• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于RWEQ的三江源地區(qū)防風(fēng)固沙與NPP研究

      2019-07-08 02:55:40賀倩戴曉愛
      湖北農(nóng)業(yè)科學(xué) 2019年10期
      關(guān)鍵詞:防風(fēng)固沙相關(guān)性分析

      賀倩 戴曉愛

      摘要:分別基于RWEQ模型和改進(jìn)的CASA模型對(duì)2015年三江源地區(qū)的防風(fēng)固沙量和NPP進(jìn)行評(píng)估,并利用格網(wǎng)法探究?jī)烧咧g的關(guān)系。結(jié)果表明,該地區(qū)的潛在風(fēng)蝕和實(shí)際風(fēng)蝕程度整體上都表現(xiàn)為西高東低,固沙量呈現(xiàn)出中部高、西部和東部較低的空間分布特征,平均固沙量為29.51 kg/m2,土壤風(fēng)蝕處于中等水平;與土壤風(fēng)蝕相反的是NPP呈現(xiàn)出東高西低的空間分布特征;該地區(qū)潛在風(fēng)蝕量與NPP存在著一定程度的線性關(guān)系(R2=0.47),而實(shí)際風(fēng)蝕量與NPP表現(xiàn)為顯著的指數(shù)關(guān)系(R2=0.91)。此外,固沙量隨著NPP的增加先增加后減少,固沙量達(dá)到最值時(shí),NPP約為300 gC/m2。

      關(guān)鍵詞:RWEQ;防風(fēng)固沙;NPP;相關(guān)性分析;三江源地區(qū)

      中圖分類號(hào):Q14;Q948? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A

      文章編號(hào):0439-8114(2019)10-0045-06

      DOI:10.14088/j.cnki.issn0439-8114.2019.10.011? ? ? ? ? ?開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):

      Abstract: The sand-fixing amount and NPP were evaluated in the Three-River headwaters region in 2015 based on RWEQ model and improved CASA model respectively, and the relationship between them explored using the grid. The results showed that the potential wind erosion and actual wind erosion degree in this area were high in the west and low in the east as a whole, and the sand-fixing amount was high in the middle and low in the west and the east. The average sand fixation amount was 29.51 kg/m2, and the soil wind erosion was at the middle level. Contrary to the soil wind erosion, the spatial distribution characteristic of NPP was high in the east and low in the west. There was a linear relationship between the amount of potential wind erosion and NPP(R2=0.47), while the actual wind erosion and NPP showed a significant exponential relationship (R2=0.91). In addition, with the increase of NPP, the sand-fixing capacity firstly increased and then decreased. At the maximum of sand-fixing capacity, NPP was about 300 gC/m2.

      Key words: RWEQ; sand fixation; NPP; correlation analysis; the Three-River headwaters region

      生態(tài)系統(tǒng)功能的穩(wěn)定是人類生存和社會(huì)發(fā)展的基礎(chǔ),也是該領(lǐng)域的前沿和熱點(diǎn)問(wèn)題[1,2]。生態(tài)系統(tǒng)功能包括水土保持、防風(fēng)固沙、水源涵養(yǎng)、生物多樣性等指標(biāo),是生態(tài)紅線劃定的重要組成部分[3]。其中,土壤風(fēng)蝕是一個(gè)復(fù)雜的物理過(guò)程,是產(chǎn)生和塑造一系列地質(zhì)特征的重要外生力量之一。土壤風(fēng)蝕會(huì)帶來(lái)一系列環(huán)境問(wèn)題,包括土地沙漠化[4]、耕地生產(chǎn)力降低[5]、沙塵暴和空氣質(zhì)量下降[6]等,在干旱地區(qū)表現(xiàn)得尤為突出,嚴(yán)重影響著人類身體健康和生存環(huán)境[7]。然而,植被凈初級(jí)生產(chǎn)力(Net primary productivity,NPP)是用來(lái)衡量生態(tài)系統(tǒng)狀況的重要指標(biāo)之一。NPP是指植物在單位面積、單位時(shí)間通過(guò)光合作用固定的有機(jī)質(zhì)扣除呼吸作用消耗所剩余的部分[8]。目前已有眾多學(xué)者利用NPP對(duì)生態(tài)環(huán)境狀況進(jìn)行了評(píng)價(jià),并且取得了顯著成效[9,10]。

