• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GRAPHS WITH SMALL NEGATIVE INERTIA INDEX

    2019-05-25 03:57:06MAHaichengXIEChenglingLIDanyang
    數(shù)學(xué)雜志 2019年3期

    MA Hai-cheng,XIE Cheng-ling,LI Dan-yang

    (School of Mathematics and Statistics,Qinghai Nationalities University,Xining 810007,China)

    Abstract: For a graph G with order n,the number of positive and negative eigenvalues of G,denoted by p(G)and n(G),respectively,are called the positive and negative inertia indices of G.The inertia indices are closely related to the nullity of the graph,which has important applications in chemistry,and is intensively studied,especially for molecular graphs.The main objective of this paper is to determine the structure of graphs with small negative inertia index.By utilizing vertex multiplications,we obtain a characterization for graphs G with n(G)≤2,as well as for graphs G with pendent vertices and with n(G)≤3.

    Keywords: positive inertia index;negative inertia index;multiplication of vertices

    1 Introduction

    We consider finite simple graphs in this paper.Undefined concepts and notations will follow[1],and so we writeG=(V(G),E(G))to denote a simple graph with vertex setV(G)and edge setE(G).As in[1],for a vertex subsetU?V(G),G[U]is the subgraph ofGinduced byU.For a vertexu∈V(G),defineNG(u)={v∈V(G)|vis adjacent touinG}to be the neighborhood of vertexuinG,anddG(u)=|NG(u)|as the degree ofuinG.For integersn,n1,···,nt>0,Kn,CnandKn1,n2,···,ntdenote the complete graph onnvertices,then-cycle and the complete multipartite graph,respectively.IfGandHare two vertex disjoint graphs,thenG∪Hdenotes the disjoint union ofGandH.

    Throughout this paper,the vertices of a graphGare often labeled asV(G)={v1,v2,···,vn},wheren=|V(G)|.As in[1],the adjacency matrix ofGis ann×nmatrixA(G)=(aij)n×n,whereaijis the number of edges joiningviandvjinG.The eigenvaluesλ1,λ2,λ3,···,λnofA(G)are said to be the eigenvalues of the graphGand to form the spectrum of this graph.The number of positive,negative and zero eigenvalues in the spectrum ofGare called positive inertia index,negative inertia index and nullity of the graphG,and are denoted byp(G),n(G)andη(G),respectively.Obviouslyp(G)+n(G)+η(G)=n.The rank ofG,written asr(G),is the number of nonzero eigenvalues in the spectrum ofG.It follows from the definitions thatr(G)=p(G)+n(G)=n?η(G).

    In chemistry,a conjugated hydrocarbon molecule can be modeled by its molecular graph G,where the vertices of G represent the carbon atoms,and the edges of G represent the carbon-carbon bonds of the conjugated molecule.The nullity(as well as the rank)of a molecular graph G has a number of important applications in chemistry.For example,it is known[2]that η(G)=0 is a necessary condition for the molecule represented by G to be chemically stable.More studies on nullity or rank of graphs can be found in[3–28],among others.To the best of our knowledge,very few studies on the positive and negative inertia indices of graphs were conducted.In[29],Hof f man showed that a graph has exactly one negative eigenvalue if and only if its non-isolated vertices form a complete bipartite graph.In[30],Smith showed that a graph has exactly one positive eigenvalue if and only if its non-isolated vertices form a complete multipartite graph.In[31],graph G is characterized with p(G)≥n?2,where n=|V(G)|.It raises the problem of characterizing graph G with small negative inertia indices.

    This motivates the current research.In this paper,we present a complete characterization for graphs G with n(G) ≤ 2,and for graphs G with both δ(G)=1 and n(G) ≤ 3,where δ(G)is the smallest degree of G.

    This paper is organized as follows:in Section 2,preliminary lemmas will be presented.A Characterization for graph G with n(G)≤2,and for graph G with pendent vertices and with n(G)≤3 are given in Sections 3 and 4.The characterization of graph G with n(G)≤2 extends the former result of Hof f man in[29].

    2 Priliminaries

    Lemma 2.1Let G and H be graphs.Then

    Lemma 2.2(see[30])A graph G has exactly one positive eigenvalue if and only if its non-isolated vertices form a complete multipartite graph.

