (2011); Zhang, Fan and Sinencio (2009); Ponton, Palestri, Esseni et al.(2009)].

    In recent years, CG LNAs have become more and more widely used in the application of UWB receiving systems because CG LNAs can more easily achieve wider bandwidth, lower power consumption, better linearity and reverse isolation than CS LNAs [Liao and Liu (2007); Zhao, Fan, Fu et al.(2015)].However, the channel noise and gain performance of UWB LNAs are poor due to restrict the value of the transconductance when the input matching is designed [Zhao, Fan, Fu et al.(2015)].

    In this paper, we design a UWB LNA with high gain, low noise and low power consumption.Section 2 discusses circuit design and analysis, Section 3 discusses analytical and circuit simulation results, describes the simulation results and compares its performance with other recently published paper.

    2 Circuit design and analysis

    Fig.1 shows the overall circuit diagram of the proposed UWB LNA.We present a UWB CG LNA architecture in Fig.2, that uses a new T-match input matching network (IMN) consisting of a series Ls-Rs, interconnection-line inductor L1, and Cgs-gm1of transistor M1.Such a structure can improve the input matching of ultra-wideband LNA [Chang and Lin (2011)].The proposed a UWB CG LNA adopt the current reused technique to reduce power dissipation, further eliminating noise in the first stage through noise cancellation technique.

    2.1 Input impedance matching network

    Input impedance matching is crucial for LNAs as well as the entire UWB system.The input matching circuit design is avoided to use resistors directly, because resistors will dissipate power.The traditional CG LNA is designed to use the inductor Lsto resonates with the gatesource parasitic capacitance Cgsof the transistor M1, ultimately extending the bandwidth of the input match [Cen and Song (2014)].In Fig.2(a), the input impedance of the traditional CG topology can be calculated by the following formula [Cen and Song (2014)]:

    where gm1is the transconductance of M1 and r0is the channel resistance of M1.Under the matching conditions, if the channel length modulation and bulk effects are ignored, the input impedance is estimated as [Cen and Song (2014)]:

    Figure 2: CG LNA Topology

    When designing a CG LNA, the value of gm1 must be fixed at 20 mS to achieve 50 Ω input matching.However, impedance matching design is critical and a challenging task in a UWB application.When the gm1value is not equal to 20 mS, the input impedance cannot match the source impedance.In deep-submicron CMOS technology, gm1r0rarely exceeds 10, so RL/gm1r0is roughly equivalent 1/gm1or even exceed 1/gm1[Cen and Song (2014)].In addition, the voltage gain of CG LNA is proportional to gm, and the noise factor is inversely proportional to gm[Cen and Song (2014); Khurram and Hasan (2011)].Therefore, in Fig.2(b) we try to mitigate the limited value of gmby a simple IMN topology.The small signal equivalent model of Fig.2(b) is shown in Fig.3.In Fig.2(b), we propose a CG LNA architecture that uses an input matching network consisting of a series connected Ls-Rs, interconnection inductor L1, and Cgs-gm1of transistor M1, which can improve the input matching for UWB LNAs.In addition, the self-body bias technique used in this design can further reduce the power dissipation of the entire circuit [Chang and Lin (2011)].

    Figure 3: Small signal transformation

    The input impedance of the circuit from the source of the transistor M1 can be calculated by Eq.(3):

    It can be seen that the value of gm1is no longer limited due to Rpis added the circuit, which adds a certain degree of freedom to the circuit in designing the input match.Eq.(4) show that if the circuit achieves 50 Ω input match by adjusting the resistor Rs, then the value of gm1 is no longer limited to 20 mS.We noticed that there is a small DC voltage drop on Rs.Although Rsconsumes a little bit of power, the input matching design can be better realized.Due to the addition of T-matching network, the LNA achieves good isolation and good input match and improves noise performance in the 3.1 GHz to 10.6 GHz band.

    Common CG amplifiers must set to gm1=20 mS which can make the circuit to achieve broadband input matching.We try to add a simple IMN to the circuit, so there is no need to fix the value of gm1.The simple IMN as shown in Fig.2(b).

    2.2 Noise analysis and noise cancelling technique

    In recent years, noise cancellation techniques used in the literature all require the addition of noise cancellation circuits, the designed LNA consumes a lot of power, so this noise cancellation technique is not suitable for portable communication applications.NF is one of the most important parameters to evaluate the radio performance of communication system [Ming, Hongbin, Lianke et al.(2018)].

