• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly crystalline,highly stable n-type ultrathin crystalline films enabled by solution blending strategy toward organic single-crystal electronics

    2023-02-18 01:55:24YngLiuShuyuLiYihnZhngXiotingZhuFngxuYngFeiJioWenpingHu
    Chinese Chemical Letters 2023年12期

    Yng Liu ,Shuyu Li ,Yihn Zhng ,Xioting Zhu ,Fngxu Yng,? ,Fei Jio,? ,Wenping Hu,b

    a Tianjin Key Laboratory of Molecular Optoelectronic Sciences,Department of Chemistry,School of Science,Tianjin University,Tianjin 300072,China

    b Haihe Laboratory of Sustainable Chemical Transformations,Tianjin 300192,China

    Keywords:n-type organic field effect transistors Ultrathin film High-performance Composites

    ABSTRACT The development of n-type semiconductor is still far behind that of p-type semiconductor on account of the challenges in enhancing carrier mobility and environmental stability.Herein,by blending with the polymers,n-type ultrathin crystalline thin film was successfully prepared by the method of meniscusguided coating.Remarkably,the n-type crystalline films exhibit ultrathin thickness as low as 5 nm and excellent mobility of 1.58 cm2 V?1 s?1,which is outstanding in currently reported organic n-type transistors.Moreover,the PS layer provides a high-quality interface with ultralow defect which has strong resistance to external interference with excellent long-term stability,paving the way for the application of n-type transistors in logic circuits.

    Large area single crystal thin films are the best candidate materials for high-performance integrated plastic electronics,on account of the advantages of eliminating the interference of grain boundaries,defects,impurities and charge traps [1–4].Up to now,large area preparation of organic single crystal film has become a hot research field due to the inherent unique characteristics of organic molecules [5–7].On the one hand,they have good selfcrystallization and tend to aggregate crystallization in solution processing [8,9].On the other hand,because of the development of meniscus-guided coating (MGC) method,the orientation-inducing force can induce organic molecules to assemble in the same direction,enabling the formation of large-area highly crystalline films[10,11].For an organic field effect transistor (OFET),carrier transport channels are considered to be located within several molecular layers at the interface between the organic semiconductor and the insulating layer [12,13].At present,it has been reported that the monolayer molecular crystal can achieve the same performance as the bulk single crystal [14,15].Moreover,the ultrathin crystal film also has inherent incomparable unique advantages.On the one hand,the ultrathin feature can greatly reduce the bulk resistance of the semiconductor,facilitating the carrier injection[16,17].On the other hand,the carriers in the ultrathin channel can be efficiently regulated by the gate,and thus the carriers can be completely depleted in the depletion region to achieve ultra-low off-state current [18,19].Currently,the methods of preparing ultrathin single crystals mainly include liquid surface substrate method and the MGC method.Despite the liquid substrate method can prepare two-dimensional organic crystals with a controllable number of layers based on spatial confinement,it cannot be fabricated on a large scale [20].By contrast,the MGC method can be fabricated in a large area.However,in order to ensure the continuity of the film,the thickness of the film is often increased,resulting in a challenge of achieving ultrathin thickness.Although there are a few reports on p-type ultrathin single crystal films [21],investigation on largearea n-type ultrathin crystalline films is scarce.

    In addition,the long-term storage and operational stability of n-type ultrathin semiconductor films is another formidable challenge that needs to be addressed.There are two main reasons for the morphological evolution of organic thin films after long-term storage.Firstly,molecular films are assembled by weak van der Waals interactions between organic molecules [22,23].Secondly,the heterointerface is generally accompanied by the existence of interfacial stress [24].Moreover,this phenomenon will be more pronounced for ultrathin films.To overcome this problem,it has been reported that increasing the thickness of the film can improve the stability [25,26].Even worse,the stability of n-type semiconductor thin films is a long-term problem in the field,mainly because the electronic properties of organic semiconductors are easily affected by water and oxygen [27,28].Thus,the stability of n-type ultrathin films will be a huge challenge,which needs to be solved by developing sophisticated strategies.

    Herein,we develop a polymer blending strategy to realize the preparation of n-type ultrathin films,obtaining high-performance n-type organic field effect transistors with excellent stability.Choosing 4,4'-(2λ4δ2-benzo[1,2-c:4,5-c’]bis[1,2,5]thiadiazole-4,8-diyldi-5,2-thiophenediyl)bis[2-dodecylbenzonitrile] (TU-3) as the n-type semiconductor,we obtained n-type ultrathin films owing to the properties of the continuous film formation and efficient crystallization of the polymer polystyrene (PS) in TU-3/PS composite.The electron mobility of the corresponding device is as high as 1.58 cm2V?1s?1,which is the highest value for n-type ultrathin films.More importantly,the n-type ultrathin film achieves good long-term stability due to the addition of PS to stabilize the heterointerfacial stress,and the low defect system also enables the film to obtain good resistance to external interference.This study lays a solid foundation for the development of high-performance n-type ultrathin films for large area integrated electronics.