    Lemma 2.3(see[9,32])(the Cauchy inequalities)Let A be Hermtian matrix with eigenvalues λ1≥ λ2≥ ···≥ λn,B be one of its principal submatrices and B have eigenvaluesμ1≥ ···≥ μm.Then the inequalities λn?m+i≤ μi≤ λi(i=1,···,m)hold.

    Lemma 2.4Let H be a vertex-induced subgraph of G.Then

    (1)r(H)≤r(G),p(H)≤p(G)and n(H)≤n(G).

    (2)If r(H)=r(G),then p(H)=p(G)and n(H)=n(G).

    ProofLemma 2.4 follows from Lemma 2.3 and from the inequality r(H)=p(H)+n(H)≤p(G)+n(G)=r(G).

    Lemma 2.5(see[33])Let G be a connected graph with rank k(≥2).Then there exists a vertex-induced subgraph H(of G)on k vertices such that r(H)=k.

    As in[1],a vertex subset I?V(G)of a graph G is an independent set(also referred as a stable set)of G if G[I],the subgraph induced by I,is edgeless.Let m=(m1,m2,...,mn)be a vector of positive integers.Denote by G?m the graph obtained from G by replacing each vertex viof G with an independent set of miverticeand joiningwithif and only if viand vjare adjacent in G(1≤s≤mi,1≤t≤mj).The resulting graph G?m is said to be obtained from G by multiplication of vertices.

    Let ? be the set of some graphs,we denote by M(?)the class of all graphs that can be constructed from one of the graphs in ? by multiplication of vertices.

    Lemma 2.6(see[5,6])Let G and H be graphs.If G∈M({H}),then r(G)=r(H).Furthermore,in this case,we have both p(G)=p(H)and n(G)=n(H).

    A graph is called a basic graph if it has no isolated vertex and can not be obtained from other graphs by multiplication of vertices.By definition,a graph with no isolated vertices is not a basic graph if and only if it has two vertices which have same neighborhoods.By Lemma 2.6,it suffices to study basic graphs when we investigate graph invariants such as the rank,the positive inertia index and the negative inertia index.

    Lemma 2.7(see[19])Let G be a graph containing a pendant vertex,and let H be the induced subgraph of G obtained by deleting the pendant vertex together with the vertex adjacent to it.Then p(G)=p(H)+1 and n(G)=n(H)+1.

    Figure 1:the connected basic graph with r(H)=4

    Lemma 2.8(see[5,6,8])Let G be a connected graph.Then

    (a)r(G)=2 if and only if G∈M({K2}),

    (b)r(G)=3 if and only if G∈M({K3}),

    (d)r(G)=5 if and only if G ∈ M(?2),where ?2={G1,G2,···,G24},

    where graphs Hi(i=1,2,···,8)are depicted in Figure 1 and graphs Gi(i=1,2,···,24)are depicted in Figure 2.

    Lemma 2.9(see[31])Let G be a graph of order n,then p(G)=n?2 if and only if one of the following holds

    (1)n=2,G~=2K1;or

    (2)n=3,G~=K1SK2,K1,2or K3;or

    (3)n=4,G~=F1,F2or F3;or

    where graphs Fi(i=1,2,3)are depicted in Figure 3.

    “Good evening.” The waiter said. “ Table for four?”“Yes, thank you.”“Smoking or non?”“Nonsmoking.”“Would you prefer to dine indoors or outdoors this evening?”“I guess indoors would be good.”

    Figure 2:the connected basic graph with r(G)=5

    3 Characterization of Graphs G with n(G)≤2

    The following lemmas will be needed in our characterization.

    Lemma 3.1(see[29])A graph has exactly one negative eigenvalue if and only if its non-isolated vertices form a complete bipartite graph.In other words,if G is a connected

    Figure 3:The graph G with four vertices and p(G)=2

    graph,then n(G)=1 if and only if G∈M({K2}).

    Lemma 3.2Let G be a connected graph.Then n(G)=2 if and only if G ∈ M(?3),where ?3={K3,C5,H1,H2, ···,H7},and the graphs Hi(i=1,2,···,7)are defined in Figure 1.

    ProofIt is routine to verify that n(G)=2 for G∈{K3,C5}∪{Hi|1≤i≤7}.Thus the sufficiency follows from Lemma 2.6.

