• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced isostructural phase transition in α-Ni(OH)2nanowires?

    2019-06-18 05:42:30XinMa馬鑫ZhiHuiLi李志慧XiaoLingJing荊曉玲HongKaiGu顧宏凱HuiTian田輝QingDong董青PengWang王鵬RanLiu劉然BoLiu劉波QuanJunLi李全軍ZhenYao姚震andBingBingLiu劉冰冰
    Chinese Physics B 2019年6期
    關(guān)鍵詞:劉波王鵬

    Xin Ma(馬鑫),Zhi-Hui Li(李志慧),Xiao-Ling Jing(荊曉玲),Hong-Kai Gu(顧宏凱),Hui Tian(田輝),Qing Dong(董青),Peng Wang(王鵬),Ran Liu(劉然),Bo Liu(劉波),Quan-Jun Li(李全軍),Zhen Yao(姚震),and Bing-Bing Liu(劉冰冰)

    State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    Keywords:nickel hydroxide,high pressure,synchrotron radiation,isostructural phase transition

    1.Introduction

    Because of its distinctive structures and physical properties,nickel hydroxide has many practical applications in the fields of physics,chemistry,and engineering.These applications include batteries,[1]photocatalysis,[2]electrocatalysis,[3]supercapacitors,[4,5]electrochromic devices,[6,7]electrochemical sensors,[8,9]and so on.Two different crystallographic polymorphs of known nickel hydroxide have been found,which are represented as α -and β -Ni(OH)2.[10]The β -phase nickel hydroxide is present in the natural mineral theophrastite and is isostructural with the triangularsymmetric brucite[Mg(OH)2],and consists of closely packed two-dimensional(2D)Ni(OH)2principle layer without water or any anions between its layers.[11]The α-phase nickel hydroxide is composed of hydroxyl-deficient β-Ni(OH)2layers,parallel to the crystallographic ab plane intercalated by water molecules and foreign anions.[10]The inserted water molecules and foreign anions have no fixed position but have some freedoms to rotate and translate in the ab plane.The α-phase nickel hydroxide is represented by the general formula Ni(OH)2-x(An-)x/n·yH2O,where x=0.2-0.4,y=0.6-1,and A=chloride,sulfate,nitrate,carbonate,or other anions.[12]Usually,the hydrated water molecules inherent in the material are omitted from the written formula,and the material is represented by α-Ni(OH)2.

    In geophysics and geochemistry,high-pressure studies of hydrous minerals may provide valuable information about the understanding of various geophysical phenomena and found more complex hydrous minerals abundantly in the earth’s mantle.[13-15]Among these hydrous minerals,highly symmetry brucite-type hydroxides[M(OH)2,M=Mg,Ca,Ni,Co,etc.]have been widely investigated as the simplest prototypes under high pressure. Although these compounds have a layered CdI2structure in the trigonal space group Pˉ3m1[16]at the ambient conditions,they exhibit different behaviors at high pressure.Pressure-induced reversible amorphization of the entire crystal structure of Ca(OH)2has been reportedat12GPa.[17,18]ComparedwithCa(OH)2,itsisomorphous Mg(OH)2remains stable and does not amorphize up to 34 GPa.[17,19]The anomalies of Raman and infrared spectra were observed in Co(OH)2at 11 GPa,which are attributed to hydrogen sublattice amorphization.[20]Subsequent neutron powder diffraction studies of the Co(OH)2showed that these observed anomalies in Raman and infrared spectra are the result of structural frustration due to H-H repulsion.[21]In β-Ni(OH)2,no structural phase transition was observed up to 25 GPa.[22]

    Compared to these simple models,the inherent hydration and the interlayer anions of α-Ni(OH)2make its structure more complicated,which is close to the case of natural hydrous minerals in the mantle.However,there is no highpressure research report on the complex α-Ni(OH)2up to now.In this paper,we performed Raman and XRD studies to investigate the structural phase transition of α-Ni(OH)2nanowires under high pressure.An isostructural phase transition associated with the amorphization of the H-sublattice of hydroxide in the interlayer spaces of the two-dimensional crystal structure were observed at 6.3 GPa-9.3 GPa.Our results suggest that the isostructural phase transition is related to the amorphization of the H-sublattice.This study provides a reference for understanding the behavior of more complex hydrogencontaining compounds under high pressure.