    The total NF of LNA is dominated by the NF of the M1 in Fig.1, so the noise of M1 will be cancelled by the cancelling technology.The principle of noise cancellation technology is that noise generates noise signals with opposite phase polarities in different paths, and then eliminates noise at the output by superposition of opposite phase noises.According to Fig.1, the phase of the noise voltage at point A and the phase of point B are reversed.The noise and signal voltage at node A will be amplified and the voltage phase will be inverted after passing through M2.The signal from the drain of M1 reaches the gate of M2 through Lgand Cg.The phase of the noise and the signal voltage at node C will not change after passing through M3.The noise and signal voltage at node B will be amplified and the voltage phase will be inverted after passing through M4 in a common source configuration.The noise voltages at node E and F will be out-of-phase, the signal voltages at node E and F will be same phase.When Rs, Ls, La, gm2, gm3, and gm4select a specific value, through the noise cancellation technology, M1 current noise will be completely offset.On the other hand, the signal voltages at node E and F in the same phases, the signal voltages are added together at node G.

    2.3 Current reused techniques

    In order to achieve low power design of low noise amplifiers, this design uses current multiplexing technology to effectively reduce the power consumption of low noise amplifiers.

    Figure 4: Current reused architectures

    In Fig.4, both (a) and (b) can achieve the desired signal/noise phase difference at input, without adding additional components and contributing to noise cancellation, but due to Fig.4(b) the NF of pMOS is relatively large, so Fig.4(a) is selected.The circuit employs CG nMOS and CS nMOS amplifiers to reduce amplifier power consumption using current reuse techniques.Ultra-wideband and low power consumption are realized by CG LNA, and high gain is achieved by CS LNA.Therefore, the ultra-wideband, high-gain and low-power LNA designed is realized by cascading CG and CS structures.

    Conventionally, UWB LNAs with noise cancellation have been designed through cascaded topology connections of M1 and M2.The CG stage (M1) is used to broaden the bandwidth and input impedance matching of the circuit, and the gain is provided to the circuit through the CS stage (M2).In Fig.4(a).By cascading M1 and M2, the same current can supply power to both transistors for the purpose of reducing circuit power consumption.

    In the Fig.4, Transistor (M2) reduces power consumption by using a current reused structure.Inductor La is added in the circuit, which not only can improve S11and the S21can be increased.Through the inductor Lgand capacitor Cgseries resonance to achieve bandwidth expansion.LLcan improve the gain flatness through choosing suitable value of LL.

    2.4 Stability

    The stability of the circuit is an important parameter when designing the LNA.If the LNA is designed to be unstable, it will cause oscillations in the extreme case of voltage changes and may oscillate at unexpected high or low frequencies.The stability factor K is calculated by the following formula.

    As per Stern stability analysis, when the stability factor (K) is>1, S11<1, S22<1 and Δ < 1 over the full frequency band, the LNA is unconditional stability.

    3 Analytical and circuit simulation results

    The simulation results of the proposed LNA are shown in Figs.5-8.which is simulated with Agilent Advanced Design System (ADS) tools.Fig.5 shows the simulated S21and S12against frequency characteristics of the CMOS UWB LNA.High and flat S21of 22.297±1.487 dB, and good S12less than -48.929 dB.As shown in Fig.6, the S11<-14.933 dB and S22<-16.151 dB in the frequency range of 3.1-10.6 dB.Fig.7 shows the simulated of NF and frequency of the designed CMOS UWB LNA.Low and flat NF of 2.169±0.448 dB.Fig.8 shows the simulated stability factor (K) more than 1, so the proposed LNA is unconditional stability over the full frequency band.When the entire circuit is powered by a 1.2 V supply, the circuit consumes 1.548 mW without buffer and 9.6 mW for the entire circuit with buffer.

    Figure 5: Simulated S21 and S12 against frequency characteristics

    Figure 6: Simulated S11 and S22 against frequency characteristics

    Figure 7: Simulated NF against frequency characteristics

    Figure 8: Simulated stability factor against frequency characteristics

    Table 1: Compare with simulation results of lna from other recently published papers

    Tab.1 summarizes the performance of other recently published LNAs, which shows that the proposed LNA can obtain high gain and low NF.The proposed UWB LNA exhibits higher FOM compared to other LNAs.The FOM is defined as:

    In Eq.(6), |S21| represents the average power gain; BW represents the bandwidth in GHz, |NF| represents the average noise figure; and PDrepresents the power consumption in milliwatts (mW) [Zhao, Fan, Fu et al.(2015); Arshad, Ramzan, Muhammad et al.(2015)].Compared to the low noise amplifier design in most recently published articles, the FOM of the proposed UWB LNA has reached a fairly high level.According to Tab.1, it can be concluded that the designed UWB LNA can achieve a sufficiently high and flat gain, sufficiently low and flat noise and low power consumption.