      三江源地區(qū)是中國(guó)重要的生態(tài)功能保護(hù)區(qū),物種豐富,生態(tài)地位極其重要。近年來(lái)隨著氣候變化,人類經(jīng)濟(jì)生產(chǎn)活動(dòng)加劇,該地區(qū)的生態(tài)系統(tǒng)功能正在逐漸發(fā)生變化[11]。目前,國(guó)內(nèi)外學(xué)者從土壤[12]、氣候[13]、植被[14]、土地利用[15]、生態(tài)環(huán)境脆弱性[16]等角度對(duì)該地區(qū)的生態(tài)環(huán)境進(jìn)行了大量研究,在生態(tài)系統(tǒng)功能評(píng)價(jià)方面的研究主要集中在水土保持[7,17]、生物多樣性[18]、水源涵養(yǎng)[19],然而對(duì)該地區(qū)的土壤風(fēng)蝕及防風(fēng)固沙鮮有研究。三江源地區(qū)位于青藏高原,海拔高,氣候寒冷,植被多為草甸草原,土壤可蝕性大,同時(shí)受人類放牧活動(dòng)的影響較大,易受到風(fēng)蝕影響。因此掌握該地區(qū)的土壤風(fēng)蝕及防風(fēng)固沙能力的空間分布特征具有重要意義。此外,NPP和土壤風(fēng)蝕都與氣候因素存在著密切關(guān)系[20],NPP代表了植被的生產(chǎn)力水平,植被是對(duì)氣候和人類活動(dòng)的響應(yīng),而風(fēng)蝕程度又受制于植被,因此厘清NPP與風(fēng)蝕程度之間的關(guān)系對(duì)于減少風(fēng)蝕,制定環(huán)境保護(hù)政策,提高環(huán)境狀況極其重要,且目前鮮有對(duì)兩者相關(guān)性的研究。

      針對(duì)目前研究中存在的問(wèn)題,本研究基于修正的RWEQ(Revised wind erosion equation)土壤風(fēng)蝕評(píng)估模型對(duì)三江源地區(qū)土壤風(fēng)蝕和防風(fēng)固沙進(jìn)行評(píng)價(jià),采用改進(jìn)的CASA(Carnegie-Ames-Standford-Approach)模型估算NPP,并探討兩者之間的相關(guān)性。研究結(jié)果將為環(huán)境治理提供科學(xué)依據(jù)。

      1? 研究區(qū)及數(shù)據(jù)

      1.1? 研究區(qū)概況

      三江源地區(qū)位于青藏高原東北部,地理坐標(biāo)為89°24′—102°15′E,31°32′—36°17′N,因地處長(zhǎng)江、黃河、瀾滄江的源頭而得名。研究區(qū)總面積約35.06萬(wàn)km2,地形主要以山地為主,海拔2 578~6 659 m,平均海拔約4 588.60 m。該地區(qū)氣候?qū)儆诘湫透咴箨懶詺夂颍錈醿杉窘惶?,干濕兩季分明,年平均氣溫?4~3 ℃,年降水量260~770 mm。主要土壤類型有高山寒漠土、高山草甸土、高山草原土、灰褐土、沼澤土、山地森林土和風(fēng)沙土。

      三江源地區(qū)的多數(shù)土壤植被尚處于年輕的發(fā)展階段,生態(tài)系統(tǒng)的結(jié)構(gòu)和功能簡(jiǎn)單,自身調(diào)節(jié)機(jī)制不夠健全,是中國(guó)生態(tài)系統(tǒng)最脆弱和最原始的地區(qū)之一[21]。加之,環(huán)境變化與人類活動(dòng)加劇,導(dǎo)致該地區(qū)的生態(tài)環(huán)境更加脆弱。因此,在三江源地區(qū)進(jìn)行防風(fēng)固沙與NPP的研究,有助于了解區(qū)域生態(tài)系統(tǒng)質(zhì)量狀況和自然生產(chǎn)能力,具有重要的意義。

