• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A RICARDIAN ANALYSIS OF THE CLIMATE CHANGE IMPACT ON AGRICULTURE (BAC KAN PROVINCE,VIETNAM)

    2019-07-01 06:31:30PhamThiLam,NguyenNgocThanh,NguyenAnThinh,DangHuuManh
    都市生活 2019年2期

    Pham Thi Lam,Nguyen Ngoc Thanh,Nguyen An Thinh,Dang Huu Manh

    ABSTRACT:The study deals with the Ricardian approach to assess impacts of climate change on agriculture in the Bac Kan province, Vietnam. Selected climate variables are temperature (T), precipitation (P), hours of sunshine (S), and humidity (H) monitored during 1996 and 2017. Log-linear function is used to improve the reliability and to assess the level of climate change impacts over time. The result shows that the change in hours of sunshine has the greatest impact on agriculture, especially during winter, summer and autumn seasons (about 39 to 47 million VND per hectare). The change of marginal temperature in winter, spring and summer seasons leads to increasing marginal value of agricultural land from 2 to 4 million VND per hectare. Rainfall during spring season affects significantly to the marginal value of agricultural land, which is projected changing about 38 million VND per hectare when rainfall during spring rises 1 mm more. The figure for humidity during summer is about 9 million VND per hectare, although the humidity affects less than on the marginal value of agricultural land.

    Key words: Ricardian analysis, climate change impact, agriculture, Bac Kan, Vietnam

    1. Introduction

    Rapid development of economies for recent decades relates to both positive and negative changes in climatic systems and environment globally. The variation of temperature, rainfall, humidity, and natural hazards effects significantly economic sectors. Among economic sectors, agriculture is the greatest affected by climate change because it depends on natural resources such as land, water, and climate (Nordhaus, 1991; Cline, 2007; Mendelsohn, 2008). Ricardian model, which was first introduced by Mendelsohn et al. (1994), shows its advantage in assessing the impact of climate change on agriculture. Liu et al. (2004) undertook Ricardian model combined with five climate scenarios until 2050 to assess for 1275 agriculture dominated counties in China. The results show that all parts of China benefit from climate change in most scenarios. According to a consideration of over 100 countries world-over, Cline (2007) concluded that by 2080s global agricultural field will fall by about 15.9% if global warming continues unabated. Developing countries will be seen a larger decline with about 19.7%. Total values of crops and livestock are produced on land. Production process is affected by climate factors such as temperature, precipitation, hours of sunshine, and humidity. Ricadian model is integrated with household level data to analyze long-term impact of climate on farm profitability over countries worldwide (Mendelsohn and Reinsborough, 2007; Lippert et al., 2009).

    In Vietnam, Trinh (2017) used Ricardian technique to examine the relationship between climatic variables and agricultural output in Vietnam. Higher temperature affects negatively net revenue of irrigated farms for a long period. Future climate scenarios are used to project potential impacts of climate changes to farmers. In the paper, the Ricardian approach is selected to assess the impact of climate change on marginal value of agricultural land in Bac Kan province. The text is organized in the following way: Section 2 presents the methodology of Ricardian model; results of Ricardian regression are described in Section 3; finally, a conclusion entailing the main considerations on impacts of climate change to agriculture are shown in detail in the Section 4.

    2. Methodology

    2.1. Study area

    The selected Bac Kan locates in Northern Mountains of Vietnam. The annual average temperature is of 22.5 degree Celsius. The lowest average temperature is about 15.7 Degree Celsius. The highest average temperature is about 28 degree Celsius in June. Bac Kan is affected by Southeast wind in the summer and Northeast in the winter. The annual rainfall is 1,400 mm to 1,900 mm. The highest rainfall is in July and lowest in February. Rain season during February and September accounts for 75 to 80% of total annual rainfall. Annual average air humidity is from 80% to 85%. Besides advantages about climate, Bac Kan province also has disadvantages like hoarfrost, hail, tornados which have adverse effects on lives and production activities of farmers.

    Temperature and humidity changed lightly, the temperature increased 1 degree celcius, whereas humidity fluctuated. The number of hours of sunshine and the annual rainfall changes significantly. Rainfall rose from 1,000 mm (2003) to 2,000 mm (2008) berore falling down about 1,250 mm (2016). ?The data from Meteorological stations in Bac Kan province shows the difference of water level and water flow, greatest difference was seen in 2013. The maximum water level was higher than the minimum water level about 300 cm, the figure for water flow was about nearly 400 cm.

