• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological Characterization of Book Graph and Stacked Book Graph

    2019-07-18 01:58:50RaghisaKhalidNazeranIdreesandMuhammadJawwadSaif
    Computers Materials&Continua 2019年7期

    Raghisa Khalid, Nazeran Idrees, and Muhammad Jawwad Saif

    Abstract: Degree based topological indices are being widely used in computer-aided modeling, structural activity relations, and drug designing to predict the underlying topological properties of networks and graphs.In this work, we compute the certain important degree based topological indices like Randic index, sum connectivity index, ABC index, ABC4 index, GA index and GA5 index of Book graph Bn and Stacked book graph Bm ,n.The results are analyzed by using edge partition, and the general formulas are derived for the above-mentioned families of graphs.

    Keywords: Topological indices, Book graph Bn , Stacked book graph Bm ,n, network.

    1 Introduction

    Graph theory is used as a tool for designing and modeling chemical structures, complex network, and modeling of daily-life problems.In recent years, chemical structures and pharmaceutical techniques have been rapidly developed.In this period of rapid technological development, a huge number of new crystalline materials, nanomaterial, and drugs are designed using computer-aided modeling techniques.Researchers have found the topological index to be an influential and valuable tool in the narrative of molecular or network structure.A non-empirical scientific amount which quantitates the molecular structure and its branching pattern is described as a topological index of the associated graph.The chemical graph theory put on the tools from graph theory to mathematical models of molecular singularities, which is helpful for the study of molecular modeling and molecular structure.This theory plays a vigorous role in the field of theoretical chemical sciences.

    In this paper all molecular graphs are considered to be connected, finite, loopless and deprived of parallel edges.Let F be a graph with n vertices and m edges.The degree of a vertex is the number of vertices adjacent to q and is signified as d(q) .By these terminologies, certain topological indices are well-defined in the following way.

    The Randic index is the oldest degree based topological index and is signified as χ(F) and presented by Randic [Randic (1975)].He proposed this index for calculating the degree of branching of the carbon-atom skeleton of saturated hydrocarbons.Li et al.[Li and Shi (2008)] gave a comprehensive survey of the Randic index.

    Definition 1.1For any molecular graph F, the Randic index is defined as

    A variation of Randic connectivity index is the sum connectivity index [Zhou and Trinajstic (2009)].

    Definition 1.2.For a molecular graph F, the sum connectivity index is defined as

    Estrada et al.[Estrada, Torres and Rodriguez (1998)] proposed a degree based topological index of graphs, which is said to be the atom-bond connectivity index.Further, he proposed the atom-bond connectivity index of branched alkanes [Estrada (2008)].For the atom-bond connectivity index several upper bounds for graphs are established and also studied in the context of the connected graph, and bicyclic chemical graphs [Chen, Liu and Guo (2012); Chen and Guo (2012); Xing, Zhou and Dong (2011)].

    Definition 1.3.Let F be a molecular graph; then ABC index is defined as

    The geometric-arithmetic index is associated with a variation of physiochemical properties.It can be used as a possible tool for QSPR/QSAR research.Vukicevic et al.[Vukicevic and Furtula (2009)] introduced the geometric-arithmetic( GA) index.

    Definition 1.4.Let F be a molecular graph, then geometric-arithmetic index is defined as

    Ghorbani et al.[Ghorbani and Hosseinzadeh (2010)] presented the fourth ABC index.

    Definition 1.5.Let F be a molecular graph; then ABC4index is defined as

    where Sqis the summation of degrees of all the neighbors of a vertex q in F.

    Recently Graovac et al.[Graovac, Ghorbani and Hosseinzadeh (2011)] proposed the fifth GA index, which is defined below.

    Definition 6.Let F be a molecular graph; then5GA index is defined as

    Degree based topological indices are rigorously studied for nanotubes, computer networks and many other chemical graphs, for recent development in literature [Idrees, Said, Rauf et al.(2017); Gao, Wu, Siddiqui et al.(2018); Idrees, Hussain and Sadiq (2018); Imran, Baig Rehman et al.(2018); Joan (2019)].Some other interesting results about network analysis using topological indices can be found in Hayat et al.[Hayat and Imran (2014); Javaid and Cao (2018)].