      1.2? 數(shù)據(jù)來(lái)源與處理

      1.2.1? 植被數(shù)據(jù)? 歸一化植被指數(shù)(NDVI)為SPOT/VEGETATION衛(wèi)星遙感數(shù)據(jù),該數(shù)據(jù)是采用最大值合成法(MVC)生成的2015年的月度(1—12月)植被指數(shù)數(shù)據(jù)集。植被類型數(shù)據(jù)為《1∶1 000 000中國(guó)植被圖集》,NDVI及植被類型柵格數(shù)據(jù)分辨率均為1 km,數(shù)據(jù)來(lái)源于中國(guó)科學(xué)院資源環(huán)境科學(xué)數(shù)據(jù)中心(http://www.resdc.cn/)。

      1.2.2? 氣象數(shù)據(jù)? 氣象數(shù)據(jù)為2015年月平均溫度(℃)、月降雨量(mm)、月太陽(yáng)總輻射(MJ/m2)和日風(fēng)速(m/s)。其中各站點(diǎn)的月平均溫度和月降雨量數(shù)據(jù)由三江源地區(qū)及其周圍共143個(gè)氣象觀測(cè)站點(diǎn)的日平均溫度、日降雨量數(shù)據(jù)計(jì)算得到。由于三江源地區(qū)周圍太陽(yáng)輻射的原始觀測(cè)站點(diǎn)僅有10個(gè),直接插值精度較低,因此本研究利用目前廣泛應(yīng)用且模擬精度較高的Angstrom太陽(yáng)輻射模擬模型,利用日照時(shí)數(shù)(h)數(shù)據(jù)模擬得到周圍143個(gè)氣象站點(diǎn)的月太陽(yáng)輻射總值。此外,考慮到地形因素對(duì)氣候的影響,采用澳大利亞的平滑樣條函數(shù)(ANUSPLIN)進(jìn)行氣象數(shù)據(jù)的插值,該方法被證明在氣象數(shù)據(jù)插值上具有更高的精度[22]。氣象數(shù)據(jù)來(lái)源于中國(guó)氣象數(shù)據(jù)網(wǎng)(http://data.cma.cn/)。中國(guó)長(zhǎng)時(shí)間雪深數(shù)據(jù)集來(lái)源于旱區(qū)寒區(qū)科學(xué)數(shù)據(jù)中心(http://westdc.westgis.ac.cn/)。

      1.2.3? 地形數(shù)據(jù)? 數(shù)字高程模型(DEM)是由SRTM(Shuttle radar topography mission,SRTM)數(shù)據(jù)制作而成,來(lái)源于地理空間數(shù)據(jù)云(http://www.gscloud.cn/)。在ArcGIS平臺(tái)下計(jì)算出該地區(qū)的坡度和坡向數(shù)據(jù)。柵格數(shù)據(jù)空間分辨率統(tǒng)一為1 km。

      2? 研究方法

      2.1? RWEQ模型

      在綜合考慮氣侯條件、植被狀況、地表土壤的粗糙度、土壤可蝕性、土壤結(jié)皮的情況下[23],采用修正風(fēng)蝕模型RWEQ[24],結(jié)合三江源地區(qū)的多源數(shù)據(jù)估算生態(tài)系統(tǒng)的潛在風(fēng)蝕量和實(shí)際風(fēng)蝕量以及防風(fēng)固沙量。RWEQ模型基本形式如下:

      式中,G為防風(fēng)固沙量(kg/m2);SLQ為潛在風(fēng)蝕量(kg/m2);SL為實(shí)際風(fēng)蝕量(kg/m2);Qmax_Q為潛在轉(zhuǎn)運(yùn)量(kg/m2);Qmax為實(shí)際轉(zhuǎn)運(yùn)量(kg/m2);S為關(guān)鍵地塊長(zhǎng)度(m);z為下風(fēng)向最大風(fēng)蝕出現(xiàn)距離(m);WF為氣候因子(kg/m);EF為土壤可蝕性因子;SCF為土壤結(jié)皮因子;K′為地表粗糙度因子;C為植被覆蓋因子[25]。

