• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Analysis of Vertical Projection Histogram to Segment Arabic Handwritten Characters

    2019-07-18 01:59:04MamouniElMamounZennakiMahmoudandSadouniKaddour
    Computers Materials&Continua 2019年7期

    Mamouni El Mamoun , Zennaki Mahmoud and Sadouni Kaddour

    Abstract: The paper discusses the segmentation of words into characters, which is an essential task in the development process of character recognition systems, as poorly segmented characters will automatically be unrecognized.The segmentation of offline handwritten Arabic text poses a greater challenge because of its cursive nature and different writing styles.In this article, we propose a new approach to segment handwritten Arabic characters using an efficient analysis of the vertical projection histogram.Our approach was tested using a set of handwritten Arabic words from the IFN/ENIT database, and promising results were obtained.

    Keywords: Segmentation, handwritten, Arabic text, vertical projection histogram.

    1 Introduction

    Writing recognition, a vast field of pattern recognition, is still a subject of intense research and experimentation.The problem is not yet fully solved, although in some applications where the vocabulary is limited or the font is unique or limited in number, we know how to obtain high rates.In addition, handwriting recognition is more complex than printed handwriting due to its extreme variability, variability of shapes, spacing between words and characters, line fluctuations.

    The Latin language has received the greatest attention from researchers [Abhijit and Deeksha (2015); Tanzila, Amjad and Mohamed (2014)].However, despite the number of people who speak Arabic, little research has been done on this language [Yasser (2013); Naz, Umar, Shirazi et al.(2016)], mainly because of the difficulty of segmenting words into letters.The segmentation step is an important step in the recognition process; this step is simple in the case of printed Latin text, but very difficult in the case of cursive writing (Arabic writing).

    The complexity of the morphology of Arabic writing and its cursivity make it more difficult to segment words into characters.Several studies have been carried out by researchers based on the recognition of the entire word (global approach) without segmentation [Lawgali (2015)], and others assume that characters are already segmented to avoid the segmentation step [Lorigo and Govindaraju (2006); Khorsheed (2002)].This step is a challenge for researchers and needs to be improved [Lawgali, Bouridane, Angelova et al.(2011)].

    In fact, the development of a new segmentation algorithm is one of our objectives to make Arabic handwriting recognition more effective.The proposed algorithms perform a thorough analysis of the vertical projection histogram to extract the correct segmentation points.

    This paper is organized as follows: handwritten Arabic characters are described in Section 2.In Section 3, we present some recent work on this subject.Section 4 describes the proposed approach in detail, while Section 5 discusses the results and their analysis.Section 6 summarizes the results of this work and draws conclusions.

    2 Characteristics of Arabic script

    Arabic language is a consonant script that uses a 28-letter alphabet.The shape of each letter depends on its position in the word, the same character can have up to four different shapes (isolated, beginning, middle and end), which increases the number of patterns, as illustrated in Tab.1, 15 letters out of 28 have one or more dots, these dots can be above or below the character size, but never high and low simultaneously.

    Table 1: Different shapes of an Arabic character.

    ?

    Arabic writing is written from right to left in a cursive manner in printed and handwritten characters; the characters of the same string are bound horizontally and sometimes vertically, as shown in Fig.1.

    Some characters cannot be attached to their left, so they can only be isolated or in the final position; this gives, when they exist, words composed of one or more parts generally called PAW (Peace of Arabic Word) or even sub words, as shown in Fig.2.Vertical overlaps can occur through the intersection of descendants that extend horizontally below the baseline and the next secondary word, as shown in Fig.3.

    Figure2: Example of words composed of 1, 2, 3 and 4 PAWs

    Figure 3: Example of overlap

    This makes the problem of segmentation of Arabic words into characters and their recognition more difficult.

    3 Related works

    Several methods and algorithms have been developed to segment the handwritten text into characters.

    As discussed in Gouda et al.[Gouda and Rashwan (2004)], the vertical projection and the baseline are used to segment a word into characters.The authors of Amin [Amin (1991)] select the weak points of each sub-word from the analysis of the vertical histogram, then the zero derivatives of the curvature contour are used to detect the convex dominant points.In Syiam et al.[Syiam, Nazmy, Fahmy et al.(2006)], the k-means classification method was applied to the vertical histogram for word segmentation.This method increases the efficiency of the histogram by recognizing handwriting.The idea of the research presented in Yusra [Yusra (2013)] is to draw the contours of the sub-words, then the segmentation points are the points where the contour passes from a horizontal line to a vertical or curved line.