    2 Main results for Book graph

    Book graph Bnis obtained by taking cartesian product of star graph Sn+1with a path of length two P2, i.e.,Bn:= Sn+1□P2, as shown in Fig.1.The degree based topological indices like Randic index, sum connectivity index, atom-bond connectivity index, geometric-arithmetic index, fourth atom-bond connectivity index, GA5index for Book graph Bnare computed in this section.

    Figure 1: A representation of Book graph nB

    Table 1: Partition of edge created by the sum of adjacent vertices of every line

    Theorem 2.1

    Let Bnbe the book graph.Then

    i) The Randic index of Book graph is

    ii) The Sum-connectivity index of Book graph (Bn)is

    iii) The Atom bond connectivity index of Book graph is

    iv) The geometric-arithmetic index (GA) of Book graph is

    Proof.For the Book graph Bn, we divider the edges of Bninto edges of the form Edq,dr, where qr is an edge.We develop the edges of the form E(2,2), E(2,n+1)andIn Fig.1, E(2,2), E(2,n+1)andare colored in red, lavender and green, respectively.The number of edges of these forms are given in the Tab.1.

    Using Tab.1, we get

    Theorem 2.2

    i) The fourth atom bond connectivity index (ABC4) Book graph is

    ii) The Fifth geometric arithmetic index (5GA)of Book graph is

    Proof.Consider the Book graph Bn.The edges of Bncan be divided into edges of formwhere qr is an edge.We develop the edges of the formandthat are shown in Tab.2 given below, by evaluating sum of degrees of neighboring vertices.

    Table 2: Partition of edges created by the sum of degrees of neighbors of the head-to-head vertices of every edge

    From Tab.2, we get

    Substituting the values from Tab.2,

    and we get the desired result.

    3 Main results for Stacked book graph

    The Stacked book graph of order (m,n), denoted by Bm,nis the Cartesian productof graphs, where Smis a star graph and Pnis the path graph on n points.It is therefore the graph resultant to the edges of n copies of an m-page book stacked one on top of another and is a generalization of the book graph.The degree based topological indices like Randic, sum, atom-bond, geometric-arithmetic, fourth atom-bond, fifth geometric-arithmetic connectivity index for Stacked book graph,mnB are computed in this section.These graph invariants are computed by edge partition based on degrees of end vertices of edges as given in Tab.3 below.

    Figure 2: A representation of Stacked book graph B5,7

    Table 3: Edge partition created by sum of adjacent vertices of every line

    Theorem 3.1

    i) The Randic connectivity index of Stacked book graph is

    χ(Bm,n)=where 6n ≥ .

    ii) The sum connectivity index of Stacked book graph iswhere n ≥ 6.

    iii) The Atom bond connectivity index (ABC)of Stacked book graph is

    iv) The Geometric-Arithmetic index (GA)o stacked book graph is GA( Bm,n)=Proof.Consider the Stacked book graph Bm,n.The edges of Bm,ncan be partitioned into edges of the form Edq,dr, where qr is an edge.In Bm,n, We develop the edges of the formandIn Fig.2,andare colored by red, bright green, lavender, pink, navy blue, and silver.The sum of edges of these forms is given in the Tab.3.

    Substituting the values from Tab.3, we get,

    Substituting the values from Tab.3, we get

    From Tab.3, we get,

    Using edge partition given in Tab.3, we have

    After simplification, we have

    Theorem 3.2

    The Fourth atom bond connectivity index (ABC4) and fifth geometric-arithmetic index (GA5) of Stacked book graph Bm,nare given as

    Proof.Consider the Stacked book graph,mnB .The edges of,mnB can be partitioned into edges of the formwhere qr is an edge.In Bm,n.We develop the edges of the formandthat are shown in Tab.4.

    Table 4: Edge partition created by the sum of degrees of neighbors of the head-to-head vertices of every edge

    Using the edge partition given in Tab.4, we have

    After further simplification, we get

    which yields the required result.