    For the solution shearing method,ultra-low solution concentration or fast shear rate are generally required to prepare ultrathin films [29].Small molecules are not easy to form films due to their low viscosity,so we tend to increase the shear rate to reduce the thickness of the film,which often results in discontinuity and inhomogeneity of the film [10].However,the addition of polymers can significantly increase the viscosity and improve the wettability of the solution,thereby improving the growth kinetics,which is more favorable for the growth of thin films [30,31].In terms of molecular selection,we chose small molecule TU-3 and polymer PS with good solubility and high stability [32,33].In film preparation,we chose the strategy of polymer blending to assist solution shearing (Fig.1a).By using the method of meniscus-guided coating,an orientation force is applied to small molecules to induce crystallization toward the dominant direction.The uniform solidification of PS with long-chain structure at the bottom layer provides a favorable platform for the deposition of TU-3 small molecules,thereby obtaining continuous and uniform ultrathin films by adjusting the appropriate shear rate (Fig.1b).Optical micrographs reveal ultrathin films with centimeter-scale dimensions and smooth,flat surfaces,and atomic force microscopy (AFM) images indicate a thickness of 5.5 nm (Fig.S1 in Supporting information).The microstructure of the ultrathin film is revealed by AFM,and it is found that the blend film has a more continuous and flatter surface than the single-component film,and the root mean square roughness (RMS) is reduced from 1.49 nm to 0.48 nm due to the introduction of polymers,which reflects that the blending strategy improves the uniformity and continuity of the ultrathin films (Figs.1c and d).In order to further analyze the crystallinity and structure of the ultrathin film,it is first observed under a polarizing microscope (POM).When the polarization angle is rotated by 45°,the film shows a uniform color change and a significant extinction phenomenon,indicating that it has a long-range ordered internal structure (Figs.1e and f).Meanwhile,the out-of-plane X-ray diffraction pattern shows that the blend film had sharper diffraction peaks,indicating that the introduction of PS effectively improves the crystallinity of TU-3 (Fig.S2 in Supporting information).Besides,the selected-area electron diffraction (SAED) image shows that the ultrathin film has periodically arranged diffraction spots,further proving its single-crystal structure (Fig.1g).

    Fig.1. (a) Chemical structure of TU-3 and PS and schematic diagram of ultrathin film preparation.(b) Schematic diagram of small molecule deposition process.(c,d) AFM images of a pure TU-3 film and a TU-3/PS blend ultrathin film on Si/SiO2 substrate.(e,f) POM images of an ultrathin film.(g) An SAED image of an ultrathin film.Inset: a transmission electron microscope image (TEM) of the ultrathin film.

    We transferred Ag (80 nm)/Au (80 nm) as source and drain electrodes on the ultrathin films,and constructed bottom-gate topcontact (BGTC) OFETs to study its electrical properties (Fig.2a and Fig.S3 in Supporting information).All experiments were performed at room temperature and in air environment.The transfer characteristic curves of ultrathin film-based OFETs are shown in Fig.2b,and the corresponding output curves are shown in Fig.2c.An electron mobility of 1.58 cm2V?1s?1is obtained under optimal conditions with an on-off ratio greater than 107.Moreover,we systematically studied the effect of different annealing temperatures on the mobility,and found that the mobility of the device was the highest when annealing at 100°C for 1 h (Fig.2d),which is attributed to the volatilization of impurities such as organic solvents and water in the ultra-thin film,as well as the enhancement of film crystallinity (Fig.S4 in Supporting information).In addition,the effect of different mixing ratios on the mobility is also crucial,and the performance of the device is the best when the mixing ratio is 3:1 (Fig.S5 in Supporting information).It is worth mentioning that with the increase of shear rate,the thickness of the film will decrease inversely proportional,and the thickness of the ultra-thin film can be as low as 5 nm.When the shear rate is 0.25 mm/s,the mobility of the ultrathin films reaches the maximum value.However,continuing to increase the shear rate significantly increases the defects of the film,thereby reducing its electrical transport capacity (Fig.2e and Fig.S6 in Supporting information).The mobilities of 30 devices under the optimal conditions are counted as shown in Fig.2f,which is a normal distribution.The average electron mobility is 1.09 cm2V?1s?1,and the maximum electron mobility is 1.58 cm2V?1s?1,which is the highest value reported so far in OFETs used TU-3 as the n-type semiconductor.