    Lawgali et al.[Lawgali, Bouridane, Angelova et al.(2011)] first made the horizontal projection of the sub-word to determine the baseline.Then, the analysis of the vertical projection of the sub-word was performed to examine its distance from the baseline.Segmentation points that are far from the baseline are ignored.

    Zaidi et al.[Zaidi, Khansa, Noorzaily, et al.(2009)] proposed a character segmentation algorithm based on the normalization of the histogram gradient sign and the sliding window technique for handwritten segmentation of Jawi characters.The authors of [Mohamed (2016)] have developed a segmentation algorithm that uses several techniques such as: spaces between words and sub-words, pen thickness, character width and text height.

    These works are interesting, but they generally share a segmentation error greater than 15%, and if you add the error of the classification phase, these systems become insufficient to recognize handwritten Arabic writing, so it is very interesting to go further to explore other techniques or to combine several methods to further improve the segmentation process.

    4 Proposed approach

    To segment a word into its characters, our approach consists of several steps.First, we generate the vertical projection histogram.Then, the word is segmented into sub-words followed by the extraction of the segmentation points.Subsequently, several operations are performed on the segmentation points to improve the position of these points or to delete someone.In the following, we present a detailed description of each step of the segmentation process of our approach.

    4.1 Vertical projection histogram

    The vertical projection represents the number of black pixels in each column of the image, defined by the vector Vjof size N as follows:

    where P(i,j) is a pixel of the binary image of the script and is either 0 or 1, i and j refer to indexes of the row and column.

    4.2 Divide the word into its parts (sub-words)

    Each word can be composed of one or more parts.We used the vertical projection vector V to determine the different parts of a word.The key idea is that when we find zero the value or a sequence of values of the projection vector (Vj=0), it means that the word can be divided into two sub-words in this position, as shown in Fig.4.

    Figure 4: Divide word into its parts (sub-words)

    4.3 Segmentation points extraction algorithm

    We propose a new algorithm that uses the vertical projection vector (Eq.(1)) to extract the segmentation points.The algorithm has three parameters: Block size (Bs), Step size (Sp) and Threshold (T).

    The value of the parameter Sp must be less than or equal to Bs, if the two parameters are equal there is no overlap between the block and the next one, as shown in Fig.5.

    Figure 5: An example of vertical projection vector with Bs=9 and Sp=5

    The concept of our algorithm is as follows: whenever the sum of the block values increases, any segmentation point is generated.If there is a significant decrease between the sums of the current values of the block compared to the previous block (above the threshold), there is a segmentation point.The following pseudo code describes our algorithm.

    In Fig.6, we present an example of our algorithm application, the red vertical lines represent the position of the segmentation points.

    Figure 6: Examples of extraction of segmentation points

    4.4 Improvement of segmentation points position

    This operation consists of performing a local search around each segmentation point in order to find the best position for these points.

    Figure 7: Improvement of segmentation points

    The final segmentation point is the nearest point that has the smallest value in the vertical projection vector, around the initial point as shown in Fig.7.

    4.5 Baseline Detection

    We performed the horizontal projection to determine the baseline.This operation deletes segmentation points far from the baseline as shown in Fig.8.

    Figure 8: Removing segmentation point

    4.6 Number of transitions

    In each column of a segmentation point, we conducted a scan to find the number of times the pixel value changes state from 0 to 1 or from 1 to 0.The number of transitions is the total number of times the pixel state changes, a segmentation point is ignored if this number is greater than two, as shown in Fig.9.

    Figure 9: Example of number of transitions greater than two

    5 Experimental results

    To evaluate our approach, we used the IFN/ENIT database, which was developed in 2002 by the IFN (Institute of Communication Technologies in Germany) and ENIT (National Engineering School of Tunisia) in Tunisia.This is a database of Tunisian city names collected thanks to a contribution from 411 writers.Each of them wrote 60 names with their corresponding postal code.

    The database contains 26459 city names in a lexicon of 946 cities, 115585 pseudo-words and 212211 characters.A full annotation of the city name images is made automatically, preceded by a manual check.