      2.2? 改進(jìn)的CASA模型

      CASA模型是一種光能利用率模型,由Potter等[26]于1993年提出,后張錦水等[27]在此模型基礎(chǔ)上進(jìn)行改進(jìn),該模型能夠很好地模擬中國(guó)不同類型植被的時(shí)空變化特征。本研究基于改進(jìn)的CASA模型進(jìn)行植被凈初級(jí)生產(chǎn)力的估算,模型中所估算的NPP可以由植物吸收的光合有效輻射(APAR)和實(shí)際光能利用率(ε)兩個(gè)因子表示,模型計(jì)算如下:

      NPP(x,t)=APAR(x,t)×ε(x,t)? ?(8)

      式中,NPP(x,t)表示植被凈初級(jí)生產(chǎn)力(gC/m2);APAR(x,t)表示像元x在t月的光合有效輻射(gC/m2);ε(x,t)表示像元x在t月的實(shí)際光能利用率(g C/MJ),光能利用率是在一定時(shí)期單位面積上生產(chǎn)的干物質(zhì)中所包含的化學(xué)潛能與同一時(shí)間投射到該面積上的光合有效輻射能之比。

      APAR(x,t)=SOL(x,t)×FPAR(x,t)×0.5? (9)

      式中,SOL(x,t)表示t月在像元x處的太陽(yáng)總輻射量(MJ/m2);FPAR(x,t)為光合有效輻射的吸收比,由NDVI計(jì)算得到;常數(shù)0.5表示植被所能利用的太陽(yáng)有效輻射。

      ε(x,t)=Tε1(x,t)×Tε2(x,t)×Wε(x,t)×εmax? (10)

      式中,Tε1(x,t)和Tε2(x,t)分別表示低溫和高溫對(duì)光能利用率的脅迫作用,由月平均溫度計(jì)算得到;Wε(x,t)為水分脅迫影響系數(shù),由月降雨量計(jì)算得到;εmax反映了水分條件的影響,是理想條件下的最大光能利用率(gC/MJ)[27]。

      2.3? 格網(wǎng)法

      已有研究表明,在多個(gè)因素空間分布的相關(guān)性研究中,格網(wǎng)法是一種簡(jiǎn)單且有效的研究方法[28]。本研究在格網(wǎng)法的基礎(chǔ)上將研究區(qū)劃分成大小均一的313個(gè)30 km×30 km的格網(wǎng),并對(duì)研究區(qū)邊界的格網(wǎng)塊的選取原則進(jìn)行了改進(jìn),將完全在研究區(qū)內(nèi)的格網(wǎng)作為評(píng)價(jià)單元,避免了邊界部分格網(wǎng)因存在空值對(duì)結(jié)果造成的影響,提高了評(píng)價(jià)結(jié)果的可信度。通過(guò)格網(wǎng)法分別建立三江源地區(qū)NPP與潛在風(fēng)蝕量、實(shí)際風(fēng)蝕量和防風(fēng)固沙量的散點(diǎn)圖,并對(duì)散點(diǎn)圖進(jìn)行最優(yōu)函數(shù)擬合,探討其在空間分布上的相關(guān)性。

      3? 結(jié)果與分析

      3.1? 防風(fēng)固沙空間分布特征

      從圖1a和圖1b可以看出,三江源地區(qū)潛在風(fēng)蝕量與實(shí)際風(fēng)蝕量分布總體上為西高東低,這主要是由于三江源地區(qū)自然地理?xiàng)l件和氣候分布的差異性造成的。從圖1a可以看出,2015年三江源地區(qū)的潛在風(fēng)蝕量整體較高,尤其是在西部地區(qū),其大部分地區(qū)的潛在風(fēng)蝕量均大于50 kg/m2。三江源地區(qū)的潛在風(fēng)蝕量平均值為38.87 kg/m2,最大值為60.86 kg/m2;其中潛在風(fēng)蝕量在30 kg/m2以上的占比為65.48%(表1)。實(shí)際風(fēng)蝕量的平均值為9.49 kg/m2,最大值為60.86 kg/m2。潛在風(fēng)蝕量與實(shí)際風(fēng)蝕量的空間分布存在明顯的差異,實(shí)際風(fēng)蝕量主要集中在研究區(qū)的西部,而東部地區(qū)的實(shí)際風(fēng)蝕量接近于0,主要是由于東部地區(qū)為黃河源區(qū),植被類型主要為灌叢和針葉林,相比于西部的高寒草甸,植被覆蓋度較高。研究區(qū)大部分地區(qū)的實(shí)際風(fēng)蝕量處于中等水平,主要集中在0~10 kg/m2,面積約為245 606 km2,比例71.74%(表1)。