    4 Conclusion

    The paper designs a low power and high gain 3.1-10.6 GHz CMOS UWB CG LNA, which uses T-match network technology to improve input impedance matching, current reused technique to reduce power consumption, and noise cancellation technique to effectively reduce input noise.The proposed circuit was designed using TSMC 0.13 μm RF CMOS technology.The simulation results show a high and flat gain of 22.297±1.487 dB, a low and flat NF of 2.169±0.448 dB, S21less than -48.929 dB, S11less than -14.933 dB and output S22less than -16.151 dB, the stability factor more than 5.954 in the frequency range of 3.1-10.6 GHz, the LNA consumes 1.548 mW without buffer from a 1.2 V power supply.In the design of the LNA, good noise figure and maximum power transfer require significantly different input impedance requirements.The current reused technique not only effectively reduces power dissipation, but also conduce to elimination of noise.Compared with the noise cancellation techniques proposed in other literatures, the noise cancellation technique proposed in this paper can make a good tradeoff between maximum power and minimum NF.The structure of the UWB LNA proposed in this paper can achieve sufficient gain, sufficient bandwidth, reasonable NF and proper power consumption.Therefore, the method designed in this paper can provide a good choice for the 3.1-10.6 GHz UWB system application.

    Acknowledgement:This work was financially supported by the National Natural Science Foundation (Nos.61602216, 61806088), Jiangsu Province Industry-University-Research Cooperation Project (No.BY2018191), Natural Science Fund of Changzhou (CE20175026) and Qing Lan Project of Jiangsu Province.

    References

    Arshad, S.; Ramzan, R.; Muhammad, K.; Wahab, Q.U.(2015): A sub-10mw, noise cancelling, wideband lna for uwb applications.AEU-International Journal of Electronics and Communications, vol.69, no.1, pp.109-118.

    Cen, M.; Song, S.(2014): A high gain, low-power low-noise amplifier for ultrawideband wireless systems.Circuits, Systems, and Signal Processing, vol.33, no.10, pp.3251-3262.

    Chang, J.F.; Lin, Y.S.(2011): 0.99 mw 3-10 ghz common-gate cmos uwb lna using tmatch input network and self-body-bias technique.Electronics.Letters, vol.47, no.11, pp.658-659.

    Chen, C.C.; Lee, J.H.; Lin, Y.S.; Chen, C.Z.; Huang, G.W.et al.(2008): Low noise-figure p+ aa mesh inductors for cmos rfic application.IEEE Transactions on Electron Devices, vol.55, no.12, pp.3542-3548.

    Chen, K.H.; Lu, J.H.; Chen, B.J.; Liu, S.J.(2007): An ultra-wide-band 0.4-10 ghz lna in 0.18 μm cmos.IEEE Transactions on Circuits and Systems, vol.54, no.3, pp.217-221.

    Heydari, P.(2007): Design and analysis of a performance-optimized cmos uwb distributed lna.IEEE Journal of Solid-State Circuits, vol.42, no.9, pp.1892-1905.

    Kao, H.L.; Chang, K.C.(2008): Very low-power cmos lna for uwb wireless receivers using current-reused topology.Solid State Electronics, vol.52, no.1, pp.86-90.

    Liao, C.F.; Liu, S.I.(2007): A broadband noise-canceling cmos lna for 3.1-10.6-ghz uwb receivers.IEEE Journal of Solid-State Circuits, vol.42, no.2, pp.329-339.

    Lin, Y.J.; Hsu, S.S.H.; Jin, J.D.; Chan, C.Y.(2007): A 3.1-10.6 ghz ultra-wideband cmos low noise amplifier with current-reused technique.IEEE Microwave and Wireless Components Letters, vol.17, no.3, pp.232-234.

    Lo, Y.T.; Kiang, J.F.(2011): Design of wideband lnas using paralled-to-series resonant matching network between common-gate and common-source stages.IEEE Transactions on Microwave Theory and Techniques, vol.59, no.8, pp.2285-2294.

    Jeong, J.(2013): Design of low power cmos ultra wide band low noise amplifier using canceling technique.Microelectronics Journal, vol.44, no.9, pp.821-826.

    Jhon, H.S.; Jeon, J.; Kang, M.(2017): Extremely low power lna biased with 0.25-v drain-to-source voltage for 3-to-5 ghz uwb-ir application.Microelectronics Journal, vol.61, pp.1-5.

    Jung, J.; Yun, T.; Choi, J.; Kim, H.(2007): Wideband and low noise cmos amplifier for uwb receivers.Microware & Optical Technology Letters, vol.49, no.4, pp.749-752.

    Khurram, M.; Hasan, S.M.R.(2012): A 3-5 ghz current-reuse gm-boosted cg lna for ultrawideband in 130 nm cmos.IEEE Transactions on Very Large Scale Integration Systems, vol.20, no.3, pp.400-409.