    The algorithm developed was tested on a set of words from the IFN/ENIT database.The words have been carefully chosen to cover all forms of Arabic characters.The results obtained show that 89.5% of the segmentation points were extracted correctly, which is a very appreciable rate compared to the state of the art.

    Our segmentation algorithm has three parameters and their values affect the results, in the following section we present a set of experiments to select the appropriate values of these parameters.

    In the first experiment, we set the T threshold at 50 and the other two parameters are varied, the results obtained are presented in Fig.10.

    Figure 10: Character segmentation results with threshold T fixed at 50

    Figure 11: Example of over-segmentation

    The best result obtained is 89.5% with Bs=20 and Sp=15.Segmentation errors are due to overlap or when we fall into over or under-segmentation.If the value of the parameters Bs and Sp is small, the error of over-segmentation increases and vice versa, as shown in Fig.11.In the second series of experiments, we set the block size and step size parameter (Bs=20, Sp=15), the results obtained by varying the threshold T are presented in Fig.12.

    Figure 12: Character segmentation results with Bs=20 and Sp=15

    The results show that the best value of the threshold is 50.Increasing the threshold more than 50 causes in many cases an under-segmentation and vice versa, as shown in Fig.13.

    Figure 13: Example of under-segmentation

    Finally, we present in Fig.14 a comparison between the results obtained in the proposed algorithm and previous work.

    Figure 14: Comparison our results with previous works

    6 Conclusion and future work

    Recognizing characters after the segmentation process involves more challenges since segmentation introduces the most serious problem in the development of the cursive Arabic writing system.

    The task of the segmentation word in its characters is more difficult than the segmentation that aims to extract lines and sub-words.In this work, a new segmentation algorithm is proposed based on a vertical projection histogram.

    Our segmentation approach gives encouraging results, with an accuracy of 89.5%.The major problem that makes this task crucial is the problem of overlapping characters.

    Therefore, on the basis of the promising findings presented in this paper, in future work, the segmentation algorithm will be improved by new research to solve the complex problem of overlapping characters.

    References

    Abhijit, J.; Deeksha, B.(2015):A survey on word segmentation method for handwritten documents.International Journal of Science and Research, vol.4, no.11, pp.2319-7064.

    Al-Hamad, H.A.; Abu Zitar, R.(2010): Development of an efficient neural-based segmentation technique for Arabic handwriting recognition.Pattern Recognition, vol.43, no.8, pp.2773-2798.

    Amin, A.(1991): Recognition of Arabic handprinted mathematical formulae.Arabian Journal For Science and Engineering, vol.16, no.4, pp.532-542.

    Gouda, A.M.; Rashwan, M.A.(2004): Segmentation of connected Arabic characters using hidden Markov models.Proceedings of the IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, pp.115-119.

    Khorsheed, M.S.(2002): Off-line Arabic character recognition-a review.Pattern Analysis & Applications, vol.5, no.1, pp.31-45.

    Lawgali, A.(2015): A survey on Arabic character recognition.International Journal of Signal Processing, Image Processing and Pattern Recognition, vol.8, no.2, pp.401-426.

    Lawgali, A.; Bouridane, A.; Angelova, M.; Ghassemlooy, Z.(2011): Automatic segmentation for Arabic characters in handwriting documents.Proceedings of the IEEE International Conference on Image Processing, pp.3529-3532.

    Lorigo, L.M.; Govindaraju, V.(2006): Offline Arabic handwriting recognition: a survey.IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, no.5, pp.712-724.

    Mohamed, A.F.(2016): An efficient segmentation algorithm for Arabic handwritten characters recognition system.Proceedings of the IEEE International Conference on Mathematics and Computers in Sciences and in Industry, pp.172-177.

    Naz, S.; Umar, A.I.; Shirazi, S.H.; Ahmed, S.B.; Razzak, M.I.et al.(2016): Segmentation techniques for recognition of Arabic-like scripts: a comprehensive survey.Education and Information Technologies, vol.21, no.5, pp.1225-1241.

    Sari, T.; Souici, L.; Sellami, M.(2002): Off-line handwritten Arabic character segmentation algorithm.Proceedings of the IEEE International Workshop on Frontiers in Handwriting Recognition, pp.452-457.