    Again substituting the values from Tab.4, we get

    4 Conclusion

    In this work, we analyzed the graph-theoretic invariants of certain networks dependent upon connectivity of the nodes like ABC index, ABC4index, Randic connectivity index, sum connectivity index, GA index and5GA index of Book graphnB and Stacked book graph Bm,n.The results can be applied to investigate the topological properties of the computer network and structure-activity relation where the graph correspond to book graph and stacked book graph.We derived the general formulas of various degree based topological indices and computed the results analytically for the above-mentioned families of the graph.These graph-theoretic invariants depend upon connectivity of the nodes of the graph.These results can be employed to further understand the topological properties of graphs with graph-theoretic properties.

    References

    Chen, J.; Li, S.(2011): On the sum-connectivity index of unicyclic graphs with k pendent vertices.Mathematical Communications, vol.16, no.2, pp.359-368.

    Chen, J.; Liu, J.; Guo, X.(2012): Some upper bounds for the atom-bond connectivity index of graphs.Applied Mathematics Letters, vol.25.no.7, pp.1077-1081.

    Chen, J.S.; Guo, X.F.(2012): The atom-bond connectivity index of chemical bicyclic graphs.Applied Mathematics-A Journal of Chinese Universities, vol.27, no.2, pp.243-252.

    Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I.(1998): An atom-bond connectivity index: modelling the enthalpy of formation of alkanes.Indian Journal of Chemistry, vol.37, no.10, pp.849-855.

    Estrada, E.(2008): Atom-bond connectivity and the energetic of branched alkanes.Chemical Physics Letters, vol.463, no.4, pp.422-425.

    Farahani, M.R.(2013): On the fourth atom-bond connectivity index of Armchair Polyhex Nanotubes.Proceedings of Romanian Academy Series B, vol.15, no.1, pp.3-6.

    Ghorbani, M.; Hosseinzadeh, M.A.(2010): Computing ABC4index of nanostar dendrimers.Optoelectronics and Advanced Materials Rapid Communications, vol.4, no.9, pp.1419-1422.

    Graovac, A.; Ghorbani, M.; Hosseinzadeh, M.A.(2011): Computing fifth geometricarithmetic index for nanostar dendrimers.Journal of Mathematical Nanoscience, vol.1, no.1, pp.33-42.

    Hayat, S.; Imran, M.(2014): Computation of topological indices of certain networks.Applied Mathematics and Computation, vol.240, pp.213-228.

    Idrees, N.; Saif, M.; Rauf, A.; Mustafa, S.(2017): First and second Zagreb eccentricity indices of thorny graphs.Symmetry, vol.9, no.1, pp.7-16.

    Idrees, N.; Hussain, F.; Sadiq, A.(2018): Topological properties of benzenoid graphs.University Politehnica of Bucharest Scientific Bulletin Series B-Chemistry and Materials Science, vol.80, no.1, pp.145-156.

    Javaid, M.; Cao, J.(2018): Computing topological indices of probabilistic neural network.Neural Computing and Applications, vol.30, no.12, pp.3869-3876.

    Joan, K.(2019): Some topological indices computing results of archimedean lattices l (4, 6, 12).Computers, Materials & Continua, vol.58, no.1, pp.121-133.

    Li, X.; Shi, Y.(2008): A survey on the Randic index.MATCH Communications in Mathematical and Computational Chemistry, vol.59, no.1, pp.127-56.

    Randic, M.(1975): Characterization of molecular branching.Journal of the American Chemical Society, vol.97, no.23, pp.6609-6615.

    Xing, R.; Zhou, B.; Dong F.(2011): On atom-bond connectivity index of connected graphs.Discrete Applied Mathematics, vol.159, no.15, pp.1617-1630.

    Zhou, B.; Trinajsti?, N.(2009): On a novel connectivity index.Journal of Mathematical Chemistry, vol.46, no.4, pp.1252-1270.