    Fig.2. (a) Schematic diagram of OFET device based on ultrathin films.Representative transfer (b) and output (c) curves of OFETs based on ultrathin films.(d) OFET mobility as a function of annealing temperature,the error bars were calculated from the standard deviations over 10 devices in each annealing temperature.(e) Film thickness and average mobility at different shear rates,the error bars were calculated from the standard deviations over 5 devices at each shear rate.(f) Histogram of mobility distribution of 30 devices,with average value of 1.09 cm2 V?1 s?1.

    Long-term operational stability and environmental stability are one of the most important application metrics for n-type organic field effect transistors.We measured the output current of the device under a constant gate voltage of 20 V,and found that the device prepared based on the blending strategy showed better stability than the single-component device.After 8.5 h of continuous bias operation,the output current of the device still did not decay(Fig.3a).At the same time,the device was switched on and off 20 times within 2 h,and its transfer curve did not change distinctly(Fig.S7 in Supporting information).In order to explore its intrinsic mechanism,we tested the UV–vis absorption spectrum of the ultrathin film within six months,and the curve basically did not change,proving its good chemical stability (Fig.3b).The devices were then tested for photostability,and the OFETs exhibited good photostability to all wavelengths of light,which was attributed to the high molecular order in the conducting channel and the highquality interface between the dielectric layer and the semiconductor (Figs.3c-e) [34].It is worth noting that when the incident light is 365 nm,the off current of the device significantly increases,which is due to the generation of a large number of photo generated charge carriers in the active layer.However,the threshold voltage did not significantly shift,because there were few defects in the system and almost no hole trapping occurred,demonstrating the photostability of the transistor (Fig.3c).In the blend film,there is a more favorable enthalpy interaction between PS and SiO2,PS will preferentially deposit on the SiO2substrate [35,36],while the more hydrophobic TU-3 small molecules crystallize at the interface of air and film,which can be confirmed in scanning electron micrographs (SEM,as shown in Fig.3i).We also used X-ray photoelectron spectroscopy (XPS) to analyze the atomic ratios of C/S and C/N on the surfaces of blend and single-component films,and the phase separation result was confirmed by their equality (Fig.3j and Fig.S8 in Supporting information).Actually,PS layer passivates the electron traps on the surface of SiO2,provides a high-quality interface,and the whole system is a low-defect system with strong resistance to external interference,thus obtaining perfect stability (Figs.3k and l).Subsequently,we stored the device in air and tracked its mobility and threshold voltage over time.The introduction of PS also significantly improved the environmental stability of the device,and the change in threshold voltage after 9 months was only about 5 V (Fig.3f).Moreover,the mobility of the device is only reduced by about 10% after 4 months of storage.After 8 months,the mobility of the device can still be as high as 1 cm2V?1s?1(Fig.3g).Compared with the previously reported stability of n-type OFETs [37–46],our work is at the cutting edge (Fig.3h).

    Fig.3. (a) The I-t curves of OFETs based on single-component and blend ultrathin films under applied constant voltage VG of 20 V at VD of 40 V.(b) Time-dependent UV–vis spectra of a blend ultrathin film under ambient air.Transfer curves of OFETs based on blend ultrathin films in dark and under different illumination intensities at (c)365 nm,(d) 450 nm and (e) 735 nm.(f) Time-dependent threshold voltage shift of single-component and blend OFETs stored in air at room temperature,the error bars were calculated from the standard deviations over 10 devices.(g) Time-dependent electron mobility of 10 OFETs based on blend ultrathin films stored in air at room temperature.(h) Comparison of n-type OFET stability.(i) Cross-sectional SEM image of a blend ultrathin film.(j) Atomic ratios of the surfaces of single-component and blend ultrathin films.(k,l) The possible mechanism for the stability of ultrathin films.