    2.2. Ricardian approach

    Ricardian approach reflects changes and controls of farmers currently on each land area to adapt to climate (Mendelsohn et al, 1994). This model provides effective tool to project the changes of agricultural production in the context of global climate variability (Timmins, 2006). However, this model does not consider the difference in productivity based on spatial climate variables (Deschênes and Greenstone, 2007). An effective strategy adopted by farmers is changing or control their plants (Kurukulasuriya ?and ?Mendelsohn, ?2008). The climate change has affected directly agricultural production of farmers who have been limited to access to adaptive opportunities with these changes (Massetti and Mendelsohn, 2010).

    Ricardian model is developed based on the assumption that farmers always expect to maximize their profits replied on land characteristics. That means that famers know how to choose the types of plants and animals, inputs for per unit acreage to get a largest income.

    The Ricardian model also assumes that farmland value per hectare (V) of each farm i in location r is equal to the present value of future net revenues from farm activities:

    Where: Pr is the market price of each crop at location r; Qi,r is the output of each crop at farm i at location r; Xi,r is a vector of inputs for each crop at farm i; Mr is a vector of input prices at location r; Zi,r is a vector exogenous variables at location r and φ is the interest rate.

    Vi,r = f(Zr)

    Exogenous variables can be grouped into four subgroups: climate variables (including temperature (T), precipitation (P), hours of sunshine (S) and humidity (H)), geographic variables (G), soil variables (O) and socio-economic variables (H).

    2.3. Data collection

    In this study, differences between regional features, input and output prices of crops and livestock, geographic and soil characteristics, is not showed obviously. Therefore, variables such as Geography (G), Soil (S) and Socio-Economics (H) are exclusive in this study. An alternative is considered as a good choice is that observations are time variables of climate, including temperature (T), precipitation (P), hours of sunshine (S) and humidity (H).

    Climate factors Variable description

    Temperature (T) Average temperatures, rainfalls, number of sunshine hours, humidity of each season (winter, spring, summer and fall) are calculated on average temperature of 3 months in a season from 1996 to 2017.

    Rainfall (R)

    Number of sunshine hours (S)

    Humidity (H)

    The study will use log-linear functional form with hope that it will have a more uniform predictive power compared to the linear model.

    We therefore estimate the following model for each year i and season k in Bac Kan province as model below:

    Vi: the value of agricultural land in Bac Kan province, the value is calculated by total of all products produced on the land (including plants and farming animals).

    The expected marginal impact and marginal effect of seasonal climate variables can be calculated as table below:

    Whereis an average value of used agricultural acreage compared to the total of agricultural acreage of the research site.

    Data about agricultural land acreage and the value of agricultural production over time from 1996 to 2017 is collected in Department of Agriculture and Rural Development of Bac Kan province. It should be considered that the production value of farmland in 1996 is different to in 2017, so the study will convert the land value of all years prior to 2017 into 2017 by the formula: FV = PV (1+i) n

    Where: FV is Future Value of money; PV is Present Value; i is interest rate; n is number of years

    Data related to climate is captured in Meteorological stations in Bac Kan, including temperature, precipitation, hours of sunshine and humidity from 1996 to 2017. Climate data will be collected by month over seasons and years, and then these data will be calculated for seasons during one year.

    3. Results

    3.1. Existing agricultural production

    Food crops and aquaculture acreages in Bac Kan province are shown on the chart above over a period of 22 years from 1995 to 2016, the trend of food crops and aquaculture acreages rose over majority of time shown. Namely in 1995, area of food crops was around 21 thousand hectare, the figure for 2016 increased to about 40 thousand hectare. The area of corn rose with a faster speed from about 3.3 thousand hectare in 1995 to about 16.4 hectare in 2016 (Figure 1).

    The acreages of other food crops such as cassava and sweet potato have had a tendency to decrease or remain stable. Rice and corn were main food crops of Bac Kan province and brought the greatest source of income for farmers from agriculture production.

    According to General Statistics office of Vietnam, total number of buffaloes and cows did not have a lot of changes over 22 years (from 1995 to 2016). The number of cows slightly increased between 1995 and 2007 before significantly decreased from 2008 to 2016.

    At the same time, the number of pigs and poultries had obvious changes. Especially in 2004, the number of pigs and poultries significantly fell, about 1000 thousand pigs and 850 thousand poultries. However, the figures rose lightly again after 2005.

    3.2. Ricardian regression

    The descriptive statistics of independent and dependent variables shows in table below.

    Table 1. Descriptive statistics

    Variables Mean Minimum Maximum

    V 18.35 2.15 31.23

    T_winter 16.27 13.80 18.07

    T_spring 23.39 21.47 24.90

    T_summer 27.75 27.13 28.70

    T_autumm 26.96 22.43 28.80

    P_winter 21.66 5.40 52.77

    P_spring 108.59 64.10 183.47

    P_summer 269.60 183.77 365.10

    P_autumm 73.58 33.70 185.57

    S_winter 231.78 86.00 368.60

    S_spring 103.09 80.33 135.00

    S_summer 164.14 132.33 201.00

    S_autumm 146.21 114.33 168.33

    H_winter 80.47 76.33 83.33

    H_spring 82.31 79.33 85.67

    H_summer 96.27 82.67 319.33

    H_autumm 83.43 80.67 86.33

    With different reliabilities, namely 90%, 95% and 99%, the result of the Log-linear model shows that there is a clear about the impacts of factors on each farmland value in Bac Kan province.