    老司机影院毛片| 国产精品偷伦视频观看了| 宅男免费午夜| 午夜免费成人在线视频| 国产精品熟女久久久久浪| 精品国内亚洲2022精品成人 | 中文字幕精品免费在线观看视频| 最近最新免费中文字幕在线| bbb黄色大片| 我要看黄色一级片免费的| 18禁美女被吸乳视频| 国产视频一区二区在线看| 91麻豆av在线| www日本在线高清视频| 九色亚洲精品在线播放| 国产男女超爽视频在线观看| 人人妻人人爽人人添夜夜欢视频| 少妇被粗大的猛进出69影院| 天堂俺去俺来也www色官网| 色综合婷婷激情| 一级毛片精品| 色尼玛亚洲综合影院| 日韩中文字幕视频在线看片| 法律面前人人平等表现在哪些方面| e午夜精品久久久久久久| 俄罗斯特黄特色一大片| 国产欧美亚洲国产| 男女午夜视频在线观看| 久久人人97超碰香蕉20202| 亚洲欧美精品综合一区二区三区| 超碰成人久久| 久久国产亚洲av麻豆专区| 在线观看免费高清a一片| 国产亚洲午夜精品一区二区久久| 国产麻豆69| 欧美日韩成人在线一区二区| 69av精品久久久久久 | 嫁个100分男人电影在线观看| 精品人妻熟女毛片av久久网站| 国产精品久久久av美女十八| 亚洲va日本ⅴa欧美va伊人久久| 青青草视频在线视频观看| 久久久久久久久免费视频了| 日本撒尿小便嘘嘘汇集6| 国产麻豆69| 国产精品一区二区在线观看99| 国产精品二区激情视频| 美女福利国产在线| 99精品在免费线老司机午夜| 精品一区二区三区av网在线观看 | 深夜精品福利| 日韩精品免费视频一区二区三区| 精品福利观看| 亚洲成人手机| netflix在线观看网站| 性少妇av在线| 天天添夜夜摸| 久久精品熟女亚洲av麻豆精品| 在线观看免费视频日本深夜| www日本在线高清视频| 亚洲欧美精品综合一区二区三区| 黑人猛操日本美女一级片| 久久久精品94久久精品| 多毛熟女@视频| 亚洲人成77777在线视频| 91成年电影在线观看| 久久久久精品人妻al黑| a级片在线免费高清观看视频| 露出奶头的视频| 国产精品九九99| 国产一区二区三区在线臀色熟女 | 国产97色在线日韩免费| 国产麻豆69| 高清av免费在线| 午夜久久久在线观看| 久久午夜综合久久蜜桃| 精品国内亚洲2022精品成人 | 国产一区有黄有色的免费视频| 考比视频在线观看| 国产一区二区三区综合在线观看| 国产一卡二卡三卡精品| av天堂在线播放| 丝袜在线中文字幕| 99久久人妻综合| 午夜福利欧美成人| 美女高潮喷水抽搐中文字幕| 日韩三级视频一区二区三区| 久久久久精品人妻al黑| 国产在线免费精品| 国产精品av久久久久免费| 最近最新免费中文字幕在线| 久久性视频一级片| 成年人黄色毛片网站| 一区二区av电影网| 亚洲国产av影院在线观看| 精品一区二区三区四区五区乱码| 亚洲人成电影免费在线| 国产国语露脸激情在线看| 欧美日韩一级在线毛片| 精品国产乱码久久久久久小说| 热99re8久久精品国产| 国产精品秋霞免费鲁丝片| 亚洲第一欧美日韩一区二区三区 | 老熟妇仑乱视频hdxx| 亚洲欧美精品综合一区二区三区| 久热爱精品视频在线9| 国产亚洲一区二区精品| 亚洲熟女毛片儿| 18禁观看日本| 精品一区二区三区视频在线观看免费 | 精品人妻1区二区| 欧美 日韩 精品 国产| 国产又爽黄色视频| 国产高清激情床上av| 另类亚洲欧美激情| 欧美激情极品国产一区二区三区| 久久中文字幕人妻熟女| 国产一区二区三区综合在线观看| 一区二区三区激情视频| av福利片在线| 成年人黄色毛片网站| 十分钟在线观看高清视频www| 淫妇啪啪啪对白视频| 国产精品1区2区在线观看. | netflix在线观看网站| 