    To prove the necessity,we note that r(G)>n(G)=2.If r(G)=3,then by Lemma 2.8(b),G ∈ M({K3}).If r(G)=4,then by Lemma 2.8(c),G ∈ M({H1,H2,···,H8}).However,as direct computation yields n(H8)=3,we must have G ∈ M({H1,H2,···,H7}).

    If r(G)=5,then by Lemma 2.8(d),G ∈ M({G1,G2,···,G24}).Direct computation yields n(G2)=4.To determine the values of the other n(Gi)’s,we utilize Table 1 of[9]to findBy deleting the vertices which be marked?in graphs depicted in Figure 2,we observe that each Gi,9≤i≤18,has a vertex-induced subgraph isomorphic to G4,that each of G19,G20and G21has a vertex-induced subgraph isomorphic to G5,that each of G22and G23has a vertex-induced subgraph isomorphic to G6,and that G24has a vertex-induced subgraph isomorphic to G7.It follows by Lemma 2.4(2)that n(Gi)=3,9≤i≤24.Hence in this case,G∈M({G1})=M({C5}).

    If r(G)=k≥6,then by Lemma 2.5,there exists a vertex-induced subgraph H(of G)on k vertices such that r(H)=k.Furthermore,by Lemma 2.4(2),we have n(H)=2 and p(H)=k?2.However,there does not exist such a graph H by Lemma 2.9.This means that there does not exist graph G with r(G)=k≥6 and n(G)=2.

    Figure 4:basic extremal graphs with respect to n(G)=2.

    A graph G is called basic extremal graph with respect to n(G)=2,if G is a basic graph with n(G)=2,and G is not a proper vertex-induced subgraph of any other basic graphs H with n(H)=2.By definition,since K3is a proper vertex-induced subgraph of H6,hence K3is not a basic extremal graph with respect to n(G)=2,the same graphs Hi(i=1,2,3,4,5)are not basic extremal graph with respect to n(G)=2.However,it is routine to verify that the graphs G in Figure 4 are basic extremal graphs with respect to n(G)=2.

    Theorem 3.1 now follows from Lemma 3.1 and Lemma 3.2.

    Theorem 3.1Let G be a graph.Then n(G)≤ 2 if and only if G ∈ M(?4),where ?4is the set of all vertex-induced subgraph of each graph in Θ1={C5∪K1,H6∪K1,H7∪K1},and C5,H6,H7are depicted in Figure 4.

    4 Characterization of Graphs G with Pendent Vertices and n(G)≤3

    Let H be a graph with V(H)={v1,v2,···,vn}and m=(m1,m2,...,mn)be a vector with mi=1 or 2,(i=1,2,···,n).Then V(H)can be divided into two sets:V1={vi∈V(H)|mi=1}and V2={vi∈V(H)|mi=2}.Let v1iand v2ibe the vertices in H?m by multiplying the vertex viin H when mi=2.For a subset U?V1,we construct a graph(H?m)Uas follows

    By the definition,(H?m)Uhas a pendent vertex x.

    Lemma 4.1If H is a basic graph,then(H?m)Uis also a basic graph.

    ProofFor any i,j ∈ {1,2,···,n},ifi6=j,as H is a basic graph,then NH(vi)6=NH(vj).So N(H?m)U(vsi)6=N(H?m)U(vtj)(1≤ s≤ mi,1≤ t≤ mj).If i=j and mi=2,by the construction of the graph(H?m)U,we have y∈N(H?m)U(v1i)and y/∈N(H?m)U(v2i);x∈N(H?m)U(y)and x/∈N(H?m)U(v)for all v(6=y)∈V((H?m)U);N(H?m)U(x)={y}and N(H?m)U(v)6={y}for all v(6=x)∈ V((H ?m)U)(this is because H has no isolated vertex).In a word,any two vertices in(H ? m)Udon’t have the same neighborhoods.Therefore,(H?m)Uis a basic graph.This proves the lemma.

    Let Γ(H)={((H ?m)U|U ∈ V1,m=(m1,m2,···,mn),mi=1 or 2}be the collection of all graphs(H?m)U.For the convenience of drawing,when mi=2,we use a hollow circle to indicate two vertices v1iand v2i,which have the same neighborhoods in H?m,the vertex y is adjacent to v1iand not adjacent to v2i,and we use a black dot to indicate exactly one vertex.For example,the graph(H?m)Uis depicted in Figure 6,where H=C5,V(H)={v1,v2,v3,v4,v5},m=(2,2,1,1,1)and U={v3,v4}.