      防風(fēng)固沙量是評(píng)價(jià)生態(tài)系統(tǒng)防風(fēng)固沙功能的指標(biāo),用潛在風(fēng)蝕量和實(shí)際風(fēng)蝕量之差來(lái)表示,同等條件下,風(fēng)蝕量較大的地方,防風(fēng)固沙能力較弱。應(yīng)用RWEQ模型得到2015年三江源地區(qū)生態(tài)系統(tǒng)的防風(fēng)固沙總量約為99.36億t,防風(fēng)固沙量平均值為29.51 kg/m2。從圖1c可以看出,該地區(qū)的防風(fēng)固沙量存在明顯的空間異質(zhì)性,防風(fēng)固沙量的最大值可達(dá)60.72 kg/m2,最小值為0。固沙量小于10 kg/m2的區(qū)域分布面積為41 105 km2,比例12.01%(表1),主要集中在三江源西部地區(qū),該地區(qū)為可可西里高原,防風(fēng)固沙能力較弱。中部地區(qū)的防風(fēng)固沙量高于西部和東部地區(qū),主要是由于中部地區(qū)植被覆蓋度較高,但也存在固沙量在0~10 kg/m2的地區(qū),分析認(rèn)為這些地區(qū)防風(fēng)固沙能力較弱的主要原因是由于土壤的理化性質(zhì)不同。而東部地區(qū)雖然植被覆蓋度較高,但是固沙量小于中部地區(qū),主要是因?yàn)樵摰貐^(qū)的潛在風(fēng)蝕量較小。

      3.2? NPP空間分布特征

      圖2為2015年三江源地區(qū)NPP的空間分布情況。由圖2可以看出,三江源地區(qū)NPP的空間分布整體呈現(xiàn)出由西向東逐漸增高的趨勢(shì),該趨勢(shì)與三江源地區(qū)2015年降雨量、氣溫和太陽(yáng)輻射的空間分布趨勢(shì)基本吻合,與植被類型的地域分布基本一致。2015年NPP最高值為1 356.51 gC/m2,平均值為397.40 gC/m2。在三江源中西部地區(qū)集中分布著荒漠草原和高寒草原[29],植被稀少,大部分地區(qū)的凈初級(jí)生產(chǎn)力較低,部分地區(qū)接近于0。NPP較高的地區(qū)主要分布在三江源東南部,主要是由于該地區(qū)的植被茂密,植被類型主要為針葉林和闊葉林。此外,NPP大于500 gC/m2的地區(qū)面積為106 582 km2,比例31.19%;NPP在100 gC/m2以下的地區(qū)面積為54 233 km2,比例15.87%。研究區(qū)地貌復(fù)雜,從東南到西北依次為高山峽谷、高原山地、山緣、灘地和丘狀谷地[30]。不同的地形地貌因素對(duì)植被NPP會(huì)造成不同的影響,坡度、坡向、高程的變化會(huì)造成NPP空間分布的異質(zhì)性。

      3.3? 防風(fēng)固沙與NPP相關(guān)性分析

      圖3a為潛在風(fēng)蝕量與NPP之間的關(guān)系。由圖3a可以看出,潛在風(fēng)蝕量與NPP之間的關(guān)系約為線性關(guān)系,斜率約為-0.05,相關(guān)系數(shù)為0.47,且其通過(guò)了F檢驗(yàn),隨著NPP的增加,潛在風(fēng)蝕量逐漸減少(表2)。