国产亚洲av高清不卡| videos熟女内射| 欧美日本中文国产一区发布| cao死你这个sao货| 久久久精品国产亚洲av高清涩受| 黑人猛操日本美女一级片| 亚洲自偷自拍图片 自拍| 亚洲 国产 在线| 久久中文看片网| 亚洲美女黄片视频| 天堂动漫精品| 两性夫妻黄色片| 久久久久精品国产欧美久久久| 色播在线永久视频| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频| 欧美乱妇无乱码| 精品午夜福利视频在线观看一区 | 久久热在线av| 亚洲人成电影免费在线| 中文欧美无线码| 午夜成年电影在线免费观看| 黑人操中国人逼视频| 在线观看免费视频日本深夜| 国产又爽黄色视频| 日韩三级视频一区二区三区| 久久国产精品男人的天堂亚洲| 日韩欧美免费精品| 高清视频免费观看一区二区| 日韩欧美三级三区| 日韩三级视频一区二区三区| 叶爱在线成人免费视频播放| 欧美精品一区二区大全| 丁香六月欧美| 色综合欧美亚洲国产小说| aaaaa片日本免费| 大香蕉久久成人网| 亚洲少妇的诱惑av| 亚洲色图av天堂| 王馨瑶露胸无遮挡在线观看| 夜夜夜夜夜久久久久| 午夜老司机福利片| 一区二区av电影网| 成人国产av品久久久| 国产亚洲精品第一综合不卡| 高清黄色对白视频在线免费看| 亚洲午夜理论影院| 青青草视频在线视频观看| 国产高清videossex| 一区二区三区精品91| 国产欧美日韩精品亚洲av| 欧美在线黄色| 亚洲成人免费电影在线观看| 免费日韩欧美在线观看| 午夜福利乱码中文字幕| 亚洲中文字幕日韩| 久久久久久人人人人人| 九色亚洲精品在线播放| 一区二区av电影网| 老司机影院毛片| 丝瓜视频免费看黄片| 黄色毛片三级朝国网站| 国产在视频线精品| 少妇被粗大的猛进出69影院| 亚洲人成伊人成综合网2020| 波多野结衣av一区二区av| 一区二区三区国产精品乱码| 可以免费在线观看a视频的电影网站| 国产区一区二久久| 18禁裸乳无遮挡动漫免费视频| 国产精品香港三级国产av潘金莲| 国产欧美日韩综合在线一区二区| 亚洲七黄色美女视频| 中文字幕高清在线视频| 久久这里只有精品19| 最近最新中文字幕大全电影3 | 久久狼人影院| 国产在线一区二区三区精| 国产视频一区二区在线看| 国产欧美日韩一区二区三区在线| 亚洲av美国av| 露出奶头的视频| 久久免费观看电影| 亚洲国产中文字幕在线视频| 国产成人免费无遮挡视频| 一本综合久久免费| 大片免费播放器 马上看| 一边摸一边抽搐一进一出视频| 欧美 日韩 精品 国产| 日韩中文字幕欧美一区二区| 99国产极品粉嫩在线观看| 日韩成人在线观看一区二区三区| 成人特级黄色片久久久久久久 | 免费黄频网站在线观看国产| 亚洲少妇的诱惑av| 国产精品影院久久| 99久久人妻综合| 国产在线观看jvid| 精品国产一区二区三区四区第35| 亚洲美女黄片视频| www.999成人在线观看| 欧美日韩一级在线毛片| 中文字幕最新亚洲高清| 五月天丁香电影| 成人国产一区最新在线观看| 亚洲视频免费观看视频| 国产欧美亚洲国产| 三上悠亚av全集在线观看| 男女高潮啪啪啪动态图| 精品欧美一区二区三区在线| 久久人妻av系列| 91精品国产国语对白视频| 国产老妇伦熟女老妇高清| 麻豆成人av在线观看| 999久久久国产精品视频| 欧美激情 高清一区二区三区| cao死你这个sao货| 中文欧美无线码| 视频区图区小说| 国产精品秋霞免费鲁丝片| 狠狠婷婷综合久久久久久88av| 五月天丁香电影| 成年人午夜在线观看视频| 日本黄色视频三级网站网址 | 日本vs欧美在线观看视频| 一区二区av电影网| 欧美中文综合在线视频| 成年女人毛片免费观看观看9 | 亚洲精品国产色婷婷电影| 最新的欧美精品一区二区| 在线观看一区二区三区激情| 高清视频免费观看一区二区| 黄频高清免费视频| 欧美精品一区二区免费开放| 日本a在线网址| 亚洲,欧美精品.