    Syiam, M.; Nazmy, T.M.; Fahmy, A.E.; Fathi, H.; Ali, K.(2006): Histogram clustering and hybrid classifier for handwritten Arabic characters recognition.Proceedings of Pattern Recognition and Applications International Conference on Signal Processing,pp.44-49.

    Tanzila, S.; Amjad, R.; Mohamed, E.B.(2014): Methods and strategies on off-line cursive touched characters segmentation: a directional review.Artificial Intelligence Review, vol.42, no.4, pp.1047-1066.

    Yasser, M.A.(2013): A survey on Arabic character segmentation.International Journal on Document Analysis and Recognition, vol.16, no.2, pp.105-126.

    Yusra, O.(2013): Segmentation algorithm for Arabic handwritten text based on contour analysis.Proceedings of the IEEE International Conference on Computing, Electrical and Electronic Engineering, pp.447-452.

    Zaidi, R.; Khansa, Z.; Noorzaily, M.N.; Rosli, S.; Mashkuri, Y.(2009): Offline handwritten Jawi character segmentation using histogram normalization and sliding window approach for hardware implementation.Malaysian Journal of Computer Science, vol.22, no.1, pp.34-43.

    两人在一起打扑克的视频| 免费久久久久久久精品成人欧美视频| 久9热在线精品视频| 99在线视频只有这里精品首页| 国产欧美日韩一区二区精品| 亚洲一卡2卡3卡4卡5卡精品中文| a级毛片在线看网站| 青草久久国产| 亚洲人成电影观看| av福利片在线| 18禁黄网站禁片午夜丰满| 国产成人啪精品午夜网站| 久久人人爽av亚洲精品天堂| 久久久久久免费高清国产稀缺| 久久狼人影院| 亚洲av熟女| 国产区一区二久久| 一本大道久久a久久精品| 一级黄色大片毛片| 中文字幕人妻丝袜一区二区| www.www免费av| 久久精品亚洲av国产电影网| 一级,二级,三级黄色视频| 日韩av在线大香蕉| 高清毛片免费观看视频网站 | 国产主播在线观看一区二区| 午夜精品国产一区二区电影| 悠悠久久av| 国产精品98久久久久久宅男小说| 侵犯人妻中文字幕一二三四区| 老司机亚洲免费影院| 亚洲国产精品合色在线| 国产精品99久久99久久久不卡| 成人特级黄色片久久久久久久| 亚洲国产欧美日韩在线播放| 一级a爱视频在线免费观看| 国产高清视频在线播放一区| 国产男靠女视频免费网站| 精品久久久久久,| 亚洲av成人av| 久久九九热精品免费| 夫妻午夜视频| 岛国在线观看网站| 欧美黑人精品巨大| 99riav亚洲国产免费| 在线av久久热| 曰老女人黄片| 他把我摸到了高潮在线观看| 香蕉国产在线看| xxx96com| 不卡一级毛片| 免费高清视频大片| 国产麻豆69| 美女福利国产在线| 亚洲自拍偷在线| 免费高清在线观看日韩| 日本撒尿小便嘘嘘汇集6| 国产精品电影一区二区三区| 男女午夜视频在线观看| 