    Temperature variables group: Summery temperature has greatest impact on the value of each farmland hectare with the significant 0.1, control parameter of temperature variables is 0.91. This means that if temperature increases 1 degree Celsius, the farmland value of each hectare will change 0.91 % (units).

    Table 2. Regression result about impact of climate variables on farmland value

    Variables Coef Se Variables Coef Se

    T_winter 0.0012** 0.001 S_winter -1.362** 0.01

    T_wintersq 0.0009* 0.004 S_wintersq -0.012*** 0.031

    T_spring 0.012*** 0.002 S_spring 1.001*** 0.004

    T_springsq 0.0003* 0.219 S_springsq -0.0017** 0.001

    T_summer 0.91* 0.023 S_summer 1.023* 0.007

    T_summersq -0.0061*** 0.005 S_summersq 0.245** 0.055

    T_autumn 0.092** 0.025 S_autumn 0.0034*** 0.021

    T_autummsq -0.0027* 0.001 S_autumnsq -0.023* 0.09

    P_winter 0.0978*** 0.016 H_winter 1.005** 0.042

    P_wintersq -0.003** 0.002 H_wintersq -0.004* 0.046

    P_spring 0.912* 0.003 H_spring 0.921** 0.091

    P_springsq 0.025*** 0.009 H_springsq 0.007* 0.072

    P_summer 0.267** 0.045 H_summer 0.033* 0.008

    P_summersq 0.00081*** 0.014 H_summersq -0.0083* 0.024

    P_autumn 0.125** 0.026 H_autumn 0.612** 0.032

    P_autumnsq -0.0034* 0.018 H_autumnsq 0.0034* 0.083

    * p = 99%; ** p = 95%; *** p = 90%

    The impact of rainfall autumn on farmland value in summer and are higher, with control parameters are 0.627 and 0.125 respectively. By contrast, the number of hours of sunshine in winter and spring has negative control parameters on farmland value. Each increased hour of sunshine in summer will reduce 1.362 of agricultural land value and the figure for spring 1.001.

    Humidity plays an important factor in assessing the impact of climate change to the farmland value, the study shows that the parameters of summer, spring and autumn on the value of agricultural land are from 0.6 to 1.

    Table 3. Marginal effects of climate change variables on farmland value

    Marginal Effects (ME)

    (1000 VND/ha) Marginal Effects (ME)

    (1000 VND/ha)

    T_Winter 2,370 S_Winter -41,083

    T_Spring 3,714 S_Spring 3,859

    T_Summer 3,390 S_Summer -47,091

    T_Autumn -216 S_Autumn -39,880

    P_Winter -191 H_Winter 2,143

    P_Spring 37,621 H_Spring -1,372

    P_Summer 4,175 H_Summer -9,286

    P_Autumn -2,227 H_Autumn 265

    All temperature variables change the value of agricultural land, with each an increase of temperature ?in the winter, spring and summer, marginal value of agricultural land rise 2.37, 3.714 and 3.39 million VND each hectare (US $154 each hectare). However, the increase in temperature in the autumn leads to a decrease in the farmland value, about 216 thousand VND (US $9.8 each hectare).

    Rainfall in the spring and summer plays an important role in increasing the value of agricultural land. With each a rise of 1 mm of rainfall in the spring, the farmland value will increase approximately 38 million VND each hectare (equal to US $1727 each hectare), the figure for the summer is lower, about 4.2 million VND (about US $191 hectare). However, the change of rainfall in the winter and autumn has a negative effect on the farmland value.

    The number of hours of sunshine has a greatest impact on the value of agricultural land, and this is shown throughout its marginal value and control parameter. If the number of hours of sunshine rises 1 hour, the value of agricultural land reduces from 39 million VND to 47 million VND (equal to US $1773 and US $2136). The change of farmland value in the spring caused by the number of hours of sunshine is lower, about 4 million VND each hectare (equal to US $182).

    The marginal impact of humidity on the farmland value is lower than other climate variables. The increase of humidity in the winter and autumn causes to a rise of marginal value of farmland, whereas this factor causes to a fall of farmland value in the spring and summer.