    To demonstrate the universality of this strategy for different substrates,a high-quality alumina dielectric layer was prepared by template stripping method [47],and then grew a blend ultrathin film on the dielectric (Fig.S9 in Supporting information).Optical microscope and polarized optical microscope images prove that the thin film has a flat surface and good crystallinity (Figs.4ac).Moreover,the morphology and thickness of the thin film did not significantly change with the substrate (Fig.S10 in Supporting information).Subsequently,we thermally evaporated 2 nm 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as a buffer layer,and then deposited 30 nm Ag as the top electrode to prepare a large-area transistor array (Fig.S11 in Supporting information),and the schematic diagram of the devices structure is shown in Fig.4d.Figs.4e and f show the transfer and output curves of the devices,respectively.The highest mobility can reach 0.53 cm2V?1s?1,which is one of the best performance n-type low voltage transistors at present (Table S2 in Supporting information).The mobility of 6× 6 transistors is counted,and it has a relatively uniform distribution (Fig.4i).Likewise,low-voltage devices exhibit good operational stability and environmental stability (Figs.4g and h),which provides a favorable guarantee for the development of organic logic circuits in the future.

    Fig.4. (a) OM and (b,c) POM images of an ultrathin film on Al/AlOx substrate.(d) Schematic diagram of low-voltage transistors based on ultrathin films.(e) Representative transfer and (f) output curves of OFETs based on ultrathin films.(g) The I-t curve of OFETs under applied constant voltage VG of 2 V at VD of 4 V.(h) Time-dependent I-V curves of OFETs under ambient air.(i) The distribution of OFET mobilities of a 6× 6 low-voltage transistor array.

    In conclusion,we have fabricated large-area ultrathin n-type crystalline filmsviausing the polymer blending strategy.Through the introduction of the polymer and the regulation of the shear rate,the electron mobility of the ultrathin film can be as high as 1.58 cm2V?1s?1when the thickness can be as low as 5.5 nm.In the blend system,the favorable interaction between PS and TU-3 molecules regulates the arrangement of TU-3 molecules,enhances the crystallinity of the film,and thus improves the electrical transport performance of the device.Moreover,PS solves the instability caused by n-type semiconductors and ultrathin film,and the lowdefect system also enables the film to obtain good resistance to external interference.Finally,we have successfully fabricated n-type OFETs with high stability and high performance,while low-voltage devices have good uniformity and stability,which has guiding significance for the development of logic circuits.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful to the financial support of the National Key Research and Development Program (No.2022YFF1202700),National Natural Science Foundation of China (No.52121002) and the Haihe Laboratory of Sustainable Chemical Transformations.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108764.