      圖3b為實(shí)際風(fēng)蝕量與NPP之間的關(guān)系,實(shí)際風(fēng)蝕與NPP之間的關(guān)系呈顯著的指數(shù)相關(guān)關(guān)系,擬合精度較高,相關(guān)系數(shù)達(dá)到0.91,通過(guò)了F檢驗(yàn)。隨著NPP的升高,實(shí)際風(fēng)蝕量逐漸減少,其減少幅度隨NPP增加而降低,當(dāng)NPP約為300 g C/m2時(shí),實(shí)際風(fēng)蝕量逐漸趨近于0,且不再隨著NPP的增加而減少。該擬合方程可為估算風(fēng)蝕程度提供一種新的思路。對(duì)比圖3a、圖3b可知,潛在風(fēng)蝕量和實(shí)際風(fēng)蝕量與NPP的擬合曲線存在明顯的差異,前者為線性關(guān)系,后者為顯著的指數(shù)關(guān)系(表2)。

      圖3c為防風(fēng)固沙量與NPP之間的關(guān)系,與潛在風(fēng)蝕量不同的是,防風(fēng)固沙量與NPP之間不再呈單調(diào)遞減的關(guān)系,而是存在著二次函數(shù)的關(guān)系,隨著NPP的增加,防風(fēng)固沙量先增加后減少。在NPP小于300 gC/m2的范圍內(nèi),防風(fēng)固沙量與NPP之間存在著線性關(guān)系,相關(guān)系數(shù)(R2)為0.50,隨著NPP的增加,防風(fēng)固沙量明顯增強(qiáng),在NPP為300 gC/m2時(shí),防風(fēng)固沙量達(dá)到最值。防風(fēng)固沙量隨NPP的增加而增加的主要原因是,潛在風(fēng)蝕量的減小速率沒有實(shí)際風(fēng)蝕量大;而隨NPP的增加固沙量減少的主要原因是,在NPP達(dá)到300 gC/km2后,實(shí)際風(fēng)蝕量接近于0,潛在風(fēng)蝕量不斷減少(表2)。

      4? 小結(jié)

      本研究基于RWEQ模型與CASA模型分別進(jìn)行了防風(fēng)固沙量與NPP的計(jì)算,利用格網(wǎng)法對(duì)潛在風(fēng)蝕量、實(shí)際風(fēng)蝕量、防風(fēng)固沙量以及NPP的相關(guān)性進(jìn)行了探究,主要得出以下結(jié)論。

      1)2015年三江源地區(qū)生態(tài)系統(tǒng)的防風(fēng)固沙總量為99.36億t,風(fēng)蝕量水平整體上呈現(xiàn)出西高東低的趨勢(shì),潛在風(fēng)蝕量整體偏高,實(shí)際風(fēng)蝕量主要集中在西部。

      2)NPP的空間分布主要呈現(xiàn)出西低東高的分布特征,與該地區(qū)的自然地理和氣候條件吻合,其最大值為1 356.51 gC/m2,平均值為397.40 gC/m2。

      3)潛在風(fēng)蝕量與NPP之間的函數(shù)關(guān)系為線性關(guān)系(R2=0.47);實(shí)際風(fēng)蝕量與NPP之間存在顯著的指數(shù)關(guān)系(R2=0.91),擬合精度較高;而防風(fēng)固沙量與NPP之間的關(guān)系為二次多項(xiàng)式,隨著NPP的增加,防風(fēng)固沙量先增加后減少。

      由格網(wǎng)法得出的結(jié)果發(fā)現(xiàn),實(shí)際風(fēng)蝕量與NPP之間具有較好的指數(shù)關(guān)系,可利用該指數(shù)回歸模型進(jìn)行風(fēng)蝕量的估算,為土壤風(fēng)蝕和植被的研究提供新的思路。本研究利用的數(shù)據(jù)空間分辨率為1 km,研究的時(shí)間尺度為1年,在后續(xù)對(duì)于防風(fēng)固沙量以及NPP的相關(guān)研究中還需要提高空間分辨率和擴(kuò)大時(shí)間尺度,以達(dá)到更高的精度。

      參考文獻(xiàn):

      [1] 傅伯杰,于丹丹,呂? 楠.中國(guó)生物多樣性與生態(tài)系統(tǒng)服務(wù)評(píng)估指標(biāo)體系[J].生態(tài)學(xué)報(bào),2017,37(2):341-348.