    4. Conclusion

    Changing climate variables significantly influence on marginal value of farmland in Bac Kan province. Ricardian approach has been applied successfully in assessing the impact of climate change to agriculture in Asian, Europe, South American and African countries. Ricardian approach can be applied in Vietnam, which is an emerging economy and with diversity climate conditions and agricultural production is greatly affected by natural and climate factors.

    The result illustrates that all climate variables effect on the value of farmland. However, the level of impact will be different depending on the season characteristics in Bac Kan province. The amount of rainfall in the spring affecting on the marginal value of agricultural land is over 38 million VND each hectare. By contrast, the impact of the number of sunshine hours in the summer and autumn on marginal value of farmland are -39 million VND each hectare and -47 million VND per hectare. The increase of temperature in the summer, winter and autumn also has an impact on the marginal value of agricultural land.

    Acknowledgment: This study is in partial fulfillment of the Vietnamese National Project code KHCN-TB.04T/13-18 funded by the Vietnam National University (VNU), Hanoi.

    REFERENCES

    1 Cline, W. (2007). Global Warming and Agriculture, Washington, DC: Peterson Institute for International Economics23-27.

    2 Deschenes, O., M. Greenstone (2007). The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather. American Economic Review 97(1): 354–385.

    3 IPCC (2007b). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Work Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press: Cambridge, UK. Page, 976.

    4 Kurukulasuriya, P., R. Mendelsohn (.2008). Crop Switching as an Adaptation Strategy to Climate Change. African Journal Agriculture and Resource Economics 2(2): 105–126.

    5 Liu, H., X. Li, G. Fischer, L. Sun (2004). Study on the Impacts of Climate Change on China's Agriculture. Climatic Change 65(1–2): 125–148.

    6 Mendelsohn, R. (2008). The Impact of Climate Change on Agriculture in Developing Countries, Journal of Natural Resources Policy Research 1 (1): 5-19.

    7 Mendelsohn, R., Dinar A. (1999). Climate change, agriculture, and developing countries: Does adaptation matter? ?The World Bank Research Observer 14: 277–293.

    8 Mendelsohn, R., M. Reinsborough (2007). A Ricardian analysis of US and Canadian farmland. Climatic Change 81(1): 9-17.

    9 Mendelsohn, R., Nordhaus, W.D., Shaw, D. (1994). The Impact of Global Warming on Agriculture: A Ricardian Analysis. The American Economic Review 84: 753 - 771.

    10 Nordhaus, W.D. (1991). To slow or not to slow: The economics of the greenhouse effect. The Economic Journal, 101: 920–937.

    11 Timmins, C. (2006). Endogenous Land use and the Ricardian Valuation of Climate Change. Environmental and Resource Economics 33: 119-142.

    12 Trinh, T.A. (2017). The Impact of Climate Change on Agriculture: Findings from Households in Vietnam. Environmental and Resource Economics 71(4): 897–921.