    Figure 5:the graph(C5?m)Uwhere m=(2,2,1,1,1),U={v3,v4}

    Figure 6:The graphs P1=(C5 ? m1)?,P2=(H6 ? m2)?,P3=(H7 ? m2)?.

    Lemma 4.2Let G be a connected graph with pendent vertices and n(G)=3.Then G ∈ M(?5),where ?5= Γ(2K2)∪Γ(K3)∪Γ(C5)∪S7i=1Γ(Hi)and Hi(i=1,2,···,7)are depicted in Figure 1.

    ProofWithout loss of generality,assume that G is a basic graph.Let H be the induced subgraph of G obtained by deleting the pendant vertex x together with the vertex y adjacent to it.By Lemma 2.7,we have n(H)=2.Furthermore,H does not have isolated vertices(if not,then the G contains at least an isolated vertex or two pendant vertices all adjacent to y,so G is not a connected graph,or G is not a basic graph,a contradiction).If the graph H is not connected,then by Lemma 3.1,H∈M({2K2}).If the graph H is connected,then by Lemma 3.2,H ∈ M({K3,C5,H1,H2,···,H7}),where graphs Hi(i=1,2,···,7)are depicted in Figure 1.We present the proof for the case when H=K3?m,where m=(m1,m2,···,mn)be a vector of positive integers,as the proofs for other cases are similar and will be omitted.If mi≥ 3,then there exist s,t ∈ {1,2,···,mi}such that NG(vsi)=NG(vti).If mi=2,v1iand v2iare all adjacent to y or none is adjacent to y,then NG(v1i)=NG(v2i).However,G is a basic graph,this is a contradiction.So mi≤2,furthermore,one and only one of the two vertices v1iand v2iis adjacent to y when mi=2.Therefore,we conclude that G∈Γ(2K2)∪Γ(K3)∪Γ(C5)∪S7i=1Γ(Hi).

    For vectors m1=(2,2,2,2,2)and m2=(2,2,2,2,2,2),define P1=(C5? m1)?,P2=(H6? m2)?,P3=(H7? m2)?,as depicted in Figure 6.If

    it is straightforward to verity that graphs G are a vertex-induced subgraph of P1,P2,or P3.Hence Theorem 4.1 below follows from Lemma 4.2.

    Theorem 4.1Let G be a graph with pendent vertices and n(G)≤3.Then G∈M(?6),where ?6is the set of all vertex-induced subgraph of each graph in Θ2={P1∪K1,P2∪K1,P3∪K1},where Pi(i=1,2,3)are depicted in Figure 6.