    2.Experimental details

    The α-Ni(OH)2nanowires were synthesized by NiSO4and NaOH under hydrothermal conditions in a Te flon-lined stainless steel autoclave.[23]The structure of the α-Ni(OH)2nanowires was characterized by x-ray diffraction(XRD)(Rigaku D/max-2500 x-ray diffractometer with Cu-Kα radiation,λ=1.5406A?).The morphologies of the samples were investigated using a transmission electron microscope(TEM,JEOL JEM-2200FS).Raman spectra were collected using a LabRAM HR Evolution Raman system with a 473-nm laser excitation line.High-pressure synchrotron angle-dispersive XRD measurements were performed at 16-BM-D,beamline of the High Pressure Collaborative Access Team(HPCAT)at the Advanced Photon Source(APS),Argonne National Laboratory,with the incident beam wavelength of 0.3066A?.Part of the XRD experiments was conducted at 4W2 beamline of Beijing Synchrotron Radiation Facility(BSRF).For all the highpressure experiments,α-Ni(OH)2nanowires were loaded in a 150-μm hole(sample chamber)of a preindented stainless steel gasket.Pressure was generated by a symmetric diamond-anvil cell at room temperature.The experiment pressure was calibrated using the ruby fluorescence method.Ar was used as the pressure-transmitting medium for all high pressure measurements.

    3.Results and discussion

    The XRD pattern of the synthesized product is shown in Fig.1.The diffraction peaks are in good agreement with the monoclinic phase α-Ni(OH)2from the standard card JCPDF 41-1424.The lattice parameters a=0.798 nm,b=0.294 nm,c=1.361 nm,and β =91.1°are obtained.The diffraction peaks of α-Ni(OH)2nanowires are sharp and intense,indicating their highly crystalline nature.In addition,there are no diffraction peaks corresponding to other impurities,which indicates the high quality of the synthesized α-Ni(OH)2nanowires.

    Figure 2 shows the transmission electron microscope(TEM)and the high resolution transmission electron microscope(HRTEM)images of the α-Ni(OH)2nanowires.We can see that the length of the nanowires is up to several micrometers and the diameter is in the range of 15 nm-20 nm[Figs.2(a)and 2(b)].The HRTEM image(Fig.2(c))of the α-Ni(OH)2nanowire clearly shows that the interplanar distances d=2.04?A,which is consistent with the distance between the(304)lattice planes.The SAED pattern(Fig.2(d))of the nanowire in Fig.2(c)reveals that the nanowire exhibits a single-crystal structure.

    Fig.1.XRD pattern of α-Ni(OH)2nanowires.The red bars at the bottom represent the diffraction pattern from JCPDS 41-1424(wavelength:1.5406?A).

    Fig.2.TEM images[(a)and(b)]and high-resolution TEM(HRTEM)image(c)of α-Ni(OH)2nanowires,and selected area electron diffraction(SAED)pattern(d)of the single nanowire shown in panel(c).

    The selected XRD patterns of α-Ni(OH)2nanowires under high pressure are shown in Fig.3.All the peaks of α-Ni(OH)2shift to smaller d-spacing with increasing pressure,indicating the pressure-induced shrinkage of the unit cells.No new peaks appear up to the highest pressure of 22 GPa,except the weakening and broadening of these peaks.This suggests that the crystal symmetry does not change obviously.For further detailed analysis,we extract six major strong diffraction peaks from Fig.3 as a function of pressure change,as shown in Fig.4(a).From the pressure dependence of the d-spacings,we can observe that two distinct compression regimes can be identi fied,below 6.3 GPa and above 9.3 GPa.The d-spacing of the selected characteristic peaks decreases with increasing pressure and undergoes a sharp drop above 6.3 GPa.Above 9.3 GPa,the pressure dependence of the d-spacings starts to become flatter than that in the pressure below 6.3 GPa.

    The obtained α-Ni(OH)2nanowires normalized lattice parameters as a function of pressure(Fig.4(b))also shows an abnormality in the same pressure range.The pressure dependence of the lattice constants is consistent with the observed variation of d-spacings as a function of pressure.Based on the intercalation chemistry,the presence of foreign ions can increase the thickness of the interlayer space in layered materials.When we apply external pressure to the layered system,the interlayer distance(c axis)reduces significantly more than the intralayer one (a and b axes). This is in accordance with the high pressure behaviors of two-dimensional crystals.[24]Discontinuous changes in a,b,and c axes in the pressure range of 6.3 GPa-9.3 GPa are observed,indicating a structural phase transition occurs.However,there is no obvious crystal symmetry change can be observed from our XRD results.Thus,these results suggest that this phase transition is possibly an isostructural phase transition.

    Fig.3.X-ray diffraction patterns of α-Ni(OH)2nanowires collected at different pressures.

    Fig.4.Structure information of α-Ni(OH)2nanowires at high pressure.Pressure dependences of the d-spacings(a),normalized lattice constants(b),and unit-cell volume(c)of α-Ni(OH)2nanowires.The red and blue lines represent the fitting of the low pressure phase and the high pressure phase through the Birch-Murnaghan equation of state,respectively.