    一级片免费观看大全| 黄色 视频免费看| 99国产精品一区二区三区| 日日爽夜夜爽网站| 成人一区二区视频在线观看| 国内精品久久久久精免费| 午夜免费鲁丝| 午夜久久久久精精品| 女人被狂操c到高潮| 午夜精品在线福利| 中文字幕另类日韩欧美亚洲嫩草| 成人三级黄色视频| 国产高清视频在线播放一区| 精品不卡国产一区二区三区| 亚洲专区国产一区二区| 国产成人欧美| 熟女电影av网| 在线观看www视频免费| 亚洲国产欧美日韩在线播放| 欧美日韩精品网址| 少妇 在线观看| 亚洲一区二区三区色噜噜| 欧美日韩精品网址| 亚洲中文字幕一区二区三区有码在线看 | 日韩 欧美 亚洲 中文字幕| 欧美亚洲日本最大视频资源| 亚洲成人久久性| 欧美精品亚洲一区二区| 亚洲中文日韩欧美视频| 亚洲av电影不卡..在线观看| 午夜福利视频1000在线观看| 久久精品国产亚洲av高清一级| 久久久国产精品麻豆| 黄色视频,在线免费观看| 免费看美女性在线毛片视频| 日韩三级视频一区二区三区| 无遮挡黄片免费观看| 精品不卡国产一区二区三区| 国产精品98久久久久久宅男小说| 国产黄片美女视频| 中文亚洲av片在线观看爽| 国产一区二区三区视频了| 亚洲国产毛片av蜜桃av| 哪里可以看免费的av片| 免费搜索国产男女视频| 久9热在线精品视频| av片东京热男人的天堂| 精品久久久久久久久久久久久 | 国产黄片美女视频| 国产亚洲精品久久久久久毛片| 在线观看www视频免费| 久久久国产欧美日韩av| 日韩 欧美 亚洲 中文字幕| 欧美午夜高清在线| 国产91精品成人一区二区三区| 99re在线观看精品视频| 欧美最黄视频在线播放免费| 精品国产乱子伦一区二区三区| 成人永久免费在线观看视频| 99在线视频只有这里精品首页| 免费在线观看完整版高清| 黄色视频不卡| 国产成人精品久久二区二区91| 国产色视频综合| 久久久久久亚洲精品国产蜜桃av| 可以免费在线观看a视频的电影网站| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三 | 久久久国产成人精品二区| 成人亚洲精品av一区二区| 男男h啪啪无遮挡| 侵犯人妻中文字幕一二三四区| 少妇 在线观看| 精品不卡国产一区二区三区| 久久久久久人人人人人| 人人妻人人澡欧美一区二区| 欧美在线黄色| 亚洲无线在线观看| 桃红色精品国产亚洲av| 欧美黄色淫秽网站| 中文字幕人妻熟女乱码| 大香蕉久久成人网| 久久久久久久午夜电影| 99精品欧美一区二区三区四区| 露出奶头的视频| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产清高在天天线| 国产成人av教育| 在线国产一区二区在线| 亚洲真实伦在线观看| 听说在线观看完整版免费高清| 欧美色欧美亚洲另类二区| 久久久久免费精品人妻一区二区 | 国产精品久久视频播放| 看片在线看免费视频| 日韩精品青青久久久久久| 精品久久久久久久毛片微露脸| 国产视频内射| 黄色成人免费大全| 亚洲精品粉嫩美女一区| 精品久久蜜臀av无| 熟女电影av网| 欧美性猛交黑人性爽| 亚洲欧美激情综合另类| 黄色成人免费大全| 99精品欧美一区二区三区四区| 欧美人与性动交α欧美精品济南到| 可以在线观看毛片的网站| 自线自在国产av| 精品国产乱码久久久久久男人| 欧美一级毛片孕妇| 黑人巨大精品欧美一区二区mp4| 宅男免费午夜| x7x7x7水蜜桃| 亚洲五月色婷婷综合| www.999成人在线观看| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区| 国产真实乱freesex| 国产成人精品久久二区二区免费| 日韩欧美一区视频在线观看| 99精品久久久久人妻精品| 麻豆一二三区av精品| 人人妻人人澡欧美一区二区| 18禁裸乳无遮挡免费网站照片 | 国产免费av片在线观看野外av| 俺也久久电影网| 啦啦啦观看免费观看视频高清| 久久欧美精品欧美久久欧美| av视频在线观看入口| 欧美中文综合在线视频| 久久精品人妻少妇| 黄频高清免费视频| 国产片内射在线| 欧美日韩黄片免| 久久久久久久午夜电影| 国产精品永久免费网站| 97碰自拍视频| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 精华霜和精华液先用哪个| 中国美女看黄片| 高潮久久久久久久久久久不卡| 嫩草影视91久久| 叶爱在线成人免费视频播放| 亚洲精品国产一区二区精华液| 欧美三级亚洲精品| 制服丝袜大香蕉在线| 欧美国产日韩亚洲一区| 午夜福利高清视频| 免费女性裸体啪啪无遮挡网站| 国产片内射在线| ponron亚洲| 久久中文字幕人妻熟女| 久久热在线av| 巨乳人妻的诱惑在线观看| 18美女黄网站色大片免费观看| 脱女人内裤的视频| 在线观看一区二区三区| 麻豆成人午夜福利视频| 搡老熟女国产l中国老女人| 男人舔女人下体高潮全视频| 国产欧美日韩一区二区精品| 国产精品国产高清国产av| 欧美激情 高清一区二区三区| 国产真实乱freesex| 中文字幕精品免费在线观看视频| 国产av不卡久久| 99久久精品国产亚洲精品| 老司机深夜福利视频在线观看| 色综合亚洲欧美另类图片| 麻豆成人午夜福利视频| 国产精品1区2区在线观看.