    国产成人一区二区三区免费视频网站| 亚洲熟女毛片儿| 久久久久视频综合| 国产男女内射视频| 午夜激情av网站| 国产成人系列免费观看| 大陆偷拍与自拍| 亚洲熟女精品中文字幕| 91老司机精品| 午夜视频精品福利| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 国产成人啪精品午夜网站| 搡老熟女国产l中国老女人| 热re99久久精品国产66热6| 狠狠精品人妻久久久久久综合| 老司机午夜福利在线观看视频 | a级毛片黄视频| 精品福利观看| 一边摸一边做爽爽视频免费| 久久久久久久大尺度免费视频| 伊人久久大香线蕉亚洲五| 免费黄频网站在线观看国产| 搡老岳熟女国产| 国产不卡av网站在线观看| 亚洲成av片中文字幕在线观看| 成年人免费黄色播放视频| 久久中文字幕一级| 中亚洲国语对白在线视频| 国产av又大| 国产成人av教育| 91成人精品电影| 无遮挡黄片免费观看| 青春草视频在线免费观看| 久久狼人影院| www.999成人在线观看| 国产成人精品在线电影| 母亲3免费完整高清在线观看| 成人国语在线视频| 亚洲国产精品成人久久小说| 亚洲精品久久成人aⅴ小说| 在线看a的网站| 国产成人欧美在线观看 | 国产男人的电影天堂91| 水蜜桃什么品种好| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 日本av手机在线免费观看| 久久久久久免费高清国产稀缺| 久久亚洲国产成人精品v| 亚洲人成电影观看| 国精品久久久久久国模美| 飞空精品影院首页| 国产一区二区三区在线臀色熟女 | 久久狼人影院| 高清黄色对白视频在线免费看| 国产男人的电影天堂91| a 毛片基地| 成年动漫av网址| 国产成人精品久久二区二区91| 狂野欧美激情性xxxx| 老司机深夜福利视频在线观看 | 中国国产av一级| 一边摸一边做爽爽视频免费| 欧美日本中文国产一区发布| 性少妇av在线| 手机成人av网站| 久久精品aⅴ一区二区三区四区| 欧美精品人与动牲交sv欧美| 国产一区二区 视频在线| 日韩中文字幕欧美一区二区| 啦啦啦 在线观看视频| 国产欧美日韩综合在线一区二区| 人妻人人澡人人爽人人| 久热这里只有精品99| a级毛片在线看网站| 国产精品 欧美亚洲| 一二三四在线观看免费中文在| 国产av一区二区精品久久| 亚洲激情五月婷婷啪啪| 黄色怎么调成土黄色| 欧美日韩亚洲高清精品| 丝袜美腿诱惑在线| 成人三级做爰电影| 国产精品一二三区在线看| 亚洲av美国av| 久久这里只有精品19| 在线观看舔阴道视频| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 国产免费视频播放在线视频| 少妇精品久久久久久久| 美女大奶头黄色视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品成人av观看孕妇| 宅男免费午夜| bbb黄色大片| 99久久99久久久精品蜜桃| 久久久国产欧美日韩av| 亚洲国产欧美一区二区综合| 日本av手机在线免费观看| 天天躁夜夜躁狠狠躁躁| 久久99一区二区三区| 午夜成年电影在线免费观看| 老司机靠b影院| 性高湖久久久久久久久免费观看| 成人国产av品久久久| 国产无遮挡羞羞视频在线观看| 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| 老司机亚洲免费影院| 一区福利在线观看| 成人手机av| 亚洲色图综合在线观看| 国产xxxxx性猛交| 最近最新免费中文字幕在线| 啦啦啦中文免费视频观看日本| 伊人久久大香线蕉亚洲五| 最近中文字幕2019免费版| av又黄又爽大尺度在线免费看| 777久久人妻少妇嫩草av网站| 1024香蕉在线观看| 精品一区二区三区四区五区乱码| 国产精品一区二区精品视频观看| 日韩,欧美,国产一区二区三区| 亚洲欧美成人综合另类久久久| 岛国毛片在线播放| av片东京热男人的天堂| 久久久久国产精品人妻一区二区| 日韩熟女老妇一区二区性免费视频| 国产97色在线日韩免费| 亚洲精品第二区| 国产精品二区激情视频| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 国产不卡av网站在线观看| 国产熟女午夜一区二区三区| 不卡av一区二区三区| 午夜福利一区二区在线看| 一级,二级,三级黄色视频| 精品久久久久久电影网| 亚洲人成77777在线视频| 男女边摸边吃奶| 国产精品秋霞免费鲁丝片| 色综合欧美亚洲国产小说| 窝窝影院91人妻| 韩国高清视频一区二区三区| 