    Khurram, M.; Hasan, S.M.R.(2011): Novel analysis and optimization of gm-boosted common-gate uwb lna.Microelectronics Journal, vol.42, no.2, pp.253-264.

    Knoblinger, G.(2009): Design of ultra-wideband low-noise amplifiers in 45-nm cmos technology: comparison between planar bulk and soi finfet devices.IEEE Transactions on Circuits & Systems, vol.56, no.5, pp.920-932.

    Ming, H.; Hongbin, W.; Lianke, Z.; Pengming, W.; Andrew, J.(2018): Symmetric learning data augmentation model for underwater target noise data expansion.Computers, Materials & Continua, vol.57, no.3, pp.521-532.

    Ponton, D.; Palestri, P.; Esseni, D.; Selmi, L.; Tiebout, M.et al.(2015): A broadband low noise amplifier with built-in linearizer in 0.13-μm cmos process.Microelectronics Journal, vol.46, no.8, pp.698-705.

    Rastegar, H.; Saryazdi, S.; Hakimi, A.(2013): A low power and high linearity uwb low noise amplifier (lNA) for 3.1-10.6 ghz wireless applications in 0.13 μm cmos process.Microelectronics journal, vol.44, no.3, pp.201-209.

    Reiha, M.T.; Long, J.R.(2007): A 1.2 V reactive-feedback 3.1-10.6 ghz low-noise amplifier in 0.13 μm cmos.IEEE Journal of Solid-State Circuits, vol.42, no.5, pp.1023-1033.

    Saberkari, A.; Kazemi, S.; Shirmohammadli, V.; Yagoub M.C.E.(2016): Gmboosted flat gain UWB low noise amplifier with active inductor-based input matching network.Integration the VLSI Journal, vol.52, no.C, pp.323-333.

    Wang, S.F.; Hwang, Y.S.; Yan, S.C.; Chen, J.J.(2011): A new cmos wideband low noise amplifier with gain control.Integration, the VLSI Journal, vol.44, no.2, pp.136-143.

    Tarighat, A.P.; Yargholi, M.(2016): A cmos low noise amplifier with employing noise cancellation and modified derivative superposition technique.Microelectronics Journal, vol.54, pp.116-125.

    Wang, X.; Dinh, A.; Teng, D.(2014): A 3-10 ghz ultra wideband receiver lna in 0.13 μm cmos.Circuits Systems & Signal Process, vol.33, no.6, pp.1669-1687.

    Zhao, X.R.; Fan, H.H.; Fu, Z.J.; Ye, F.Y.; Chen, J.F.(2015): Gm-boosted flat gain uwb low noise amplifier with noise cancellation.Chemical Engineering Transactions, vol.46, pp.145-150.

    Zhang, F.; Kinget, P.R.(2006): Low-power programmable gain cmos distributed lNA.IEEE Journal of Solid-State Circuits, vol.41, no.6, pp.1333-1343.

    Zhang, H.; Fan, X.; Sinencio, E.S.(2009): A low-power, linearized, ultra-wideband lNA design technique.IEEE Journal of Solid-State Circuits, vol.44, no.2, pp.320-330.