    亚洲熟妇熟女久久| 免费看美女性在线毛片视频| cao死你这个sao货| 婷婷丁香在线五月| 欧美日韩瑟瑟在线播放| 国产野战对白在线观看| 91成年电影在线观看| 男人的好看免费观看在线视频 | 欧美激情高清一区二区三区| 操美女的视频在线观看| 91精品国产国语对白视频| 精品国产亚洲在线| 精品乱码久久久久久99久播| 欧美成人一区二区免费高清观看 | 午夜免费观看网址| cao死你这个sao货| www.熟女人妻精品国产| 99久久精品国产亚洲精品| 女警被强在线播放| 一级片免费观看大全| 大型av网站在线播放| 亚洲精华国产精华精| 国产亚洲av嫩草精品影院| 国产色视频综合| 欧美色视频一区免费| 大陆偷拍与自拍| ponron亚洲| 日韩大尺度精品在线看网址 | 熟女少妇亚洲综合色aaa.| 国产成人欧美在线观看| 亚洲欧美精品综合久久99| svipshipincom国产片| xxx96com| 精品高清国产在线一区| 久久精品亚洲精品国产色婷小说| 亚洲av五月六月丁香网| 亚洲中文字幕日韩| 久久欧美精品欧美久久欧美| 国产在线观看jvid| 黄片小视频在线播放| АⅤ资源中文在线天堂| 视频在线观看一区二区三区| 91大片在线观看| 一本大道久久a久久精品| 手机成人av网站| 亚洲专区国产一区二区| 午夜激情av网站| 欧美绝顶高潮抽搐喷水| 国产精品98久久久久久宅男小说| 亚洲成人久久性| 亚洲第一av免费看| 国产一卡二卡三卡精品| 亚洲成人精品中文字幕电影| 亚洲最大成人中文| 午夜免费鲁丝| 午夜福利成人在线免费观看| 中文字幕色久视频| 色综合欧美亚洲国产小说| 精品午夜福利视频在线观看一区| 一卡2卡三卡四卡精品乱码亚洲| 精品第一国产精品| 免费一级毛片在线播放高清视频 | 19禁男女啪啪无遮挡网站| 亚洲九九香蕉| 国产一区二区在线av高清观看| 久久婷婷成人综合色麻豆| 女人爽到高潮嗷嗷叫在线视频| 一区二区三区国产精品乱码| 久久国产精品人妻蜜桃| 午夜福利成人在线免费观看| 91老司机精品| 亚洲av片天天在线观看| 色老头精品视频在线观看| 久久久久久免费高清国产稀缺| 大型黄色视频在线免费观看| 美女午夜性视频免费| 天堂√8在线中文| 香蕉丝袜av| 一区二区三区精品91| 国产成人一区二区三区免费视频网站| 中文字幕色久视频| 制服人妻中文乱码| 成熟少妇高潮喷水视频| 日日干狠狠操夜夜爽| 女性生殖器流出的白浆| 视频区欧美日本亚洲| 久久久国产精品麻豆| 国产亚洲欧美在线一区二区| 久久香蕉国产精品| 免费女性裸体啪啪无遮挡网站| 一本久久中文字幕| 国产精品亚洲av一区麻豆| 久久人妻av系列| av电影中文网址| 一夜夜www| 久久久久久国产a免费观看| 欧美日本亚洲视频在线播放| 自线自在国产av| 亚洲 国产 在线| 久久狼人影院| 午夜免费成人在线视频| 国产亚洲av高清不卡| 黑人巨大精品欧美一区二区蜜桃| 久久精品aⅴ一区二区三区四区| 在线天堂中文资源库| 国产成人精品久久二区二区91| 午夜福利视频1000在线观看 | 国产av一区在线观看免费| 桃红色精品国产亚洲av| 亚洲av第一区精品v没综合| 少妇裸体淫交视频免费看高清 | 精品久久蜜臀av无| 亚洲天堂国产精品一区在线| 搡老熟女国产l中国老女人| 国产视频一区二区在线看| 久久欧美精品欧美久久欧美| 他把我摸到了高潮在线观看| 久久久久久大精品| 又大又爽又粗| 亚洲免费av在线视频| 两个人看的免费小视频| 超碰成人久久| 99久久久亚洲精品蜜臀av| 午夜福利一区二区在线看| 亚洲性夜色夜夜综合| 如日韩欧美国产精品一区二区三区| 亚洲av电影不卡..在线观看| 欧美日本视频| 亚洲熟女毛片儿| 巨乳人妻的诱惑在线观看| 丰满的人妻完整版| 亚洲国产中文字幕在线视频| 女人爽到高潮嗷嗷叫在线视频| 一进一出抽搐gif免费好疼| 精品久久久久久,| 在线观看一区二区三区| 午夜福利免费观看在线| tocl精华| 我的亚洲天堂| 一边摸一边抽搐一进一出视频| 亚洲成人久久性| 亚洲欧美日韩无卡精品| 日本 av在线| 亚洲成av片中文字幕在线观看| 国产一区二区在线av高清观看| 免费观看人在逋| 国产熟女午夜一区二区三区| 中文字幕最新亚洲高清| 国产精品免费视频内射| 日韩欧美国产一区二区入口| 亚洲自拍偷在线| 国产主播在线观看一区二区| 搞女人的毛片| 老司机深夜福利视频在线观看| 国产精品1区2区在线观看.