    As shown in Fig.4(c),the bulk modulus B0of the low pressure phase and high pressure phase are estimated to be 41.2(4.2)GPa and 94.4(5.6)GPa,respectively,by fitting the unit-cell volume data with the third-order Birch-Murnaghan equation of state:where P is the pressure,V is the volume at pressure,V0is the zero-pressure volume,and B′0is the derivative of the bulk modulus with respect to pressure(we assumed B′0=4).The bulkmodulus(B0=41.2(4.2)GPa))ofthelowpressurephase is much smaller than that of the β-Ni(OH)2(B0=88 GPa,B′0=4.7),[25]which indicates that α -Ni(OH)2is more compressible in the initial stage than β-Ni(OH)2.For comparison,the bulk moduli of some hydroxides are shown in Table 1.

    Table 1.Comparison of bulk moduli of M(OH)2compounds

    The bulk modulus of the low pressure phase of α-Ni(OH)2is slightly larger than that of Ca(OH)2but smaller than those of the other hydroxides.The bulk modulus of the high pressure phase of α-Ni(OH)2is close to that of β -Ni(OH)2but is much higher than that of the low pressure phase.This indicates that the structure becomes denser and less compressible after the phase transition.In addition,obvious volume collapse is observed during the phase transition(6.3 GPa-9.3 GPa).The observed discontinuous changes of lattice parameters and volume collapse without symmetry change are both the features of the second-order isostructural transformation.[26-28]Therefore,the structural change observed in the α-Ni(OH)2nanowires can be attributed to an isostructural phase transition.

    To further verify the structure phase transition of α-Ni(OH)2nanowires,we also conducted in situ high-pressure Raman spectra measurements,as shown in Fig.5. The lattice vibrational modes in Raman spectra of α-Ni(OH)2nanowires at ambient conditions are observed at 450,487,and 964 cm-1.[29,30]The two peaks at 987 cm-1and 1081 cm-1in the Raman spectra can be attributed to the SO-42vibration.[29]These SO4-2intercalated between the α-Ni(OH)2layers are foreign anions,which are derived from the reactant NiSO4during the synthesis process.The internal O-H stretching modes from lattice OH and intersheet H2O are visible from 3520 cm-1to 3650 cm-1.[29]From Figs.5(b)and 5(c),we can seethepressuredependenceoftheRamanshiftsofα-Ni(OH)2clearly.As the pressure increases,Raman peaks of lattice modes and SO-42exhibit blue shifts(Fig.5(b)).The characteristic peaks of the lattice modes gradually weaken and disappear above 9.2 GPa,such as those at 450,487,and 964 cm-1.The vibrational modes of the SO-42always exist until the highest pressure in this experiment.

    Fig.5.(a)Raman spectra of α-Ni(OH)2nanowires at high pressure.(b)Pressure dependence of the Raman shift of the lattice modes and SO-42 vibration.(c)Pressure dependence of the Raman shift of stretch O-H modes.

    From Figs.5(a)and 5(c),we can observe the vibrational modes of the hydroxyl group in different chemical environments(approx.3200 cm-1-3700 cm-1).Upon increasing pressure,the Raman peak(~3532 cm-1)of hydroxyl group shows redshift while all other modes exhibit blueshift.The decreaseinfrequencyandbroadeningoftheOHstretchingbands of α-Ni(OH)2with compression.Above 7.8 GPa,the vibrational modes of the hydroxyl group disappear.These results areconsistentwiththoseofbrucite-typehydroxides.[17,28,31,32]The brucite structure is characterized by an O-H bond arranged along the c axis and surrounded by three cation-oxygen octahedrons in the adjacent layers.Each H atom interacts with three H atoms attached to the neighboring layer.The essence of the strong interaction among H-H and H-O atoms between the neighboring layers of the brucite-type hydroxides at high pressure is still in debate.Most of the recognition is that the broadening and disappear of the OH-stretch modes under high pressure is attributed to the disorder of the O-H bonds,which only involves the disorder of the H-sublattice.[17,19,22,32]