免费人成视频x8x8入口观看| 国产精品一区二区在线不卡| 动漫黄色视频在线观看| 99在线人妻在线中文字幕| 男人操女人黄网站| 成人精品一区二区免费| 亚洲精品成人av观看孕妇| 欧美在线黄色| 夜夜爽天天搞| 国产精品永久免费网站| 欧美亚洲日本最大视频资源| 一个人免费在线观看的高清视频| 亚洲第一欧美日韩一区二区三区| 国产精品98久久久久久宅男小说| 黄片小视频在线播放| 十八禁人妻一区二区| 久久热在线av| 成人国产一区最新在线观看| 51午夜福利影视在线观看| 老司机福利观看| 色老头精品视频在线观看| 日本 av在线| 久久久久国内视频| xxx96com| 久久欧美精品欧美久久欧美| 免费人成视频x8x8入口观看| xxxhd国产人妻xxx| 久久久国产欧美日韩av| 免费人成视频x8x8入口观看| xxx96com| 午夜视频精品福利| 长腿黑丝高跟| 男人操女人黄网站| 国产精品久久久久成人av| 国产不卡一卡二| 男女下面插进去视频免费观看| 午夜久久久在线观看| 侵犯人妻中文字幕一二三四区| 免费在线观看完整版高清| 久久午夜亚洲精品久久| 久久国产亚洲av麻豆专区| 亚洲全国av大片| 90打野战视频偷拍视频| 欧美中文综合在线视频| 老司机靠b影院| 久久久久久久午夜电影 | 国产一区在线观看成人免费| 亚洲黑人精品在线| 一级片'在线观看视频| 很黄的视频免费| 老司机福利观看| 国产色视频综合| 日韩有码中文字幕| 欧美丝袜亚洲另类 | 高清欧美精品videossex| 亚洲一区二区三区色噜噜 | 久久天躁狠狠躁夜夜2o2o| 日本wwww免费看| 欧美另类亚洲清纯唯美| 国产激情欧美一区二区| av免费在线观看网站| 999久久久国产精品视频| 成人三级黄色视频| 亚洲熟妇熟女久久| 最近最新中文字幕大全免费视频| 国产av又大| 亚洲色图综合在线观看| 啦啦啦免费观看视频1| 一级片免费观看大全| 中文字幕色久视频| 亚洲精品在线美女| 免费女性裸体啪啪无遮挡网站| 欧美成人免费av一区二区三区| 国产亚洲精品一区二区www| avwww免费| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人| 搡老岳熟女国产| 国产精品久久久久久人妻精品电影| 人妻久久中文字幕网| 国产成+人综合+亚洲专区| 日韩精品免费视频一区二区三区| 交换朋友夫妻互换小说| 久久人人爽av亚洲精品天堂| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 国产伦一二天堂av在线观看| 深夜精品福利| 精品午夜福利视频在线观看一区| 成人av一区二区三区在线看| 亚洲一码二码三码区别大吗| 国产激情欧美一区二区| 欧美黑人精品巨大| 久久久精品国产亚洲av高清涩受| 亚洲精品一二三| 男人操女人黄网站| 又黄又爽又免费观看的视频| 亚洲av美国av| 女警被强在线播放| 亚洲欧美日韩另类电影网站| 国产免费现黄频在线看| 夫妻午夜视频| 成人国产一区最新在线观看| www.www免费av| 男男h啪啪无遮挡| 精品一区二区三卡| 99香蕉大伊视频| 国产熟女xx| 国产高清激情床上av| 男人操女人黄网站| 欧美日韩精品网址| 午夜福利免费观看在线| 国内久久婷婷六月综合欲色啪| 精品一区二区三区视频在线观看免费 | 亚洲精品中文字幕一二三四区| 成人18禁在线播放| 波多野结衣高清无吗| 精品福利永久在线观看| 9191精品国产免费久久| 18禁国产床啪视频网站| 亚洲一区高清亚洲精品| 欧美日韩黄片免| 俄罗斯特黄特色一大片| 怎么达到女性高潮| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器 | 久久国产精品影院| 香蕉丝袜av| 丰满人妻熟妇乱又伦精品不卡| 悠悠久久av| 最近最新中文字幕大全免费视频| 日日爽夜夜爽网站| 一进一出好大好爽视频| 欧美黄色淫秽网站| 午夜视频精品福利| a在线观看视频网站| 国产成人免费无遮挡视频| 免费少妇av软件| 一边摸一边抽搐一进一小说| 热99国产精品久久久久久7| 久久中文看片网| 97超级碰碰碰精品色视频在线观看| 国产乱人伦免费视频| 