欧美97在线视频| 日韩视频一区二区在线观看| 成人黄色视频免费在线看| 中文精品一卡2卡3卡4更新| 少妇猛男粗大的猛烈进出视频| 久久人人爽人人片av| tube8黄色片| 国产三级黄色录像| 久久九九热精品免费| 一级毛片电影观看| 色婷婷久久久亚洲欧美| 极品少妇高潮喷水抽搐| 黑人操中国人逼视频| 一区二区三区乱码不卡18| 亚洲精品国产区一区二| 免费观看av网站的网址| 亚洲欧美日韩高清在线视频 | 成年动漫av网址| 日本av免费视频播放| 王馨瑶露胸无遮挡在线观看| 国产不卡av网站在线观看| 女警被强在线播放| 97精品久久久久久久久久精品| 日本黄色日本黄色录像| 十分钟在线观看高清视频www| 九色亚洲精品在线播放| 日韩视频一区二区在线观看| 91老司机精品| 国产精品麻豆人妻色哟哟久久| 国产黄色免费在线视频| 国产精品久久久久成人av| 18禁国产床啪视频网站| 首页视频小说图片口味搜索| 亚洲精品中文字幕在线视频| 啪啪无遮挡十八禁网站| 免费在线观看日本一区| 久热这里只有精品99| 精品国产乱码久久久久久小说| 99国产精品一区二区三区| a级片在线免费高清观看视频| 99久久国产精品久久久| 国产精品一二三区在线看| 亚洲人成77777在线视频| svipshipincom国产片| 亚洲国产成人一精品久久久| 午夜福利在线观看吧| 啦啦啦视频在线资源免费观看| 在线观看一区二区三区激情| 国产黄频视频在线观看| 久久久久久久久免费视频了| 老司机亚洲免费影院| 亚洲 欧美一区二区三区| 午夜视频精品福利| 天天添夜夜摸| 大片电影免费在线观看免费| 99热全是精品| 欧美97在线视频| 1024视频免费在线观看| 黄片播放在线免费| 女人被躁到高潮嗷嗷叫费观| 十八禁网站网址无遮挡| 最黄视频免费看| 亚洲精品国产av成人精品| 啦啦啦免费观看视频1| 人成视频在线观看免费观看| 中文精品一卡2卡3卡4更新| 超碰成人久久| 欧美黑人精品巨大| 亚洲国产欧美一区二区综合| 久久国产精品人妻蜜桃| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久久久99蜜臀| 一进一出抽搐动态| 国产免费一区二区三区四区乱码| 精品人妻1区二区| 亚洲欧美一区二区三区黑人| 国产成人a∨麻豆精品| 考比视频在线观看| 中文字幕色久视频| 日韩制服丝袜自拍偷拍| 制服诱惑二区| 亚洲五月色婷婷综合| 黄色视频,在线免费观看| 国产高清国产精品国产三级| 男人添女人高潮全过程视频| 黄色片一级片一级黄色片| 国产精品1区2区在线观看. | 免费在线观看影片大全网站| 亚洲精品久久久久久婷婷小说| 女人爽到高潮嗷嗷叫在线视频| 午夜福利,免费看| 各种免费的搞黄视频| 999精品在线视频| 精品福利永久在线观看| 欧美 亚洲 国产 日韩一| 精品少妇黑人巨大在线播放| 久久久久精品国产欧美久久久 | 亚洲人成电影免费在线| 亚洲精品在线美女| 啪啪无遮挡十八禁网站| 老司机亚洲免费影院| 美女高潮到喷水免费观看| svipshipincom国产片| 国产日韩欧美亚洲二区| 18禁黄网站禁片午夜丰满| av免费在线观看网站| 美女脱内裤让男人舔精品视频| 久久久久久久久免费视频了| 1024香蕉在线观看| 欧美另类一区| 一个人免费看片子| 黄色片一级片一级黄色片| 亚洲熟女毛片儿| 亚洲精品中文字幕一二三四区 | 韩国精品一区二区三区| 一区在线观看完整版| 精品福利观看| 天天操日日干夜夜撸| 午夜日韩欧美国产| 在线天堂中文资源库| √禁漫天堂资源中文www| 丁香六月天网| 亚洲精品久久久久久婷婷小说| 亚洲 欧美一区二区三区| 人妻 亚洲 视频| 国产成人免费观看mmmm| 国产深夜福利视频在线观看| 欧美日韩福利视频一区二区| 色婷婷久久久亚洲欧美| 免费女性裸体啪啪无遮挡网站| 日日摸夜夜添夜夜添小说| 宅男免费午夜| 久久ye,这里只有精品| 精品人妻1区二区| 国产熟女午夜一区二区三区| 不卡一级毛片| 中文欧美无线码| 老司机在亚洲福利影院| 国产免费现黄频在线看| 国产男人的电影天堂91| 亚洲av片天天在线观看| 91老司机精品| 老司机靠b影院| 黑丝袜美女国产一区| 精品第一国产精品| 他把我摸到了高潮在线观看 | 青青草视频在线视频观看| 国产淫语在线视频| 777米奇影视久久| 日韩制服丝袜自拍偷拍| 午夜老司机福利片| 亚洲全国av大片| 亚洲熟女精品中文字幕| 热re99久久精品国产66热6| av超薄肉色丝袜交足视频| 一本久久精品| 欧美激情高清一区二区三区| 黑人操中国人逼视频| 欧美激情极品国产一区二区三区| 免费在线观看日本一区| 亚洲精品美女久久av网站| 