    By combining the high pressure XRD and Raman results,we can see that the H sublattice of α-Ni(OH)2becomes disordered at~7.8 GPa with an isostructural phase transition in the frame structure of α-Ni(OH)2.This result is similar to that of the high pressure study of Co(OH)2by Nguyen et al.[31]Under high pressure,the structure of the brucite-type hydroxides initially compresses primarily along the c axis while the cation-oxygen layers remain relatively uncompressed.[33-36]The similar results of α-Ni(OH)2nanowires lead us to think that it may be similar to the internal structural changes of hydroxide under high pressure.The main interlayer interaction of α-Ni(OH)2occurs between H-O and H-H of adjacent layers.The change in these interactions under high pressure can be re flected by the OH-stretching modes of α-Ni(OH)2in Raman spectra.The Raman peaks of hydroxyl group at 3550,3567,and 3635 cm-1nearly disappear above~7.8 GPa,indicating the pressure-induced amorphization of H sublattice.Obviously,pressure promotes the interaction between the H and O atoms in the adjacent layer leading to the gradual disordering of the H sublattice in α-Ni(OH)2.[37]It is known that XRD is insensitive to the hydrogen position in the crystal lattice.Therefore,the XRD data does not show amorphization characteristics of the H sublattice under high pressure.However,the abrupt slope changes of the lattice parameters varying with pressure are observed at~9 GPa from our XRD results,which indicates α-Ni(OH)2undergoes an isostructural phase transition.[38-40]This is consistent with the pressure range that observed the amorphization of H sublattice in our Raman results.Based on these results,we suggest that the isostructural phase transition can be attributed to the disorder of the H sublattice.In addition,all the Raman peaks recover when the pressure is released,which shows that the isostructural phase transition and the amorphization of the H sublattice are reversible.

    4.Conclusion

    In summary,α-Ni(OH)2nanowires with an average diameter of 15 nm-20 nm and a length of several micrometers were synthesized by hydrothermal method. We investigated the high pressure structural phase transition of the α-Ni(OH)2nanowires by synchrotron XRD and Raman spectra. An isostructural phase transition takes place at~6.3 GPa-9.3 GPa.Meanwhile,the disorder of the interlayered H-sublattice is observed.Bulk moduli for the low pressure phase and high pressure phase are 41.2(4.2)GPa and 94.4(5.6)GPa,respectively.We suggest that the pressureinducedisostructuralphasetransitioninα-Ni(OH)2nanowires can be attributed to the disorder of the H-sublattice.Both the isostructural phase transition and the amorphization of the H-sublattice in α-Ni(OH)2nanowires are reversible under high pressure.Our results show that the foreign anions intercalated between the α-Ni(OH)2layers play important roles in their structural phase transition.