    久久久久视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美亚洲国产| 国产一区二区三区av在线| 国产成人啪精品午夜网站| 99久久综合免费| 丝袜在线中文字幕| 日韩精品免费视频一区二区三区| 精品福利永久在线观看| 成年女人毛片免费观看观看9 | 热re99久久精品国产66热6| 无遮挡黄片免费观看| 国产免费现黄频在线看| 国产麻豆69| 中文字幕最新亚洲高清| 看免费av毛片| 精品卡一卡二卡四卡免费| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久成人av| 超碰成人久久| 一本综合久久免费| 午夜两性在线视频| 老汉色∧v一级毛片| 久久人人爽人人片av| 国产亚洲一区二区精品| 999久久久国产精品视频| 极品少妇高潮喷水抽搐| 亚洲国产毛片av蜜桃av| 久久国产精品男人的天堂亚洲| 美女中出高潮动态图| 国产精品亚洲av一区麻豆| 亚洲综合色网址| 国产视频首页在线观看| 国产成人a∨麻豆精品| 男人爽女人下面视频在线观看| 欧美日韩av久久| 纯流量卡能插随身wifi吗| 免费在线观看完整版高清| 麻豆av在线久日| 欧美中文综合在线视频| 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 精品一区在线观看国产| 免费看av在线观看网站| 亚洲av日韩精品久久久久久密 | 女性被躁到高潮视频| 丁香六月天网| 大型av网站在线播放| 精品久久蜜臀av无| 老司机亚洲免费影院| 波多野结衣av一区二区av| 欧美日韩综合久久久久久| 人人妻人人澡人人看| 亚洲色图综合在线观看| 国产野战对白在线观看| 男女下面插进去视频免费观看| av又黄又爽大尺度在线免费看| 亚洲精品国产av成人精品| 精品人妻1区二区| 免费高清在线观看日韩| 久久久久国产一级毛片高清牌| 夜夜骑夜夜射夜夜干| 男女午夜视频在线观看| 亚洲一码二码三码区别大吗| 国产视频首页在线观看| 国产亚洲一区二区精品| 亚洲精品美女久久久久99蜜臀 | 人人妻,人人澡人人爽秒播 | 欧美日韩视频高清一区二区三区二| 日韩中文字幕欧美一区二区 | 99久久99久久久精品蜜桃| 亚洲图色成人| 亚洲国产精品一区三区| 悠悠久久av| 国产一区二区三区综合在线观看| 视频区图区小说| 美女福利国产在线| 国产日韩欧美在线精品| 只有这里有精品99| 国产成人精品久久二区二区免费| 亚洲图色成人| 亚洲av欧美aⅴ国产| 国产精品三级大全| 丝袜在线中文字幕| 岛国毛片在线播放| 少妇的丰满在线观看| 不卡av一区二区三区| 免费少妇av软件| 男的添女的下面高潮视频| 夫妻午夜视频| 免费在线观看影片大全网站 | 久久综合国产亚洲精品| 久久精品久久久久久久性| 99re6热这里在线精品视频| 午夜av观看不卡| 啦啦啦中文免费视频观看日本| 久久久久久久国产电影| 男女之事视频高清在线观看 | 亚洲伊人色综图| 国产精品一区二区在线观看99| 精品久久久久久电影网| 9热在线视频观看99| 日本欧美视频一区| 电影成人av| 久久午夜综合久久蜜桃| 999精品在线视频| 欧美日本中文国产一区发布| 久久久精品国产亚洲av高清涩受| 在现免费观看毛片| 尾随美女入室| 性少妇av在线| 热99国产精品久久久久久7| 国产淫语在线视频| 国产精品一国产av| 午夜福利影视在线免费观看| 亚洲视频免费观看视频| 国产精品秋霞免费鲁丝片| 一级毛片我不卡| 日本欧美视频一区| 久久九九热精品免费| 啦啦啦中文免费视频观看日本| 久久精品国产a三级三级三级| 成在线人永久免费视频| 夫妻午夜视频| 亚洲 国产 在线| 成在线人永久免费视频| 国产视频首页在线观看| 国产爽快片一区二区三区| 黄色一级大片看看| 国产精品 国内视频| 两人在一起打扑克的视频| 国产成人啪精品午夜网站| 午夜日韩欧美国产| 狂野欧美激情性bbbbbb| 亚洲精品一区蜜桃| 99国产精品免费福利视频| 亚洲欧美一区二区三区黑人| 日本色播在线视频| 日韩av免费高清视频| 99国产精品99久久久久| 国产精品久久久久久精品古装| 午夜免费观看性视频| 国产熟女欧美一区二区| 黄色片一级片一级黄色片| 黄片播放在线免费| 亚洲精品第二区| 国产又色又爽无遮挡免| 一区二区av电影网| 欧美精品亚洲一区二区| 国产精品.久久久| 亚洲免费av在线视频| 777久久人妻少妇嫩草av网站| 亚洲,欧美精品.