| 性高湖久久久久久久久免费观看| 国产又爽黄色视频| 国产成人欧美| 国产精品久久久久久人妻精品电影 | 变态另类成人亚洲欧美熟女 | 久久久久久久久久久久大奶| 下体分泌物呈黄色| 精品少妇一区二区三区视频日本电影| 黑人巨大精品欧美一区二区蜜桃| 欧美+亚洲+日韩+国产| 午夜免费成人在线视频| 欧美午夜高清在线| 国产欧美亚洲国产| 天天添夜夜摸| 两性夫妻黄色片| 成人国产av品久久久| 国产在线免费精品| 露出奶头的视频| 老司机影院毛片| 欧美精品人与动牲交sv欧美| 91精品国产国语对白视频| 90打野战视频偷拍视频| 久久毛片免费看一区二区三区| 国产又色又爽无遮挡免费看| 极品教师在线免费播放| 国产欧美日韩一区二区精品| 欧美精品av麻豆av| 久久九九热精品免费| tube8黄色片| 精品人妻在线不人妻| 午夜福利免费观看在线| 视频在线观看一区二区三区| 欧美中文综合在线视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美 亚洲 国产 日韩一| 亚洲 国产 在线| 亚洲熟妇熟女久久| 十八禁人妻一区二区| 国产aⅴ精品一区二区三区波| a级毛片黄视频| 男女无遮挡免费网站观看| 极品教师在线免费播放| 久久香蕉激情| 国产在线免费精品| 在线观看一区二区三区激情| 考比视频在线观看| 欧美激情极品国产一区二区三区| 99精国产麻豆久久婷婷| 日韩一卡2卡3卡4卡2021年| 多毛熟女@视频| 黄色视频在线播放观看不卡| 午夜福利一区二区在线看| 中国美女看黄片| 亚洲精品国产色婷婷电影| 一二三四在线观看免费中文在| av欧美777| 午夜精品久久久久久毛片777| 女人爽到高潮嗷嗷叫在线视频| 丁香六月天网| 国产成人精品无人区| 午夜久久久在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲精品中文字幕一二三四区 | 精品国产超薄肉色丝袜足j| 精品国产一区二区三区久久久樱花| 免费av中文字幕在线| 欧美+亚洲+日韩+国产| 老鸭窝网址在线观看| 色视频在线一区二区三区| 波多野结衣av一区二区av| 欧美精品一区二区免费开放| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区激情| 欧美黄色片欧美黄色片| 亚洲欧美日韩另类电影网站| 欧美黑人精品巨大| 日韩人妻精品一区2区三区| 啦啦啦在线免费观看视频4| 12—13女人毛片做爰片一| 免费观看av网站的网址| 久久人人爽av亚洲精品天堂| 不卡一级毛片| 大香蕉久久网| 桃花免费在线播放| 久久久久久免费高清国产稀缺| 性高湖久久久久久久久免费观看| 成人国语在线视频| 国产激情久久老熟女| 桃红色精品国产亚洲av| 免费在线观看日本一区| 无遮挡黄片免费观看| 丝袜人妻中文字幕| 法律面前人人平等表现在哪些方面| 欧美成人午夜精品| 男女床上黄色一级片免费看| 女人精品久久久久毛片| 激情在线观看视频在线高清 | 18禁观看日本| 人人妻人人爽人人添夜夜欢视频| 麻豆国产av国片精品| 亚洲国产欧美一区二区综合| 久久人妻熟女aⅴ| 日韩大片免费观看网站| 午夜激情av网站| 日韩欧美三级三区| 18禁黄网站禁片午夜丰满| 99精品在免费线老司机午夜| 男女无遮挡免费网站观看| 国产不卡av网站在线观看| 国产成人影院久久av| 50天的宝宝边吃奶边哭怎么回事| 久热爱精品视频在线9| 色综合欧美亚洲国产小说| 麻豆国产av国片精品| www.