      [2] 雷金睿,陳宗鑄,吳庭天,等.海南島東北部土地利用與生態(tài)系統(tǒng)服務(wù)價(jià)值空間自相關(guān)格局分析[J/OL].生態(tài)學(xué)報(bào),2019,39(7).http://dx.doi.org/10.5846/stxb201803090468.

      [3] 侯? 鵬,王? 橋,楊? 旻,等.生態(tài)保護(hù)紅線成效評(píng)估框架與指標(biāo)方法[J].地理研究,2018,37(10):1927-1937.

      [4] 武志濤,馬志婷,郭未旭,等.晉北沙漠化地區(qū)土壤風(fēng)蝕動(dòng)態(tài)及防治效果[J].水土保持通報(bào),2016,36(6):8-14.

      [5] 楊秀春.旱作農(nóng)田土壤風(fēng)蝕防治的保護(hù)性耕作技術(shù)研究[D].北京:北京師范大學(xué),2004.

      [6] 姜? 萍,徐? 潔,陳鵬翔,等.南疆近57年沙塵暴變化特征分析[J].干旱區(qū)資源與環(huán)境,2019,33(2):103-109.

      [7] JIANG C,LI D Q,WANG D W,et al. Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region,China as a result of climate variability and land cover change[J].Ecological indicators,2016,66:199-211.

      [8] 張振宇,鐘瑞森,李小玉,等.中國(guó)西北地區(qū)NPP變化及其對(duì)干旱的響應(yīng)分析[J].環(huán)境科學(xué)研究,2019,32(3):431-439.

      [9] GAO Y H,ZHOU X,WANG Q,et al. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau[J].Science of the total environment,2013,444:356-362.

      [10] YE X C,MENG Y K,XU L G,et al. Net primary productivity dynamics and associated hydrological driving factors in the floodplain wetland of China's largest freshwater lake[J].Science of the total environment,2019,659:302-313.

      [11] 李惠梅,張安錄.基于結(jié)構(gòu)方程模型的三江源牧戶草地生態(tài)環(huán)境退化認(rèn)知研究[J].草地學(xué)報(bào),2015,23(4):679-688.

      [12] 秦嘉龍,尹曉英,曾永良.三江源水土保持生態(tài)效益評(píng)價(jià)研究[J].生態(tài)經(jīng)濟(jì),2015,31(1):180-184.

      [13] 強(qiáng)安豐,魏加華,解宏偉.青海三江源地區(qū)氣溫與降水變化趨勢(shì)分析[J].水電能源科學(xué),2018,36(2):10-14.

      [14] SHEN X J,AN R,F(xiàn)ENG L,et al. Vegetation changes in the Three-River Headwaters Region of the Tibetan Plateau of China[J].Ecological indicators,2018,93:804-812.

      [15] 許? 茜,李? 奇,陳懂懂,等.近40 a三江源地區(qū)土地利用變化動(dòng)態(tài)分析及預(yù)測(cè)[J].干旱區(qū)研究,2018,35(3):695-704.

      [16] 韋? 晶,郭亞敏,孫? 林,等.三江源地區(qū)生態(tài)環(huán)境脆弱性評(píng)價(jià)[J].生態(tài)學(xué)雜志,2015,34(7):1968-1975.

      [17] 曹? 巍,劉璐璐,吳? 丹.三江源區(qū)土壤侵蝕變化及驅(qū)動(dòng)因素分析[J].草業(yè)學(xué)報(bào),2018,27(6):10-22.

      [18] 武曉宇,董世魁,劉世梁,等.基于MaxEnt模型的三江源區(qū)草地瀕危保護(hù)植物熱點(diǎn)區(qū)識(shí)別[J].生物多樣性,2018,26(2):138-148.

      [19] 吳? 丹,邵全琴,劉紀(jì)遠(yuǎn),等.三江源地區(qū)林草生態(tài)系統(tǒng)水源涵養(yǎng)服務(wù)評(píng)估[J].水土保持通報(bào),2016,36(3):206-210.

      [20] 閆? 敏,李增元,田? 昕,等.黑河上游植被總初級(jí)生產(chǎn)力遙感估算及其對(duì)氣候變化的響應(yīng)[J].植物生態(tài)學(xué)報(bào),2016,40(1):1-12.