| 亚洲精品美女久久久久99蜜臀| 夜夜夜夜夜久久久久| 亚洲欧美精品综合一区二区三区| 免费高清在线观看日韩| 我的亚洲天堂| 日韩成人在线观看一区二区三区| 亚洲国产欧美一区二区综合| 久久久久免费精品人妻一区二区 | 老司机福利观看| 在线观看www视频免费| 久久久精品欧美日韩精品| 色av中文字幕| www.自偷自拍.com| 青草久久国产| 欧美精品亚洲一区二区| 女性生殖器流出的白浆| 亚洲天堂国产精品一区在线| 欧美在线黄色| aaaaa片日本免费| 一级黄色大片毛片| 制服丝袜大香蕉在线| 日本一本二区三区精品| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩福利视频一区二区| 中文亚洲av片在线观看爽| 天天添夜夜摸| 99精品在免费线老司机午夜| 午夜福利一区二区在线看| 无人区码免费观看不卡| 精品国产超薄肉色丝袜足j| 欧美激情高清一区二区三区| 国产99久久九九免费精品| 亚洲国产精品999在线| 亚洲精品久久成人aⅴ小说| 国产成人影院久久av| 中文资源天堂在线| 久久精品影院6| 成年女人毛片免费观看观看9| 一区二区三区激情视频| 欧美日韩中文字幕国产精品一区二区三区| 日本在线视频免费播放| 一级a爱片免费观看的视频| 后天国语完整版免费观看| 少妇熟女aⅴ在线视频| 久久久水蜜桃国产精品网| 欧美日韩亚洲国产一区二区在线观看| 午夜福利在线在线| 99精品久久久久人妻精品| 国产精品国产高清国产av| 亚洲精品国产精品久久久不卡| 亚洲国产中文字幕在线视频| 亚洲国产毛片av蜜桃av| 精品无人区乱码1区二区| 一边摸一边做爽爽视频免费| 满18在线观看网站| 9191精品国产免费久久| 免费高清视频大片| 国产亚洲欧美精品永久| 国产精品久久久久久亚洲av鲁大| 男人操女人黄网站| 欧美精品亚洲一区二区| 性色av乱码一区二区三区2| 免费在线观看日本一区| 少妇被粗大的猛进出69影院| 可以免费在线观看a视频的电影网站| 老司机靠b影院| 99国产精品一区二区蜜桃av| 亚洲av成人一区二区三| 天堂动漫精品| 级片在线观看| 婷婷六月久久综合丁香| 91麻豆av在线| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 777久久人妻少妇嫩草av网站| 国产精品自产拍在线观看55亚洲| 成人欧美大片| 国产精品二区激情视频| 国产精品永久免费网站| 国产不卡一卡二| 人人妻人人澡人人看| 麻豆成人av在线观看| 丝袜美腿诱惑在线| 男男h啪啪无遮挡| 亚洲,欧美精品.| 成年女人毛片免费观看观看9| 国产爱豆传媒在线观看 | 国产又黄又爽又无遮挡在线| 两个人免费观看高清视频| 日韩一卡2卡3卡4卡2021年| 999久久久精品免费观看国产| 久久精品国产亚洲av高清一级| 亚洲av中文字字幕乱码综合 | 热re99久久国产66热| 精品乱码久久久久久99久播| 伦理电影免费视频| 两个人免费观看高清视频| 国产97色在线日韩免费| 成人国产一区最新在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品99久久99久久久不卡| 嫩草影院精品99| 国产在线精品亚洲第一网站| 久久天堂一区二区三区四区| 国内久久婷婷六月综合欲色啪| 人人妻人人澡欧美一区二区| aaaaa片日本免费| 国产成人欧美| 制服诱惑二区| 欧美日韩黄片免| 久久精品91无色码中文字幕| 婷婷精品国产亚洲av| 91av网站免费观看| 久久精品国产综合久久久| 亚洲成av片中文字幕在线观看| 亚洲精品国产一区二区精华液| 欧美日本亚洲视频在线播放| 非洲黑人性xxxx精品又粗又长| 妹子高潮喷水视频| 午夜免费激情av| 欧美精品亚洲一区二区| 老鸭窝网址在线观看| 久久精品亚洲精品国产色婷小说| 亚洲九九香蕉| 美国免费a级毛片| 琪琪午夜伦伦电影理论片6080| 久久午夜综合久久蜜桃| 