国产一区二区三区综合在线观看| 国产精品久久电影中文字幕| 人人妻,人人澡人人爽秒播| 日韩人妻精品一区2区三区| 日韩大尺度精品在线看网址 | 亚洲av第一区精品v没综合| 91大片在线观看| 99久久人妻综合| 一边摸一边抽搐一进一小说| 国产精品乱码一区二三区的特点 | 欧美日韩福利视频一区二区| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 成熟少妇高潮喷水视频| 国产亚洲精品第一综合不卡| 日韩有码中文字幕| 亚洲中文字幕日韩| 一级片免费观看大全| 丝袜美足系列| 另类亚洲欧美激情| 夜夜夜夜夜久久久久| 欧美成人午夜精品| 在线看a的网站| 麻豆一二三区av精品| 精品一品国产午夜福利视频| 夜夜夜夜夜久久久久| 精品国产亚洲在线| 亚洲国产精品一区二区三区在线| 一区二区三区国产精品乱码| 亚洲精品久久成人aⅴ小说| 午夜老司机福利片| 色哟哟哟哟哟哟| 满18在线观看网站| 香蕉久久夜色| 欧美黑人欧美精品刺激| 欧美另类亚洲清纯唯美| 色在线成人网| 老司机午夜十八禁免费视频| 999精品在线视频| 亚洲黑人精品在线| 日韩国内少妇激情av| 久久香蕉国产精品| 人妻丰满熟妇av一区二区三区| 在线观看一区二区三区| 中文字幕色久视频| 国产男靠女视频免费网站| 成年人黄色毛片网站| 欧美性长视频在线观看| 午夜福利在线免费观看网站| 99精品在免费线老司机午夜| 亚洲男人天堂网一区| 精品午夜福利视频在线观看一区| 亚洲美女黄片视频| 久久九九热精品免费| 手机成人av网站| 欧美日韩中文字幕国产精品一区二区三区 | 最近最新免费中文字幕在线| 精品国产国语对白av| 少妇被粗大的猛进出69影院| 免费人成视频x8x8入口观看| 亚洲在线自拍视频| 黄网站色视频无遮挡免费观看| 欧美另类亚洲清纯唯美| 看片在线看免费视频| 黄色 视频免费看| 中文字幕人妻丝袜一区二区| 在线观看免费午夜福利视频| 色综合婷婷激情| 99久久人妻综合| 成人免费观看视频高清| 精品无人区乱码1区二区| 无限看片的www在线观看| 精品国产一区二区三区四区第35| 国产伦人伦偷精品视频| 首页视频小说图片口味搜索| 一区二区三区国产精品乱码| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美免费精品| 国产97色在线日韩免费| 国产乱人伦免费视频| 亚洲激情在线av| 在线观看免费午夜福利视频| 免费日韩欧美在线观看| 国内毛片毛片毛片毛片毛片| 亚洲在线自拍视频| 国产精品国产av在线观看| 可以免费在线观看a视频的电影网站| 18禁观看日本| 日韩有码中文字幕| 纯流量卡能插随身wifi吗| 久久精品成人免费网站| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 咕卡用的链子| av在线天堂中文字幕 | 国产精品综合久久久久久久免费 | 久久久精品国产亚洲av高清涩受| 男人舔女人的私密视频| 69精品国产乱码久久久| 国产深夜福利视频在线观看| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 国产亚洲精品久久久久5区| 91精品国产国语对白视频| 午夜免费观看网址| 国产97色在线日韩免费| 亚洲 欧美 日韩 在线 免费| 亚洲精华国产精华精| 99精品在免费线老司机午夜| 男人舔女人下体高潮全视频| 桃色一区二区三区在线观看| 午夜影院日韩av| 午夜老司机福利片| 波多野结衣高清无吗| 欧美日韩一级在线毛片| ponron亚洲| 真人一进一出gif抽搐免费| 在线观看66精品国产| 亚洲精品中文字幕一二三四区| 精品久久久精品久久久| 国产免费现黄频在线看| 在线国产一区二区在线| 色综合站精品国产| 亚洲国产欧美网| 成年人免费黄色播放视频| 91老司机精品| 男女床上黄色一级片免费看| 看免费av毛片| 啦啦啦 在线观看视频| 久久热在线av| 十八禁网站免费在线| 黄片播放在线免费| 精品乱码久久久久久99久播| 精品第一国产精品| 一二三四社区在线视频社区8| 成人18禁在线播放| 宅男免费午夜| 91大片在线观看| 亚洲视频免费观看视频| 中文字幕最新亚洲高清| 岛国视频午夜一区免费看| 天堂影院成人在线观看| 亚洲,欧美精品.