精华液| 超碰97精品在线观看| 国产伦人伦偷精品视频| 啦啦啦中文免费视频观看日本| 中文亚洲av片在线观看爽 | 天堂俺去俺来也www色官网| 久久久国产欧美日韩av| 亚洲性夜色夜夜综合| 午夜福利在线观看吧| 深夜精品福利| 啪啪无遮挡十八禁网站| 国产成人av教育| 久久午夜亚洲精品久久| 两个人看的免费小视频| 亚洲av片天天在线观看| 成人特级黄色片久久久久久久 | 亚洲全国av大片| 18禁国产床啪视频网站| 免费观看人在逋| 极品人妻少妇av视频| 建设人人有责人人尽责人人享有的| 亚洲熟妇熟女久久| 大码成人一级视频| 欧美性长视频在线观看| 日韩免费av在线播放| 我要看黄色一级片免费的| 自线自在国产av| 丰满饥渴人妻一区二区三| 狠狠精品人妻久久久久久综合| 国产一区二区三区综合在线观看| 别揉我奶头~嗯~啊~动态视频| 一本大道久久a久久精品| 国产亚洲欧美在线一区二区| 国产一区二区 视频在线| 美女午夜性视频免费| 亚洲人成电影免费在线| 国产成+人综合+亚洲专区| 国产午夜精品久久久久久| 亚洲欧洲精品一区二区精品久久久| 欧美在线黄色| 首页视频小说图片口味搜索| www.自偷自拍.com| 亚洲人成电影观看| 美国免费a级毛片| 国产欧美日韩精品亚洲av| 亚洲精品自拍成人| 成人亚洲精品一区在线观看| 亚洲欧洲日产国产| 精品国产超薄肉色丝袜足j| 天天添夜夜摸| 黄色a级毛片大全视频| 一区二区三区激情视频| 高清视频免费观看一区二区| 热99re8久久精品国产| 最近最新中文字幕大全电影3 | 一级a爱视频在线免费观看| 亚洲伊人色综图| 精品国产乱码久久久久久男人| 国产麻豆69| 香蕉久久夜色| 黄网站色视频无遮挡免费观看| 欧美激情 高清一区二区三区| 日本a在线网址| 99热网站在线观看| 老司机亚洲免费影院| 人妻 亚洲 视频| 在线观看免费视频日本深夜| 国产精品一区二区精品视频观看| 咕卡用的链子| 国产在线观看jvid| 亚洲中文av在线| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 一区福利在线观看| 国产在线视频一区二区| 国产精品 国内视频| 国产精品久久电影中文字幕 | 极品教师在线免费播放| av片东京热男人的天堂| 色老头精品视频在线观看| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久电影网| 色婷婷久久久亚洲欧美| 午夜福利乱码中文字幕| 久久性视频一级片| 真人做人爱边吃奶动态| 在线观看一区二区三区激情| 国产欧美日韩综合在线一区二区| 热re99久久国产66热| 99国产极品粉嫩在线观看| 大陆偷拍与自拍| www.精华液| 丝袜在线中文字幕| 欧美日韩亚洲综合一区二区三区_| tocl精华| 咕卡用的链子| 国产高清激情床上av| 久久国产精品大桥未久av| 高清视频免费观看一区二区| 国产精品av久久久久免费| av网站免费在线观看视频| tocl精华| 亚洲人成77777在线视频| 欧美成狂野欧美在线观看| 黄色毛片三级朝国网站| 欧美在线黄色| 一夜夜www| 精品国产乱子伦一区二区三区| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| 国产精品美女特级片免费视频播放器 | 精品视频人人做人人爽| 欧美日韩视频精品一区| 亚洲成人手机| 亚洲精品在线观看二区| 免费女性裸体啪啪无遮挡网站| 