黄色女人牲交| 99热这里只有精品一区 | 搡老熟女国产l中国老女人| 日韩三级视频一区二区三区| 精品国内亚洲2022精品成人| 亚洲久久久国产精品| 国产人伦9x9x在线观看| 久久99热这里只有精品18| 欧美黄色淫秽网站| 亚洲欧美日韩无卡精品| 成人国语在线视频| 波多野结衣av一区二区av| x7x7x7水蜜桃| 女人高潮潮喷娇喘18禁视频| 亚洲成a人片在线一区二区| 男人舔女人的私密视频| 人人妻人人澡人人看| 老司机靠b影院| 禁无遮挡网站| 亚洲 欧美 日韩 在线 免费| 国产精华一区二区三区| 成人特级黄色片久久久久久久| 老鸭窝网址在线观看| www日本在线高清视频| 免费观看人在逋| 国产亚洲精品av在线| 19禁男女啪啪无遮挡网站| 久久人妻av系列| 日韩欧美一区视频在线观看| 成人18禁在线播放| 久久99热这里只有精品18| 欧美日韩亚洲国产一区二区在线观看| avwww免费| 成熟少妇高潮喷水视频| av在线播放免费不卡| 国产v大片淫在线免费观看| 亚洲美女黄片视频| 少妇的丰满在线观看| 亚洲精品在线观看二区| 99久久精品国产亚洲精品| 日韩精品青青久久久久久| 日本一区二区免费在线视频| 此物有八面人人有两片| 精品一区二区三区四区五区乱码| 亚洲真实伦在线观看| 国产成人一区二区三区免费视频网站| 成人国产一区最新在线观看| 在线看三级毛片| 99国产极品粉嫩在线观看| 三级毛片av免费| 老熟妇仑乱视频hdxx| 国产真实乱freesex| 老司机靠b影院| 1024手机看黄色片| 亚洲 国产 在线| 日本一区二区免费在线视频| 99国产极品粉嫩在线观看| 久久久精品国产亚洲av高清涩受| 麻豆成人av在线观看| 久久中文字幕人妻熟女| 中国美女看黄片| 亚洲精华国产精华精| 精品一区二区三区av网在线观看| 亚洲美女黄片视频| 国产熟女午夜一区二区三区| 亚洲五月色婷婷综合| 免费观看人在逋| 精品国内亚洲2022精品成人| 午夜影院日韩av| 一个人观看的视频www高清免费观看 | 亚洲男人的天堂狠狠| 伊人久久大香线蕉亚洲五| 国产精品 国内视频| 精品久久久久久久人妻蜜臀av| 国内揄拍国产精品人妻在线 | 国产精品亚洲美女久久久| а√天堂www在线а√下载| 人妻丰满熟妇av一区二区三区| 欧美av亚洲av综合av国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 婷婷亚洲欧美| 国产一区二区激情短视频| 久久久久久亚洲精品国产蜜桃av| 白带黄色成豆腐渣| 欧美黑人欧美精品刺激| 亚洲一区高清亚洲精品| 国产极品粉嫩免费观看在线| 欧美乱码精品一区二区三区| 亚洲av成人av| 午夜久久久在线观看| 男人舔奶头视频| 一级作爱视频免费观看| 少妇 在线观看| 亚洲性夜色夜夜综合| 成人三级做爰电影| 村上凉子中文字幕在线| 日韩有码中文字幕| 午夜激情av网站| 免费观看人在逋| 亚洲第一电影网av| ponron亚洲| 国产一区二区在线av高清观看| 亚洲国产中文字幕在线视频| 国产亚洲精品第一综合不卡| 91国产中文字幕| 韩国av一区二区三区四区| 久久精品aⅴ一区二区三区四区| 亚洲成av人片免费观看| 成人永久免费在线观看视频| 亚洲精品粉嫩美女一区| 久久国产精品人妻蜜桃| 丰满的人妻完整版| 精品久久久久久成人av| 亚洲全国av大片| 高清毛片免费观看视频网站| 亚洲国产精品合色在线| 黄色视频,在线免费观看| 国产成人av激情在线播放| av欧美777| 成人国语在线视频| 嫩草影视91久久| 两性夫妻黄色片| 亚洲欧美精品综合一区二区三区| 日韩欧美免费精品| 免费在线观看日本一区| 午夜a级毛片| 国产日本99.免费观看| 亚洲精品国产区一区二| 免费搜索国产男女视频| 色播在线永久视频| 99在线人妻在线中文字幕| 日韩欧美国产在线观看| 美女大奶头视频| av福利片在线| 亚洲成人免费电影在线观看| 99久久无色码亚洲精品果冻| 亚洲av片天天在线观看| 99re在线观看精品视频| 国产午夜精品久久久久久| 日韩有码中文字幕| 亚洲 欧美 日韩 在线 免费| 久久亚洲真实| 国产精品乱码一区二三区的特点| 亚洲精品美女久久久久99蜜臀| 夜夜夜夜夜久久久久| 亚洲熟女毛片儿| 日韩视频一区二区在线观看| 99精品在免费线老司机午夜| 久久天堂一区二区三区四区| 狂野欧美激情性xxxx| 久久精品91蜜桃| 黄色视频,在线免费观看| 亚洲第一电影网av| 国产成人系列免费观看| 97超级碰碰碰精品色视频在线观看| 熟女电影av网| 久久天躁狠狠躁夜夜2o2o| 又黄又爽又免费观看的视频| 久久久精品欧美日韩精品| 