| 国产片内射在线| 两个人免费观看高清视频| 成年女人毛片免费观看观看9| 亚洲成人免费av在线播放| 视频区图区小说| 国产欧美日韩一区二区三区在线| tocl精华| 老熟妇仑乱视频hdxx| 如日韩欧美国产精品一区二区三区| 夜夜看夜夜爽夜夜摸 | 亚洲国产精品合色在线| 母亲3免费完整高清在线观看| 美女国产高潮福利片在线看| 交换朋友夫妻互换小说| 麻豆成人av在线观看| 国产精品美女特级片免费视频播放器 | 男男h啪啪无遮挡| 精品人妻在线不人妻| 一区二区三区精品91| 国产伦一二天堂av在线观看| av欧美777| 超色免费av| 美国免费a级毛片| 1024香蕉在线观看| www.www免费av| 在线观看免费高清a一片| 亚洲人成网站在线播放欧美日韩| 久久久久久久午夜电影 | 亚洲少妇的诱惑av| 中国美女看黄片| 在线观看免费高清a一片| 国产成人系列免费观看| www.www免费av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲,欧美精品.| 色婷婷av一区二区三区视频| 激情在线观看视频在线高清| 亚洲精品美女久久久久99蜜臀| 一区二区三区精品91| 首页视频小说图片口味搜索| 黄片大片在线免费观看| 老司机亚洲免费影院| 日本精品一区二区三区蜜桃| 午夜久久久在线观看| 国产在线观看jvid| 在线观看日韩欧美| 亚洲熟女毛片儿| 视频在线观看一区二区三区| 手机成人av网站| 亚洲精品中文字幕一二三四区| 女人爽到高潮嗷嗷叫在线视频| 嫩草影院精品99| 黄色a级毛片大全视频| 黄色女人牲交| 日本一区二区免费在线视频| 12—13女人毛片做爰片一| 嫁个100分男人电影在线观看| 一二三四在线观看免费中文在| 免费人成视频x8x8入口观看| 美国免费a级毛片| 露出奶头的视频| 啦啦啦在线免费观看视频4| 在线免费观看的www视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 精品熟女少妇八av免费久了| 亚洲精品在线美女| 国产黄色免费在线视频| 国产乱人伦免费视频| 99国产精品一区二区蜜桃av| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 老司机午夜十八禁免费视频| 12—13女人毛片做爰片一| 国产精品久久视频播放| 老司机亚洲免费影院| 丝袜美腿诱惑在线| 精品久久久精品久久久| 嫩草影院精品99| 精品卡一卡二卡四卡免费| 国产精品日韩av在线免费观看 | 女人被狂操c到高潮| 97碰自拍视频| 久久久久九九精品影院| 又黄又爽又免费观看的视频| 亚洲av电影在线进入| 亚洲欧美日韩高清在线视频| 婷婷六月久久综合丁香| x7x7x7水蜜桃| 欧美日韩黄片免| 1024视频免费在线观看| 欧美 亚洲 国产 日韩一| 黄色视频,在线免费观看| 看片在线看免费视频| 国产黄a三级三级三级人| 搡老乐熟女国产| 日本 av在线| 老司机午夜福利在线观看视频| 97碰自拍视频| 操出白浆在线播放| 久久精品91蜜桃| 一个人观看的视频www高清免费观看 | 国产真人三级小视频在线观看| 日本撒尿小便嘘嘘汇集6| 日本免费一区二区三区高清不卡 | 亚洲人成电影观看| 久久人人97超碰香蕉20202| 亚洲成国产人片在线观看| 精品人妻在线不人妻| 人人妻人人添人人爽欧美一区卜| 丰满的人妻完整版| 天堂中文最新版在线下载| 亚洲一区中文字幕在线| 成人手机av| 乱人伦中国视频| 精品午夜福利视频在线观看一区| 亚洲,欧美精品.