    猜你喜歡
    劉波王鵬
    王鵬:初心不改 篤行致遠
    華人時刊(2023年19期)2023-11-16 12:32:52
    Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane
    汪安陽 劉波設(shè)計作品
    毛紡科技(2023年1期)2023-02-24 00:37:40
    劉波作品
    國畫家(2023年1期)2023-02-16 07:57:50
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    跟著王鵬叔叔拍雪豹
    藝術(shù)百家:王鵬 張凱雷
    電影文學(2017年2期)2017-12-26 12:52:32
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    千萬別動手
    Tracking algorithm of BPSK signal in low bit SNR and high dynamic scenarios
    97人妻精品一区二区三区麻豆 | 国产1区2区3区精品| 国产色视频综合| 亚洲精华国产精华精| 免费搜索国产男女视频| 国产精品爽爽va在线观看网站 | 国产熟女午夜一区二区三区| 在线观看免费午夜福利视频| 亚洲人成电影免费在线| 国产麻豆成人av免费视频| 亚洲成av人片免费观看| 1024手机看黄色片| tocl精华| 最近在线观看免费完整版| 中文字幕精品亚洲无线码一区 | 老熟妇乱子伦视频在线观看| 又黄又爽又免费观看的视频| 久热爱精品视频在线9| 欧美日韩精品网址| 激情在线观看视频在线高清| 韩国精品一区二区三区| 亚洲国产精品合色在线| 少妇熟女aⅴ在线视频| 国产精品亚洲美女久久久| 亚洲最大成人中文| 国产精品免费视频内射| 欧美成人午夜精品| 99久久久亚洲精品蜜臀av| 亚洲专区中文字幕在线| 2021天堂中文幕一二区在线观 | 首页视频小说图片口味搜索| 最新在线观看一区二区三区| 成人三级做爰电影| 国产高清videossex| av片东京热男人的天堂| 日韩有码中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 99热6这里只有精品| 亚洲欧美精品综合久久99| 伦理电影免费视频| 国产激情欧美一区二区| 超碰成人久久| 侵犯人妻中文字幕一二三四区| 亚洲中文字幕一区二区三区有码在线看 | 麻豆一二三区av精品| 亚洲在线自拍视频| 91九色精品人成在线观看| 99久久99久久久精品蜜桃| 色婷婷久久久亚洲欧美| 亚洲中文字幕日韩| 久久精品人妻少妇| 啦啦啦免费观看视频1| 黄片小视频在线播放| 久久久国产精品麻豆| 黄频高清免费视频| av福利片在线| 成熟少妇高潮喷水视频| 国产高清videossex| 成人精品一区二区免费| 免费在线观看视频国产中文字幕亚洲| 日韩中文字幕欧美一区二区| 婷婷精品国产亚洲av在线| 一级a爱片免费观看的视频| 黄色女人牲交| 国产亚洲欧美在线一区二区| av在线天堂中文字幕| www.www免费av| 黑人巨大精品欧美一区二区mp4| 在线观看免费视频日本深夜| 在线观看www视频免费| 日韩欧美国产一区二区入口| 日韩精品免费视频一区二区三区| 亚洲av成人av| 精品久久久久久久毛片微露脸| 国产黄色小视频在线观看| 一本久久中文字幕| 99在线视频只有这里精品首页| 夜夜夜夜夜久久久久| 久久草成人影院| 国内精品久久久久精免费| 国产免费男女视频| 亚洲成人免费电影在线观看| 人人妻人人澡欧美一区二区| 在线永久观看黄色视频| 久久久久久大精品| 免费人成视频x8x8入口观看| 在线观看免费午夜福利视频| 日韩欧美国产在线观看| 高潮久久久久久久久久久不卡| 色综合亚洲欧美另类图片| 国产一区二区在线av高清观看| 69av精品久久久久久| 午夜精品久久久久久毛片777| www.精华液| 国产99久久九九免费精品| 亚洲国产精品合色在线| 亚洲欧美精品综合一区二区三区| 日韩精品青青久久久久久| 少妇被粗大的猛进出69影院| 日韩视频一区二区在线观看| 国产精品 国内视频| 久久久精品国产亚洲av高清涩受| 亚洲色图 男人天堂 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆av在线久日| av福利片在线| 欧美久久黑人一区二区| 亚洲专区字幕在线| 丝袜在线中文字幕| 国产精品久久久久久精品电影 | 日韩有码中文字幕| 日韩大尺度精品在线看网址| 亚洲人成网站在线播放欧美日韩| 日本 av在线| 精品免费久久久久久久清纯| 香蕉国产在线看| 午夜成年电影在线免费观看| av在线播放免费不卡| 久久99热这里只有精品18| 久久久久久大精品| 这个男人来自地球电影免费观看| 婷婷丁香在线五月| 亚洲国产欧美网| 亚洲人成网站在线播放欧美日韩| 