国产精品一区二区在线不卡| 亚洲视频免费观看视频| 两人在一起打扑克的视频| 欧美精品亚洲一区二区| 一本久久精品| 亚洲国产欧美日韩在线播放| 成人免费观看视频高清| 国产97色在线日韩免费| 午夜激情av网站| 性色av乱码一区二区三区2| 丝袜美足系列| 国产在线视频一区二区| 国产99久久九九免费精品| 精品乱码久久久久久99久播| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久成人aⅴ小说| 亚洲第一欧美日韩一区二区三区 | 成年av动漫网址| 国产一区二区三区av在线| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久 | 精品人妻一区二区三区麻豆| 国产精品久久久久久人妻精品电影 | 成年人午夜在线观看视频| 欧美激情 高清一区二区三区| 亚洲国产av影院在线观看| xxxhd国产人妻xxx| av在线老鸭窝| 日韩欧美免费精品| 69av精品久久久久久 | 午夜精品久久久久久毛片777| 一本大道久久a久久精品| 精品国产一区二区三区四区第35| 一级,二级,三级黄色视频| 精品少妇久久久久久888优播| 久热这里只有精品99| 成人三级做爰电影| 欧美黑人精品巨大| 高清在线国产一区| 18禁国产床啪视频网站| 久久久久久久久免费视频了| 国产亚洲av片在线观看秒播厂| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产精品久久久不卡| 一进一出抽搐动态| 久久国产亚洲av麻豆专区| 亚洲熟女毛片儿| 国产亚洲欧美在线一区二区| 欧美日韩福利视频一区二区| 日韩 亚洲 欧美在线| 啦啦啦 在线观看视频| 成人国语在线视频| 国产亚洲精品一区二区www | 黄频高清免费视频| 欧美少妇被猛烈插入视频| 在线观看www视频免费| 久久中文看片网| 2018国产大陆天天弄谢| 欧美日韩精品网址| 国产在线视频一区二区| 婷婷丁香在线五月| 女性被躁到高潮视频| 丝袜美腿诱惑在线| 黄色a级毛片大全视频| 精品国产一区二区三区四区第35| 亚洲人成电影免费在线| 狂野欧美激情性bbbbbb| 老汉色av国产亚洲站长工具| 中文字幕色久视频| av线在线观看网站| bbb黄色大片| 丰满少妇做爰视频| 日韩欧美一区二区三区在线观看 | 国产精品免费视频内射| 国产免费现黄频在线看| 久久午夜综合久久蜜桃| 老熟女久久久| 日韩人妻精品一区2区三区| 精品国内亚洲2022精品成人 | 超色免费av| 中文字幕精品免费在线观看视频| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 美女视频免费永久观看网站| 美女主播在线视频| 精品人妻1区二区| 十分钟在线观看高清视频www| 国产精品麻豆人妻色哟哟久久| av又黄又爽大尺度在线免费看| 男人添女人高潮全过程视频| 久久ye,这里只有精品| 免费在线观看完整版高清| 天堂8中文在线网| 亚洲国产日韩一区二区| 久久精品国产综合久久久| 精品国产乱码久久久久久男人| 国产成+人综合+亚洲专区| 中文字幕人妻丝袜制服| 老司机在亚洲福利影院| 久久精品亚洲av国产电影网| 中文字幕制服av| bbb黄色大片| 极品少妇高潮喷水抽搐| 欧美另类亚洲清纯唯美| 免费在线观看完整版高清| 久久青草综合色| 性高湖久久久久久久久免费观看| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av高清一级| 老司机在亚洲福利影院| 久久性视频一级片| 在线亚洲精品国产二区图片欧美| 一进一出抽搐动态| 亚洲av日韩精品久久久久久密| 大码成人一级视频| 每晚都被弄得嗷嗷叫到高潮| 伊人亚洲综合成人网| 精品卡一卡二卡四卡免费| 欧美午夜高清在线| 热99国产精品久久久久久7| 一个人免费看片子| 成年美女黄网站色视频大全免费| xxxhd国产人妻xxx| 成年动漫av网址| e午夜精品久久久久久久| 亚洲五月色婷婷综合| 亚洲精品美女久久av网站| 国产精品欧美亚洲77777| 国产在线观看jvid| 日本一区二区免费在线视频| 色婷婷av一区二区三区视频| 69av精品久久久久久 | 亚洲av美国av| 久久久久国产一级毛片高清牌| 好男人电影高清在线观看| 亚洲激情五月婷婷啪啪| 亚洲av成人一区二区三| 国产一区二区三区综合在线观看| 成年女人毛片免费观看观看9 | 久久人妻熟女aⅴ| 国产成人a∨麻豆精品| 在线天堂中文资源库| 国产片内射在线| 国产真人三级小视频在线观看| 免费不卡黄色视频| 在线亚洲精品国产二区图片欧美| 