| 在线观看免费高清a一片| 国产伦人伦偷精品视频| 亚洲熟女毛片儿| 国产国语露脸激情在线看| 日韩成人在线观看一区二区三区| 国产高清videossex| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 天堂中文最新版在线下载| 亚洲五月色婷婷综合| 成人黄色视频免费在线看| 97碰自拍视频| 亚洲男人的天堂狠狠| 天堂动漫精品| 一本大道久久a久久精品| 久久精品成人免费网站| 嫩草影视91久久| 久久久久国产一级毛片高清牌| 久久精品国产清高在天天线| 亚洲avbb在线观看| 日韩欧美三级三区| 午夜91福利影院| 男女之事视频高清在线观看| 日韩中文字幕欧美一区二区| 国产国语露脸激情在线看| 巨乳人妻的诱惑在线观看| 两人在一起打扑克的视频| 黄色女人牲交| 精品高清国产在线一区| 一级片免费观看大全| 欧美日韩亚洲高清精品| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美一区二区三区在线观看| 国产aⅴ精品一区二区三区波| 成人亚洲精品一区在线观看| 9热在线视频观看99| 欧美色视频一区免费| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全电影3 | 久久人人精品亚洲av| 正在播放国产对白刺激| 亚洲人成77777在线视频| 水蜜桃什么品种好| 操出白浆在线播放| av欧美777| av国产精品久久久久影院| 午夜亚洲福利在线播放| 国产99白浆流出| 在线av久久热| 深夜精品福利| 免费在线观看视频国产中文字幕亚洲| 成人手机av| 日韩成人在线观看一区二区三区| 欧美久久黑人一区二区| 中文字幕另类日韩欧美亚洲嫩草| 动漫黄色视频在线观看| 久久精品国产99精品国产亚洲性色 | 在线视频色国产色| 欧美久久黑人一区二区| 久久中文字幕一级| 亚洲成人免费电影在线观看| 女人精品久久久久毛片| 18禁国产床啪视频网站| 一本综合久久免费| 欧美乱妇无乱码| 天天躁狠狠躁夜夜躁狠狠躁| 50天的宝宝边吃奶边哭怎么回事| 51午夜福利影视在线观看| 身体一侧抽搐| 精品午夜福利视频在线观看一区| 亚洲精品美女久久av网站| 中文字幕人妻丝袜一区二区| 热re99久久国产66热| 色精品久久人妻99蜜桃| 大型黄色视频在线免费观看| 成人18禁在线播放| 日韩视频一区二区在线观看| 亚洲三区欧美一区| 免费不卡黄色视频| 亚洲男人天堂网一区| 老司机深夜福利视频在线观看| 午夜精品在线福利| 日韩 欧美 亚洲 中文字幕| 啦啦啦在线免费观看视频4| 免费搜索国产男女视频| 亚洲av成人不卡在线观看播放网| 日本三级黄在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品合色在线| 国产极品粉嫩免费观看在线| 黄色女人牲交| 欧美日韩国产mv在线观看视频| 久久久久九九精品影院| 亚洲国产精品999在线| 久久人人爽av亚洲精品天堂| 亚洲国产精品一区二区三区在线| ponron亚洲| 高清在线国产一区| 成在线人永久免费视频| 精品一区二区三区视频在线观看免费 | 无限看片的www在线观看| 午夜精品在线福利| av在线播放免费不卡| 一级毛片精品| 一边摸一边抽搐一进一小说| 久久国产乱子伦精品免费另类| 欧美久久黑人一区二区| 日日干狠狠操夜夜爽| 18禁观看日本| 欧美大码av| 51午夜福利影视在线观看| 女人被躁到高潮嗷嗷叫费观| svipshipincom国产片| 99国产综合亚洲精品| 亚洲精品中文字幕在线视频| 免费久久久久久久精品成人欧美视频| 久久久久久大精品| 国产亚洲精品久久久久久毛片| 在线av久久热| 欧美激情极品国产一区二区三区| 变态另类成人亚洲欧美熟女 | 免费日韩欧美在线观看| 18禁黄网站禁片午夜丰满| 91麻豆精品激情在线观看国产 | 日韩大码丰满熟妇| 一级a爱片免费观看的视频| 亚洲 欧美一区二区三区| 亚洲五月天丁香| 亚洲美女黄片视频| 国产激情欧美一区二区| 一边摸一边抽搐一进一小说| 亚洲国产精品999在线| 国产成人免费无遮挡视频| 久久天躁狠狠躁夜夜2o2o| 无遮挡黄片免费观看| 怎么达到女性高潮| 一级,二级,三级黄色视频| 波多野结衣av一区二区av| 丁香六月欧美| 桃红色精品国产亚洲av| 久久狼人影院| 欧美乱码精品一区二区三区| 国产欧美日韩一区二区精品| 国产免费av片在线观看野外av| 亚洲国产欧美网| 成人黄色视频免费在线看| 国产蜜桃级精品一区二区三区| 韩国av一区二区三区四区| 久久久国产成人免费| 亚洲激情在线av| 又黄又爽又免费观看的视频| 日韩一卡2卡3卡4卡2021年| 亚洲av成人av|