无遮挡黄片免费观看| 黄片小视频在线播放| 国产精品久久视频播放| 免费看日本二区| 在线国产一区二区在线| 成人av一区二区三区在线看| 国产91精品成人一区二区三区| 制服丝袜大香蕉在线| 日本撒尿小便嘘嘘汇集6| 窝窝影院91人妻| 亚洲电影在线观看av| 在线观看一区二区三区| 久久人妻福利社区极品人妻图片| 亚洲人成电影免费在线| 国产aⅴ精品一区二区三区波| 老熟妇乱子伦视频在线观看| 搡老岳熟女国产| 亚洲人成77777在线视频| 精品欧美国产一区二区三| 最近最新中文字幕大全电影3 | 草草在线视频免费看| 国产av不卡久久| 欧美国产精品va在线观看不卡| 精品高清国产在线一区| 久久国产精品影院| 18禁国产床啪视频网站| 国产精品久久视频播放| 久久人妻av系列| 一区二区三区激情视频| 国产精品一区二区三区四区久久 | av在线天堂中文字幕| 在线观看免费午夜福利视频| 久久久久久久久免费视频了| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 国产亚洲av嫩草精品影院| 人人澡人人妻人| 国产精品综合久久久久久久免费| 国产欧美日韩精品亚洲av| 午夜免费激情av| 国产人伦9x9x在线观看| 国产精品亚洲一级av第二区| 国产视频一区二区在线看| 午夜视频精品福利| 一二三四社区在线视频社区8| 一级作爱视频免费观看| 热re99久久国产66热| 12—13女人毛片做爰片一| 女生性感内裤真人,穿戴方法视频| 午夜精品在线福利| 国产成人av激情在线播放| 岛国在线观看网站| 午夜免费观看网址| 久久性视频一级片| 免费观看精品视频网站| 91字幕亚洲| www.自偷自拍.com| 久久狼人影院| avwww免费| 999久久久精品免费观看国产| 草草在线视频免费看| 国产高清有码在线观看视频 | 琪琪午夜伦伦电影理论片6080| 禁无遮挡网站| 欧美久久黑人一区二区| 国产亚洲精品久久久久久毛片| 国产精品香港三级国产av潘金莲| 性色av乱码一区二区三区2| 欧美色欧美亚洲另类二区| 亚洲av片天天在线观看| 一进一出抽搐gif免费好疼| 一二三四社区在线视频社区8| 嫁个100分男人电影在线观看| 欧美中文综合在线视频| 久久久久国产精品人妻aⅴ院| 国产又色又爽无遮挡免费看| 叶爱在线成人免费视频播放| 国产亚洲欧美98| 免费在线观看视频国产中文字幕亚洲| 亚洲国产看品久久| 黄频高清免费视频| 亚洲成a人片在线一区二区| 男男h啪啪无遮挡| 欧美+亚洲+日韩+国产| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩一区二区精品| 成人一区二区视频在线观看| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| 亚洲五月婷婷丁香| 欧美大码av| 欧美成人午夜精品| 在线永久观看黄色视频| 亚洲精华国产精华精| 丰满人妻熟妇乱又伦精品不卡| 老熟妇乱子伦视频在线观看| 美女免费视频网站| 丝袜美腿诱惑在线| 欧美色欧美亚洲另类二区| 国产成人精品久久二区二区免费| 伊人久久大香线蕉亚洲五| 99久久99久久久精品蜜桃| 99久久久亚洲精品蜜臀av| 91成年电影在线观看| 18禁黄网站禁片午夜丰满| 国产成人精品久久二区二区免费| 精品国产超薄肉色丝袜足j| 88av欧美| 91国产中文字幕| 制服人妻中文乱码| 在线观看免费视频日本深夜| 欧美黑人精品巨大| 亚洲欧美一区二区三区黑人| www国产在线视频色| 色老头精品视频在线观看| 中文字幕人成人乱码亚洲影| 国产精品av久久久久免费| 欧美日韩一级在线毛片| 亚洲欧美日韩高清在线视频| 久久婷婷成人综合色麻豆| 老汉色av国产亚洲站长工具| 成人手机av| 欧美大码av| 久久国产精品影院| 久久天堂一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 伦理电影免费视频| 国产一区二区三区视频了| 久久精品影院6| 国产国语露脸激情在线看| 色综合婷婷激情| 久久欧美精品欧美久久欧美| 久久中文字幕人妻熟女| 欧美黄色淫秽网站| 老司机深夜福利视频在线观看| av在线播放免费不卡| 国产精品久久久久久人妻精品电影| 国产久久久一区二区三区| 中文亚洲av片在线观看爽| 老汉色av国产亚洲站长工具| 国产成人一区二区三区免费视频网站| 日日夜夜操网爽| 日韩欧美国产一区二区入口| 露出奶头的视频| 十分钟在线观看高清视频www| 无限看片的www在线观看| www日本黄色视频网| a级毛片在线看网站| 黄片播放在线免费| 少妇粗大呻吟视频| 国产一区二区在线av高清观看| 亚洲一卡2卡3卡4卡5卡精品中文| 真人做人爱边吃奶动态| 午夜免费成人在线视频| 香蕉丝袜av| 精品日产1卡2卡| 亚洲午夜精品一区,二区,三区| av欧美777| 国产精品久久视频播放| 国产精品一区二区免费欧美| 日韩欧美 国产精品| a级毛片a级免费在线| 