| 欧美日韩福利视频一区二区| 曰老女人黄片| 欧美人与善性xxx| 亚洲国产av影院在线观看| 欧美人与性动交α欧美软件| 十八禁网站网址无遮挡| 成人三级做爰电影| 韩国高清视频一区二区三区| 国产精品av久久久久免费| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 一级毛片黄色毛片免费观看视频| 国产片内射在线| 久久久久久久国产电影| 纵有疾风起免费观看全集完整版| 免费一级毛片在线播放高清视频 | 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区大全| 久久国产亚洲av麻豆专区| 少妇精品久久久久久久| 午夜av观看不卡| 一本久久精品| 精品少妇黑人巨大在线播放| e午夜精品久久久久久久| 国产精品久久久久久精品电影小说| 亚洲男人天堂网一区| 精品一区二区三区四区五区乱码 | 丝袜美腿诱惑在线| 亚洲情色 制服丝袜| av线在线观看网站| 国产成人影院久久av| 午夜福利视频精品| kizo精华| 日韩中文字幕视频在线看片| 久久久精品区二区三区| 亚洲人成77777在线视频| √禁漫天堂资源中文www| 午夜视频精品福利| 婷婷色麻豆天堂久久| 久久 成人 亚洲| 午夜影院在线不卡| 免费观看a级毛片全部| 一本大道久久a久久精品| 国产欧美日韩一区二区三 | www.精华液| 中文字幕制服av| 亚洲av日韩在线播放| 久久久久久久精品精品| 国产在线观看jvid| 精品国产乱码久久久久久小说| 男人爽女人下面视频在线观看| 国产在线视频一区二区| 一级毛片电影观看| 午夜福利视频在线观看免费| 99香蕉大伊视频| 在现免费观看毛片| 老司机影院毛片| 一级毛片电影观看| 免费少妇av软件| 成人黄色视频免费在线看| 不卡av一区二区三区| 一二三四社区在线视频社区8| 可以免费在线观看a视频的电影网站| 日韩中文字幕欧美一区二区 | 日韩一区二区三区影片| 成年美女黄网站色视频大全免费| 日日爽夜夜爽网站| 国产不卡av网站在线观看| 免费不卡黄色视频| 中文字幕制服av| 老鸭窝网址在线观看| 日日夜夜操网爽| 亚洲国产看品久久| e午夜精品久久久久久久| 建设人人有责人人尽责人人享有的| 精品久久久久久久毛片微露脸 | 亚洲中文日韩欧美视频| 午夜福利,免费看| 亚洲成国产人片在线观看| 下体分泌物呈黄色| 在线观看一区二区三区激情| 亚洲欧美中文字幕日韩二区| 亚洲成人免费av在线播放| 亚洲,欧美,日韩| 天堂中文最新版在线下载| 成人三级做爰电影| 超碰成人久久| 另类亚洲欧美激情| 国产一区二区三区av在线| 欧美精品av麻豆av| 精品国产超薄肉色丝袜足j| 国产一区二区激情短视频 | 超碰成人久久| 水蜜桃什么品种好| 少妇被粗大的猛进出69影院| 国产福利在线免费观看视频| 高清av免费在线| 国产精品免费视频内射| 80岁老熟妇乱子伦牲交| 最新的欧美精品一区二区| 亚洲国产精品一区三区| 飞空精品影院首页| 91精品三级在线观看| 欧美精品一区二区免费开放| 午夜免费鲁丝| 在线亚洲精品国产二区图片欧美| 国产精品九九99| 国产一区二区在线观看av| 一级毛片我不卡| 国产免费又黄又爽又色| 日韩一本色道免费dvd| 国产日韩一区二区三区精品不卡| 亚洲国产成人一精品久久久| 久久99一区二区三区| 男女国产视频网站| 亚洲专区中文字幕在线| 精品国产一区二区三区久久久樱花| 久久久久久久久免费视频了| 欧美变态另类bdsm刘玥| 久久久国产一区二区| 麻豆乱淫一区二区| 免费在线观看完整版高清| 久久av网站| 亚洲,欧美精品.| 欧美日韩视频精品一区| 国产欧美日韩一区二区三 | 男女床上黄色一级片免费看| 汤姆久久久久久久影院中文字幕| 成人18禁高潮啪啪吃奶动态图| 嫩草影视91久久| 久久人妻福利社区极品人妻图片 | 女人高潮潮喷娇喘18禁视频| 国产主播在线观看一区二区 | 咕卡用的链子| 日韩视频在线欧美| 久久精品亚洲av国产电影网| 久久精品久久精品一区二区三区| 国产成人欧美| 国产一区二区三区综合在线观看| 欧美日韩福利视频一区二区| 精品高清国产在线一区| 新久久久久国产一级毛片| 亚洲欧美一区二区三区黑人| 国产精品 欧美亚洲| 亚洲欧美激情在线| 成年人免费黄色播放视频| 日韩制服骚丝袜av| 亚洲自偷自拍图片 自拍| 在线观看免费视频网站a站| 成年人黄色毛片网站| 女人爽到高潮嗷嗷叫在线视频| av视频免费观看在线观看| 中文欧美无线码| 色播在线永久视频| 老汉色av国产亚洲站长工具| 色视频在线一区二区三区| 另类亚洲欧美激情| 