免费在线观看黄色视频的| 国产免费现黄频在线看| 国产免费现黄频在线看| 十分钟在线观看高清视频www| 九色亚洲精品在线播放| 亚洲男人天堂网一区| 女警被强在线播放| 一边摸一边抽搐一进一出视频| 国产成人系列免费观看| 电影成人av| 黄色毛片三级朝国网站| 国产精品久久久人人做人人爽| 国产欧美日韩一区二区精品| 91九色精品人成在线观看| 国产精品免费一区二区三区在线 | 欧美国产精品一级二级三级| 久久婷婷成人综合色麻豆| 香蕉丝袜av| 久久午夜综合久久蜜桃| 亚洲av成人不卡在线观看播放网| 日韩有码中文字幕| 一二三四在线观看免费中文在| 极品教师在线免费播放| 91大片在线观看| 老汉色∧v一级毛片| 亚洲七黄色美女视频| 久久影院123| 国产日韩欧美亚洲二区| 电影成人av| 成人国语在线视频| 精品一区二区三区四区五区乱码| 午夜福利影视在线免费观看| 天天躁夜夜躁狠狠躁躁| 黄色视频不卡| 久久久国产成人免费| 国产成+人综合+亚洲专区| 在线天堂中文资源库| 大片电影免费在线观看免费| 日韩一区二区三区影片| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 国精品久久久久久国模美| 亚洲av成人不卡在线观看播放网| 超色免费av| 国产亚洲午夜精品一区二区久久| 亚洲精品久久成人aⅴ小说| 性少妇av在线| 午夜精品国产一区二区电影| 久久久久久久久久久久大奶| 国产麻豆69| 国产精品久久久久久精品电影小说| 露出奶头的视频| 久久午夜综合久久蜜桃| 97在线人人人人妻| 亚洲一区二区三区欧美精品| 午夜激情久久久久久久| 老汉色∧v一级毛片| 欧美在线一区亚洲| 天天添夜夜摸| 在线观看免费午夜福利视频| 又黄又粗又硬又大视频| 久久中文看片网| 免费不卡黄色视频| 欧美人与性动交α欧美软件| 男女床上黄色一级片免费看| 欧美另类亚洲清纯唯美| 国产深夜福利视频在线观看| 国产成人精品在线电影| 后天国语完整版免费观看| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲欧美在线一区二区| 亚洲avbb在线观看| 亚洲三区欧美一区| 91av网站免费观看| 午夜久久久在线观看| 少妇粗大呻吟视频| 久久中文字幕一级| 伦理电影免费视频| 18禁观看日本| 视频在线观看一区二区三区| 精品少妇内射三级| 亚洲第一青青草原| 国产一区二区 视频在线| 黑人巨大精品欧美一区二区蜜桃| 少妇 在线观看| 美女高潮到喷水免费观看| 国产日韩一区二区三区精品不卡| 国产又色又爽无遮挡免费看| 欧美日韩亚洲综合一区二区三区_| 最新美女视频免费是黄的| 自线自在国产av| 国产精品成人在线| 一区二区三区乱码不卡18| 国产免费av片在线观看野外av| 高清视频免费观看一区二区| 亚洲av欧美aⅴ国产| 一级毛片精品| 亚洲久久久国产精品| 久久久精品94久久精品| 丁香欧美五月| 久久香蕉激情| 一边摸一边做爽爽视频免费| 男女下面插进去视频免费观看| 一本久久精品| 女性生殖器流出的白浆| 人人澡人人妻人| 久久精品国产亚洲av香蕉五月 | av天堂在线播放| 精品亚洲成a人片在线观看| 久久久国产成人免费| 国产精品亚洲av一区麻豆| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃| 久久性视频一级片| 一二三四在线观看免费中文在| 肉色欧美久久久久久久蜜桃| 一本大道久久a久久精品| 国产成人精品在线电影| 高潮久久久久久久久久久不卡| 欧美日韩av久久| 亚洲男人天堂网一区| 国产色视频综合| 美女高潮喷水抽搐中文字幕|