亚洲欧美激情综合另类| 好看av亚洲va欧美ⅴa在| 国内揄拍国产精品人妻在线 | 九色国产91popny在线| 亚洲成人久久性| 一个人免费在线观看的高清视频| 久久久精品国产亚洲av高清涩受| 热re99久久国产66热| 午夜福利18| 欧美zozozo另类| 成人18禁在线播放| 一级a爱视频在线免费观看| 国产欧美日韩一区二区三| 久久久国产成人免费| 中文字幕高清在线视频| 日本五十路高清| 亚洲欧美一区二区三区黑人| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 在线免费观看的www视频| 欧美日韩一级在线毛片| 韩国av一区二区三区四区| 搡老岳熟女国产| 国产精品 国内视频| 国产精品一区二区免费欧美| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久久5区| 亚洲男人的天堂狠狠| 成人特级黄色片久久久久久久| 国产精品爽爽va在线观看网站 | 欧美性长视频在线观看| 宅男免费午夜| 中文字幕人妻熟女乱码| 亚洲自偷自拍图片 自拍| 久久亚洲精品不卡| 一边摸一边抽搐一进一小说| 看免费av毛片| 精品久久久久久,| 男女视频在线观看网站免费 | 国产又黄又爽又无遮挡在线| 亚洲中文字幕一区二区三区有码在线看 | 一进一出抽搐动态| 国产亚洲精品av在线| 国产精品久久久人人做人人爽| 亚洲成av人片免费观看| 看黄色毛片网站| 国产又色又爽无遮挡免费看| 嫁个100分男人电影在线观看| 中文字幕av电影在线播放| 亚洲欧美日韩无卡精品| 1024视频免费在线观看| 夜夜躁狠狠躁天天躁| 欧美日本亚洲视频在线播放| a级毛片在线看网站| 国产激情欧美一区二区| 亚洲成人精品中文字幕电影| 亚洲av熟女| xxx96com| 久久久久亚洲av毛片大全| 夜夜爽天天搞| 在线播放国产精品三级| 成人国产一区最新在线观看| а√天堂www在线а√下载| 在线播放国产精品三级| 好男人电影高清在线观看| 51午夜福利影视在线观看| 高清在线国产一区| 日韩免费av在线播放| 亚洲av熟女| 看免费av毛片| 在线视频色国产色| 91国产中文字幕| 国产伦一二天堂av在线观看| 黄色女人牲交| 国产精品美女特级片免费视频播放器 | 亚洲人成伊人成综合网2020| 日本熟妇午夜| 天堂动漫精品| 免费在线观看亚洲国产| 色婷婷久久久亚洲欧美| 免费av毛片视频| 日韩有码中文字幕| 免费无遮挡裸体视频| 哪里可以看免费的av片| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 嫩草影院精品99| 国产在线精品亚洲第一网站| 久久久国产欧美日韩av| 丝袜美腿诱惑在线| 级片在线观看| 精品人妻1区二区| 亚洲精品久久国产高清桃花| 国产亚洲精品av在线| 亚洲激情在线av| aaaaa片日本免费| 久久久久久免费高清国产稀缺| 欧美性猛交╳xxx乱大交人| 最新美女视频免费是黄的| 美女免费视频网站| 午夜精品久久久久久毛片777| 欧美性长视频在线观看| 啦啦啦 在线观看视频| 欧美国产日韩亚洲一区| 久久精品人妻少妇| 十八禁人妻一区二区| 熟妇人妻久久中文字幕3abv| 亚洲熟妇中文字幕五十中出| 校园春色视频在线观看| 日本免费一区二区三区高清不卡| 国产成人精品久久二区二区91| 国产激情偷乱视频一区二区| 国产蜜桃级精品一区二区三区| 一进一出抽搐动态| 精品不卡国产一区二区三区| or卡值多少钱| 国产高清videossex| av中文乱码字幕在线| a在线观看视频网站| 美国免费a级毛片| 亚洲精品色激情综合| 美女扒开内裤让男人捅视频| 久久久久久人人人人人| a级毛片在线看网站| 黄色毛片三级朝国网站| avwww免费| 久久久精品国产亚洲av高清涩受| 麻豆成人av在线观看| av在线天堂中文字幕| 黄色a级毛片大全视频| 久久人人精品亚洲av| 国产av又大| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 国内久久婷婷六月综合欲色啪| 天天躁夜夜躁狠狠躁躁| 欧美成人一区二区免费高清观看 | 制服丝袜大香蕉在线| 亚洲在线自拍视频| 国产主播在线观看一区二区| 三级毛片av免费| 亚洲五月色婷婷综合| 亚洲av第一区精品v没综合| 亚洲中文日韩欧美视频| 久久天堂一区二区三区四区| 精品久久蜜臀av无| 日韩欧美国产一区二区入口| 日韩高清综合在线| 中文资源天堂在线| 亚洲国产欧洲综合997久久, | 色综合亚洲欧美另类图片| 久久久久久久久久黄片| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区高清视频在线| 色精品久久人妻99蜜桃| 亚洲av成人一区二区三| 日韩欧美三级三区| 亚洲av电影不卡..