国产人伦9x9x在线观看| 考比视频在线观看| 欧美少妇被猛烈插入视频| 国产又爽黄色视频| 大码成人一级视频| 日韩 欧美 亚洲 中文字幕| 在线av久久热| 成人国产一区最新在线观看 | 日本91视频免费播放| 视频区图区小说| 悠悠久久av| 久久九九热精品免费| 一级黄片播放器| 欧美在线一区亚洲| 水蜜桃什么品种好| 伊人亚洲综合成人网| 老司机影院成人| 中文字幕人妻丝袜制服| 我要看黄色一级片免费的| 色网站视频免费| 丁香六月欧美| 色94色欧美一区二区| 丁香六月欧美| 国产成人精品在线电影| 大片免费播放器 马上看| 大香蕉久久网| 中文字幕av电影在线播放| 高清视频免费观看一区二区| 欧美大码av| 热99久久久久精品小说推荐| 久久影院123| 精品人妻在线不人妻| 日韩av免费高清视频| 精品国产一区二区三区四区第35| 自拍欧美九色日韩亚洲蝌蚪91| 女人高潮潮喷娇喘18禁视频| 成人国语在线视频| 国产精品麻豆人妻色哟哟久久| 亚洲免费av在线视频| 精品亚洲乱码少妇综合久久| 在线av久久热| 美女午夜性视频免费| 成人国产av品久久久| 一级毛片我不卡| 天天添夜夜摸| 欧美乱码精品一区二区三区| 欧美日韩综合久久久久久| 亚洲国产欧美网| 久久精品人人爽人人爽视色| 王馨瑶露胸无遮挡在线观看| 精品国产乱码久久久久久男人| 一级毛片我不卡| 叶爱在线成人免费视频播放| 咕卡用的链子| 欧美xxⅹ黑人| 91精品伊人久久大香线蕉| 亚洲av日韩精品久久久久久密 | 亚洲男人天堂网一区| 欧美久久黑人一区二区| 日韩欧美一区视频在线观看| 制服人妻中文乱码| 国产一卡二卡三卡精品| 久久久久精品国产欧美久久久 | 90打野战视频偷拍视频| 一本久久精品| 国产成人精品无人区| 老司机影院成人| 亚洲国产精品一区二区三区在线| a 毛片基地| 日韩一本色道免费dvd| 亚洲欧美精品综合一区二区三区| 国产精品国产三级专区第一集| 国产视频一区二区在线看| 亚洲人成电影观看| 飞空精品影院首页| 久久这里只有精品19| 黑人巨大精品欧美一区二区蜜桃| 亚洲av男天堂| 欧美av亚洲av综合av国产av| 亚洲精品国产一区二区精华液| 午夜福利乱码中文字幕| av一本久久久久| av在线老鸭窝| 精品国产一区二区久久| 国产爽快片一区二区三区| 国产极品粉嫩免费观看在线| 精品国产超薄肉色丝袜足j| 亚洲av日韩在线播放| 下体分泌物呈黄色| 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 嫁个100分男人电影在线观看 | 十分钟在线观看高清视频www| 少妇精品久久久久久久| 国产精品欧美亚洲77777| 亚洲视频免费观看视频| 国产99久久九九免费精品| 蜜桃在线观看..| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品成人免费网站| 9191精品国产免费久久| 亚洲人成网站在线观看播放| 99久久精品国产亚洲精品| 另类精品久久| 超色免费av| 国产精品免费视频内射| 中文字幕人妻丝袜制服| 在线观看免费高清a一片| 在线精品无人区一区二区三| 精品久久久久久电影网| 老司机影院成人| 久久精品国产亚洲av涩爱| 黄色片一级片一级黄色片| 亚洲欧美中文字幕日韩二区| 久久久国产精品麻豆| 亚洲av电影在线观看一区二区三区| 婷婷成人精品国产| 国产成人精品久久二区二区91| 日本av手机在线免费观看| 成年动漫av网址| 亚洲黑人精品在线| 日本欧美国产在线视频| 90打野战视频偷拍视频| 啦啦啦视频在线资源免费观看| 两个人免费观看高清视频| 欧美精品人与动牲交sv欧美| 欧美国产精品va在线观看不卡| 成人亚洲精品一区在线观看| 久久99热这里只频精品6学生| 久久亚洲精品不卡| 成人国产av品久久久| 91精品三级在线观看| 丰满迷人的少妇在线观看| 免费看不卡的av| 亚洲国产中文字幕在线视频| 久久久久久久大尺度免费视频| 男女免费视频国产| av在线播放精品| 1024香蕉在线观看| 桃花免费在线播放| 999久久久国产精品视频| 亚洲av国产av综合av卡| 国产精品熟女久久久久浪| 90打野战视频偷拍视频| 久久久久久久久免费视频了| 日韩欧美一区视频在线观看| 日韩大片免费观看网站| 丝袜在线中文字幕| 大香蕉久久成人网| 午夜福利视频在线观看免费| 人妻人人澡人人爽人人| 91精品三级在线观看| 美女扒开内裤让男人捅视频| 国产亚洲av片在线观看秒播厂| 日韩大码丰满熟妇| 九色亚洲精品在线播放| 