欧美精品一区二区免费开放| 少妇 在线观看| 久久精品国产亚洲av高清一级| netflix在线观看网站| 在线精品无人区一区二区三| 国产成人啪精品午夜网站| 国产成人系列免费观看| 欧美日韩一级在线毛片| 韩国高清视频一区二区三区| 99国产精品一区二区蜜桃av | 天天操日日干夜夜撸| 亚洲精品国产av成人精品| 免费高清在线观看日韩| 亚洲一区中文字幕在线| 制服诱惑二区| 亚洲成人免费av在线播放| 国产精品免费大片| 99精品欧美一区二区三区四区| 男男h啪啪无遮挡| 51午夜福利影视在线观看| 少妇 在线观看| 99香蕉大伊视频| 无遮挡黄片免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品美女久久av网站| 一本久久精品| 这个男人来自地球电影免费观看| 美女视频免费永久观看网站| 亚洲成国产人片在线观看| av视频免费观看在线观看| 久久99热这里只频精品6学生| 99国产综合亚洲精品| 老司机在亚洲福利影院| 精品熟女少妇八av免费久了| 久久国产精品男人的天堂亚洲| 中国国产av一级| 91成年电影在线观看| 男人爽女人下面视频在线观看| 久久精品亚洲av国产电影网| 国产亚洲精品第一综合不卡| 搡老乐熟女国产| 视频区欧美日本亚洲| 美女国产高潮福利片在线看| 后天国语完整版免费观看| av在线app专区| svipshipincom国产片| www.av在线官网国产| 亚洲自偷自拍图片 自拍| 欧美亚洲 丝袜 人妻 在线| 伊人久久大香线蕉亚洲五| 亚洲avbb在线观看| 国产在线视频一区二区| 老司机亚洲免费影院| 成年人黄色毛片网站| 丁香六月天网| 成人18禁高潮啪啪吃奶动态图| 午夜福利在线免费观看网站| 少妇 在线观看| 三级毛片av免费| 午夜免费观看性视频| 精品国内亚洲2022精品成人 | 日韩精品免费视频一区二区三区| 久久青草综合色| 51午夜福利影视在线观看| 性色av一级| e午夜精品久久久久久久| 欧美午夜高清在线| 99九九在线精品视频| 亚洲精品自拍成人| 国产精品影院久久| 中文字幕最新亚洲高清| 99国产综合亚洲精品| 国产视频一区二区在线看| 国产精品秋霞免费鲁丝片| 午夜免费观看性视频| 国产成人免费无遮挡视频| 欧美精品一区二区大全| 中文字幕制服av| 2018国产大陆天天弄谢| av有码第一页| 狂野欧美激情性bbbbbb| 日韩制服骚丝袜av| 1024香蕉在线观看| 一本综合久久免费| 国产精品偷伦视频观看了| 亚洲av日韩精品久久久久久密| 欧美日韩精品网址| 一区二区av电影网| 欧美午夜高清在线| 国产亚洲精品一区二区www | 国产伦人伦偷精品视频| 婷婷色av中文字幕| 老司机福利观看| 欧美激情极品国产一区二区三区| 欧美日韩精品网址| 国产一区二区在线观看av| 91麻豆精品激情在线观看国产 | cao死你这个sao货| 91字幕亚洲| 国产亚洲午夜精品一区二区久久| 亚洲av日韩精品久久久久久密| 一区二区三区乱码不卡18| 狠狠狠狠99中文字幕| 岛国在线观看网站| 欧美人与性动交α欧美软件| 亚洲中文av在线| 在线观看免费高清a一片| 女性生殖器流出的白浆| 亚洲成人手机| 国产男女超爽视频在线观看| 老司机深夜福利视频在线观看 | 丁香六月欧美| 成在线人永久免费视频| 亚洲中文日韩欧美视频| 国产av精品麻豆| 欧美激情久久久久久爽电影 | 咕卡用的链子| 欧美成狂野欧美在线观看| 美女午夜性视频免费| 国产成人免费无遮挡视频| 视频在线观看一区二区三区| 日本91视频免费播放| 亚洲精品久久午夜乱码| 电影成人av| 国产日韩欧美亚洲二区| 精品少妇久久久久久888优播| av网站免费在线观看视频| 亚洲av成人不卡在线观看播放网 | 天天添夜夜摸| 蜜桃国产av成人99| 免费久久久久久久精品成人欧美视频| 亚洲,欧美精品.| 亚洲精品av麻豆狂野| 国产有黄有色有爽视频| 黄片大片在线免费观看| 精品少妇一区二区三区视频日本电影| 青草久久国产| 伊人久久大香线蕉亚洲五| av片东京热男人的天堂| 搡老岳熟女国产| 久久ye,这里只有精品| 捣出白浆h1v1| 人妻人人澡人人爽人人| 母亲3免费完整高清在线观看| 超碰97精品在线观看| 精品国产一区二区久久| 午夜影院在线不卡| 黄片播放在线免费| 美女大奶头黄色视频| 涩涩av久久男人的天堂| 国产99久久九九免费精品| 中国美女看黄片| 国产日韩欧美在线精品| 亚洲中文日韩欧美视频| 欧美成狂野欧美在线观看| 一区二区日韩欧美中文字幕| 亚洲欧美清纯卡通| 女警被强在线播放| 美女高潮喷水抽搐中文字幕| 欧美日韩精品网址| 首页视频小说图片口味搜索|