在线观看| 午夜免费成人在线视频| 99riav亚洲国产免费| 亚洲最大成人中文| 视频区欧美日本亚洲| 最新美女视频免费是黄的| 波多野结衣av一区二区av| 最近在线观看免费完整版| 色婷婷久久久亚洲欧美| 免费高清视频大片| 国产人伦9x9x在线观看| 欧美av亚洲av综合av国产av| 免费在线观看成人毛片| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 亚洲va日本ⅴa欧美va伊人久久| 国产精品爽爽va在线观看网站 | 欧美乱码精品一区二区三区| 国产91精品成人一区二区三区| 国产区一区二久久| 老司机靠b影院| 久久久久国内视频| 又黄又爽又免费观看的视频| 欧美性猛交黑人性爽| 午夜免费鲁丝| 国内揄拍国产精品人妻在线 | 一本大道久久a久久精品| 长腿黑丝高跟| 日本三级黄在线观看| 日韩成人在线观看一区二区三区| 欧美日韩一级在线毛片| 一区二区三区激情视频| 亚洲国产欧美一区二区综合| 国产伦一二天堂av在线观看| 听说在线观看完整版免费高清| 日韩大尺度精品在线看网址| 一区福利在线观看| 在线av久久热| 自线自在国产av| 麻豆国产av国片精品| 精品少妇一区二区三区视频日本电影| 满18在线观看网站| 亚洲专区字幕在线| 亚洲av电影在线进入| 成人一区二区视频在线观看| 久久久久久久久久黄片| 日本在线视频免费播放| 在线观看一区二区三区| 十分钟在线观看高清视频www| 黄色 视频免费看| 丝袜人妻中文字幕| 成年女人毛片免费观看观看9| 精品国产超薄肉色丝袜足j| 麻豆av在线久日| 成年版毛片免费区| 久久精品国产亚洲av高清一级| 国产亚洲精品一区二区www| 淫秽高清视频在线观看| 成人欧美大片| 国产av不卡久久| 国产成人av激情在线播放| 18禁国产床啪视频网站| 国产精品 欧美亚洲| 亚洲国产精品sss在线观看| 热99re8久久精品国产| 999久久久精品免费观看国产| 亚洲黑人精品在线| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 亚洲午夜理论影院| 国产黄a三级三级三级人| 午夜免费鲁丝| 国产精品,欧美在线| 成人国语在线视频| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 高清毛片免费观看视频网站| 一级黄色大片毛片| 老鸭窝网址在线观看| 天天一区二区日本电影三级| 亚洲av成人av| 久久久久久久久免费视频了| 亚洲国产欧洲综合997久久, | 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 色在线成人网| 亚洲成a人片在线一区二区| 久久久久亚洲av毛片大全| 真人一进一出gif抽搐免费| 久久久久久免费高清国产稀缺| cao死你这个sao货| 成人国产综合亚洲| 啪啪无遮挡十八禁网站| 美女国产高潮福利片在线看| 日日干狠狠操夜夜爽| 一本大道久久a久久精品| 91av网站免费观看| 香蕉久久夜色| 免费观看人在逋| www日本在线高清视频| 久久精品国产亚洲av高清一级| 男男h啪啪无遮挡| 色综合站精品国产| 人人妻人人看人人澡| a级毛片a级免费在线| 亚洲国产日韩欧美精品在线观看 | 久久久久国内视频| 久久香蕉精品热| 欧美成狂野欧美在线观看| 黄色 视频免费看| 亚洲成人久久爱视频| 91字幕亚洲| 国内精品久久久久久久电影| av中文乱码字幕在线| 久久久国产成人精品二区| 在线视频色国产色| 成人亚洲精品av一区二区| 男女下面进入的视频免费午夜 | 成年版毛片免费区| 亚洲国产欧美一区二区综合| 在线观看免费视频日本深夜| 成人手机av| 一区二区三区高清视频在线| 久久久国产成人免费| 一进一出抽搐gif免费好疼| 操出白浆在线播放| 韩国精品一区二区三区| 免费在线观看亚洲国产| 亚洲自拍偷在线| 色av中文字幕| 国产欧美日韩一区二区三| 一本精品99久久精品77| 天堂动漫精品| 我的亚洲天堂| 国产av不卡久久| 色综合婷婷激情| 欧美日韩亚洲综合一区二区三区_| 搞女人的毛片| 亚洲aⅴ乱码一区二区在线播放 | 国语自产精品视频在线第100页| 18美女黄网站色大片免费观看| 久久国产精品影院| 午夜福利视频1000在线观看| 身体一侧抽搐| 国产国语露脸激情在线看| 精品人妻1区二区| 国产日本99.免费观看| 色在线成人网| 美女扒开内裤让男人捅视频| 久久婷婷人人爽人人干人人爱| 欧美大码av| 变态另类丝袜制服| 中文资源天堂在线| 最近最新中文字幕大全免费视频| 亚洲欧美精品综合一区二区三区| 嫁个100分男人电影在线观看| 免费在线观看影片大全网站| x7x7x7水蜜桃| 国产av在哪里看| 特大巨黑吊av在线直播 | 人妻久久中文字幕网| 国产精品久久久久久精品电影 | 亚洲国产欧洲综合997久久, | 他把我摸到了高潮在线观看| 在线播放国产精品三级| 草草在线视频免费看| 久久伊人香网站| 午夜福利一区二区在线看| √禁漫天堂资源中文www| 久热这里只有精品99| 精品欧美一区二区三区在线|