久久精品国产亚洲av高清一级| 人妻人人澡人人爽人人| 老司机影院毛片| 免费一级毛片在线播放高清视频 | 一区二区三区精品91| 久久国产精品影院| 母亲3免费完整高清在线观看| 免费在线观看视频国产中文字幕亚洲 | 久热爱精品视频在线9| 亚洲一码二码三码区别大吗| 免费在线观看视频国产中文字幕亚洲 | 欧美激情高清一区二区三区| 国产精品一区二区精品视频观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲七黄色美女视频| 精品少妇一区二区三区视频日本电影| 又大又黄又爽视频免费| 美女中出高潮动态图| av天堂久久9| 久久久国产精品麻豆| 五月天丁香电影| 又大又爽又粗| 亚洲av在线观看美女高潮| 国产精品免费大片| 啦啦啦 在线观看视频| 欧美人与性动交α欧美软件| 婷婷色麻豆天堂久久| 天天躁夜夜躁狠狠躁躁| 一边亲一边摸免费视频| www.999成人在线观看| av电影中文网址| 亚洲av国产av综合av卡| 久久精品国产a三级三级三级| 亚洲精品国产一区二区精华液| www.999成人在线观看| 亚洲精品国产av成人精品| 亚洲精品自拍成人| 日韩制服丝袜自拍偷拍| 欧美中文综合在线视频| 亚洲中文av在线| a级毛片黄视频| 国产熟女午夜一区二区三区| 国产xxxxx性猛交| 亚洲情色 制服丝袜| 人体艺术视频欧美日本| 秋霞在线观看毛片| 日本vs欧美在线观看视频| 少妇被粗大的猛进出69影院| 大片免费播放器 马上看| 老鸭窝网址在线观看| 三上悠亚av全集在线观看| 一级片'在线观看视频| 精品少妇黑人巨大在线播放| 热99国产精品久久久久久7| 欧美精品一区二区免费开放| 国产一区有黄有色的免费视频| 国产人伦9x9x在线观看| 大陆偷拍与自拍| 国产视频一区二区在线看| 极品人妻少妇av视频| 热99久久久久精品小说推荐| av国产久精品久网站免费入址| 日韩一本色道免费dvd| 成人国产一区最新在线观看 | 亚洲中文av在线| 老司机在亚洲福利影院| 国产欧美日韩综合在线一区二区| h视频一区二区三区| 久久国产亚洲av麻豆专区| 精品福利永久在线观看| 丰满饥渴人妻一区二区三| 女人精品久久久久毛片| 91麻豆精品激情在线观看国产 | 日韩视频在线欧美| av在线播放精品| 交换朋友夫妻互换小说| 自线自在国产av| 激情五月婷婷亚洲| 看十八女毛片水多多多| 侵犯人妻中文字幕一二三四区| 久久久精品国产亚洲av高清涩受| 国产欧美日韩一区二区三 | 亚洲欧美精品综合一区二区三区| 久久久精品国产亚洲av高清涩受| 免费看不卡的av| 人妻人人澡人人爽人人| 成年人黄色毛片网站| 国产免费又黄又爽又色| 黄色毛片三级朝国网站| 亚洲精品自拍成人| 丁香六月天网| 亚洲精品久久午夜乱码| 国产福利在线免费观看视频| 晚上一个人看的免费电影| 国产精品免费大片| 90打野战视频偷拍视频| 亚洲熟女毛片儿| 中文字幕色久视频| 亚洲国产日韩一区二区| 丝袜脚勾引网站| 国产国语露脸激情在线看| 国产午夜精品一二区理论片| netflix在线观看网站| 久久精品亚洲av国产电影网| 国产xxxxx性猛交| 真人做人爱边吃奶动态| 18在线观看网站| 少妇精品久久久久久久| 啦啦啦在线免费观看视频4| 久久天躁狠狠躁夜夜2o2o | 丰满人妻熟妇乱又伦精品不卡| 夫妻性生交免费视频一级片| 久久人人爽人人片av| 国产精品亚洲av一区麻豆| 久久久久精品人妻al黑| 九色亚洲精品在线播放| 一级毛片 在线播放| 中文字幕人妻丝袜一区二区| 一边摸一边抽搐一进一出视频| 久久久精品国产亚洲av高清涩受| 黄片小视频在线播放| 一本大道久久a久久精品| 99精品久久久久人妻精品| 欧美变态另类bdsm刘玥| 一本综合久久免费| 婷婷色综合大香蕉| 国产精品国产av在线观看| 又黄又粗又硬又大视频| 欧美日韩福利视频一区二区| 蜜桃在线观看..| 老司机亚洲免费影院| 国产成人一区二区三区免费视频网站 | 久久精品成人免费网站| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品久久精品一区二区三区| 亚洲激情五月婷婷啪啪| 欧美av亚洲av综合av国产av| 久久国产亚洲av麻豆专区| 久久99精品国语久久久| 国产欧美日韩一区二区三区在线| 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 深夜精品福利| 丝袜美足系列| 电影成人av| 丰满饥渴人妻一区二区三| 亚洲熟女精品中文字幕| av天堂在线播放|