亚洲国产中文字幕在线视频| 国产精品久久久久久亚洲av鲁大| 欧美激情高清一区二区三区| 99久久综合精品五月天人人| 亚洲成人久久性| 免费看十八禁软件| www日本在线高清视频| 成在线人永久免费视频| 看片在线看免费视频| 天堂√8在线中文| 久久热在线av| 在线永久观看黄色视频| 欧美日韩亚洲国产一区二区在线观看| 2021天堂中文幕一二区在线观 | 欧美乱码精品一区二区三区| av有码第一页| 高潮久久久久久久久久久不卡| 国产一卡二卡三卡精品| 校园春色视频在线观看| 亚洲国产精品sss在线观看| 国内精品久久久久久久电影| 一进一出抽搐gif免费好疼| 青草久久国产| 国产亚洲精品久久久久久毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕一二三四区| 中文资源天堂在线| or卡值多少钱| 不卡av一区二区三区| 桃红色精品国产亚洲av| 亚洲真实伦在线观看| 国产精品 欧美亚洲| 长腿黑丝高跟| www日本在线高清视频| 亚洲成av人片免费观看| 波多野结衣av一区二区av| 亚洲天堂国产精品一区在线| 亚洲人成77777在线视频| 午夜激情av网站| 99精品久久久久人妻精品| 搡老岳熟女国产| 国产精品一区二区免费欧美| 日韩欧美免费精品| 亚洲电影在线观看av| 亚洲人成伊人成综合网2020| 色综合亚洲欧美另类图片| 免费一级毛片在线播放高清视频| 色播亚洲综合网| 一进一出抽搐gif免费好疼| 婷婷丁香在线五月| 亚洲成av片中文字幕在线观看| av电影中文网址| 十八禁人妻一区二区| av天堂在线播放| 午夜成年电影在线免费观看| 国产一区二区在线av高清观看| 欧美日韩瑟瑟在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 欧美 亚洲 中文字幕| 一级毛片女人18水好多| 亚洲av熟女| 99久久久亚洲精品蜜臀av| 99久久综合精品五月天人人| 久久精品影院6| www日本在线高清视频| 最近在线观看免费完整版| 国产又爽黄色视频| 亚洲 欧美一区二区三区| 18禁美女被吸乳视频| 亚洲 欧美 日韩 在线 免费| 性欧美人与动物交配| 99精品欧美一区二区三区四区| 熟妇人妻久久中文字幕3abv| 一本一本综合久久| 国产一区在线观看成人免费| 窝窝影院91人妻| 成人午夜高清在线视频 | 国产精品亚洲av一区麻豆| 欧美黄色片欧美黄色片| 超碰成人久久| 久9热在线精品视频| 久久狼人影院| 男男h啪啪无遮挡| 欧美成人一区二区免费高清观看 | 悠悠久久av| 亚洲avbb在线观看| 午夜福利免费观看在线| 久久午夜综合久久蜜桃| 俄罗斯特黄特色一大片| 国产一级毛片七仙女欲春2 | 国产精品二区激情视频| 少妇熟女aⅴ在线视频| 99精品久久久久人妻精品| 亚洲片人在线观看| 波多野结衣巨乳人妻| 免费看十八禁软件| 午夜影院日韩av| 精品一区二区三区av网在线观看| 满18在线观看网站| 大型黄色视频在线免费观看| 亚洲欧洲精品一区二区精品久久久| 国产三级黄色录像| 亚洲午夜理论影院| 狠狠狠狠99中文字幕| 欧美激情久久久久久爽电影| 亚洲国产欧美一区二区综合| 久久精品91蜜桃| 久久香蕉激情| 欧美一区二区精品小视频在线| 欧美黑人巨大hd| 免费在线观看视频国产中文字幕亚洲| 亚洲av第一区精品v没综合| 真人做人爱边吃奶动态| 丰满的人妻完整版| 日韩欧美在线二视频| 免费电影在线观看免费观看| 日本一本二区三区精品| 黄色视频不卡| 窝窝影院91人妻| 成在线人永久免费视频| 亚洲专区字幕在线| 国产高清有码在线观看视频 | 免费观看精品视频网站| 啦啦啦 在线观看视频| 波多野结衣巨乳人妻| 欧美激情高清一区二区三区| 激情在线观看视频在线高清| a级毛片在线看网站| 精品国产超薄肉色丝袜足j| 亚洲人成电影免费在线| 99国产极品粉嫩在线观看| 老司机午夜福利在线观看视频| 国产一区在线观看成人免费| 九色国产91popny在线| 视频区欧美日本亚洲| 搞女人的毛片| 黄片大片在线免费观看| 91字幕亚洲| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区中文字幕在线| 久久中文字幕人妻熟女| 国产精品一区二区精品视频观看| 国产熟女午夜一区二区三区| 亚洲第一av免费看| 国产片内射在线| 两个人免费观看高清视频| 日本一本二区三区精品| 免费看美女性在线毛片视频| 一边摸一边做爽爽视频免费| 免费在线观看亚洲国产| 男女做爰动态图高潮gif福利片| 欧美久久黑人一区二区| 欧美日韩亚洲综合一区二区三区_|