      [21] 石? 磊,馬俊飛,楊太保.基于“GIS/RS”技術(shù)的三江源地區(qū)生態(tài)環(huán)境建設(shè)的研究[J].水土保持研究,2005,12(4):212-214.

      [22] 廖順寶,李澤輝,游松財(cái).氣溫?cái)?shù)據(jù)柵格化的方法及其比較[J].資源科學(xué),2003,25(6):83-88.

      [23] 鞏國(guó)麗,劉紀(jì)遠(yuǎn),邵全琴.草地覆蓋度變化對(duì)生態(tài)系統(tǒng)防風(fēng)固沙服務(wù)的影響分析——以內(nèi)蒙古典型草原區(qū)為例[J].地球信息科學(xué)學(xué)報(bào),2014,16(3):426-434.

      [24] FRYREAR D W,BILBRO J D,SALEH A,et al. RWEQ:Improved wind erosion technology[J].Journal of soil & water conservation,2000,55(2):183-189.

      [25] 遲文峰,白文科,劉正佳,等.基于RWEQ模型的內(nèi)蒙古高原土壤風(fēng)蝕研究[J].生態(tài)環(huán)境學(xué)報(bào),2018,27(6):1024-1033.

      [26] POTTER C S,RANDERSON J T,F(xiàn)IELD C B,et al. Terrestrial ecosystem production:A process model based on global satellite and surface data[J].Global biogeochemical cycles,1993,7(4):811-841.

      [27] 張錦水,潘耀忠,朱文泉.中國(guó)陸地植被凈初級(jí)生產(chǎn)力遙感估算[J].植物生態(tài)學(xué)報(bào),2007,31(3):413-424.

      [28] 韓繼沖,喻舒琳,楊青林,等.1999-2015年長(zhǎng)江流域上游植被覆蓋特征及其對(duì)氣候和地形的響應(yīng)[J/OL].長(zhǎng)江科學(xué)院院報(bào).[2019-01-20].http://kns.cnki.net/kcms/detail/42.1171.TV.20180720.0900.002.html.

      [29] 黃? 玫,季勁鈞,彭莉莉.青藏高原1981~2000年植被凈初級(jí)生產(chǎn)力對(duì)氣候變化的響應(yīng)[J].氣候與環(huán)境研究,2008,13(5):608-616.

      [30] 王作全.三江源區(qū)生態(tài)環(huán)境保護(hù)法治化研究[M].北京:北京大學(xué)出版社,2007.

      猜你喜歡
      防風(fēng)固沙相關(guān)性分析
      防風(fēng)固沙植物種類的篩選及樹木種類的選取原則
      嫩江沙地固沙造林技術(shù)探討
      濱州市城區(qū)苔蘚植物主要重金屬含量的調(diào)查與分析
      人民幣匯率變動(dòng)與中國(guó)入境旅游相關(guān)性分析(2002—2016)
      上市公司財(cái)務(wù)指標(biāo)與股票價(jià)格的相關(guān)性實(shí)證分析
      淘寶星店成長(zhǎng)中的粉絲力量
      中國(guó)城市化與經(jīng)濟(jì)發(fā)展水平關(guān)系研究
      商(2016年33期)2016-11-24 22:04:19
      兼顧防風(fēng)固沙功能的干旱區(qū)人工堆積丘體景觀改造
      我國(guó)物流企業(yè)規(guī)模與效益的相關(guān)性分析
      商(2016年22期)2016-07-08 21:59:09
      沙漠地帶筑路技術(shù)初探
      固阳县| 新宁县| 江山市| 荔浦县| 天水市| 肥东县| 昭平县| 贺州市| 于田县| 龙川县| 布尔津县| 古蔺县| 任丘市| 郯城县| 乌拉特后旗| 元阳县| 新河县| 内乡县| 新平| 青浦区| 顺昌县| 神池县| 汕尾市| 武夷山市| 达州市| 荥经县| 增城市| 龙州县| 鄂州市| 苏尼特右旗| 古交市| 齐河县| 新津县| 漯河市| 基隆市| 寻乌县| 永嘉县| 剑阁县| 信丰县| 邵武市| 靖安县|