| 精品不卡国产一区二区三区| 日韩精品中文字幕看吧| 欧美绝顶高潮抽搐喷水| 美国免费a级毛片| 国产精品亚洲美女久久久| 国产熟女xx| 日本黄色视频三级网站网址| ponron亚洲| 精品一品国产午夜福利视频| 久久天堂一区二区三区四区| 精品一区二区三区视频在线观看免费| 777久久人妻少妇嫩草av网站| 老司机福利观看| 级片在线观看| 可以免费在线观看a视频的电影网站| 极品人妻少妇av视频| e午夜精品久久久久久久| 中出人妻视频一区二区| 国产97色在线日韩免费| av福利片在线| 久久草成人影院| 色播亚洲综合网| 精品人妻1区二区| 黄色 视频免费看| 国产亚洲精品久久久久久毛片| 精品日产1卡2卡| 黄色片一级片一级黄色片| 国产精品久久久久久人妻精品电影| 天堂√8在线中文| 日韩 欧美 亚洲 中文字幕| 国产精品久久久人人做人人爽| 在线天堂中文资源库| 51午夜福利影视在线观看| 国产成人影院久久av| 亚洲视频免费观看视频| 极品教师在线免费播放| 人人妻人人爽人人添夜夜欢视频| 国产av在哪里看| 村上凉子中文字幕在线| 亚洲国产高清在线一区二区三 | 国产午夜精品久久久久久| 最近最新中文字幕大全免费视频| 久9热在线精品视频| 午夜成年电影在线免费观看| 久久热在线av| 日日摸夜夜添夜夜添小说| 亚洲av成人一区二区三| 亚洲成国产人片在线观看| 成人18禁高潮啪啪吃奶动态图| 久久精品亚洲熟妇少妇任你| 天天躁夜夜躁狠狠躁躁| 亚洲片人在线观看| av有码第一页| 麻豆av在线久日| 老司机午夜十八禁免费视频| 50天的宝宝边吃奶边哭怎么回事| 精品国产国语对白av| 欧美性长视频在线观看| 一边摸一边做爽爽视频免费| 两个人看的免费小视频| 一区二区三区高清视频在线| 亚洲中文av在线| 操出白浆在线播放| 日韩欧美国产在线观看| 欧美日韩亚洲国产一区二区在线观看| 午夜老司机福利片| 可以免费在线观看a视频的电影网站| 波多野结衣巨乳人妻| 午夜福利高清视频| 亚洲久久久国产精品| 国产精华一区二区三区| av天堂久久9| 激情视频va一区二区三区| 99国产精品免费福利视频| 18美女黄网站色大片免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产日韩欧美精品在线观看 | 日韩欧美国产在线观看| 精品不卡国产一区二区三区| 婷婷六月久久综合丁香| 最近最新免费中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 9热在线视频观看99| 久久国产精品男人的天堂亚洲| 日本免费a在线| 久久久久久亚洲精品国产蜜桃av| 在线国产一区二区在线| 成人国产一区最新在线观看| 国产一区二区激情短视频| 一区在线观看完整版| 欧美最黄视频在线播放免费| 老熟妇仑乱视频hdxx| www.999成人在线观看| 国产av又大| 日日夜夜操网爽| 精品电影一区二区在线| 国产三级黄色录像| 日韩一卡2卡3卡4卡2021年| 欧美日本视频| 91成人精品电影| 亚洲av第一区精品v没综合| 国产区一区二久久| 好看av亚洲va欧美ⅴa在| 免费看a级黄色片| 精品久久久久久久毛片微露脸| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频| 神马国产精品三级电影在线观看 | 国产视频一区二区在线看| 午夜福利,免费看| 欧美色视频一区免费| 色综合婷婷激情| 神马国产精品三级电影在线观看 | 在线免费观看的www视频| 久久久久久国产a免费观看| 亚洲国产欧美一区二区综合| 亚洲精品国产色婷婷电影| 成人特级黄色片久久久久久久| 欧美黄色片欧美黄色片| 成年人黄色毛片网站| 亚洲情色 制服丝袜| 变态另类成人亚洲欧美熟女 | 亚洲五月婷婷丁香| 在线观看日韩欧美| 9色porny在线观看| 国产精品1区2区在线观看.| 91麻豆精品激情在线观看国产| www.www免费av| 黄片播放在线免费| 亚洲欧美激情在线| 亚洲男人天堂网一区| 最近最新中文字幕大全免费视频| 人人妻人人澡人人看| 香蕉丝袜av| 亚洲第一欧美日韩一区二区三区| 美女国产高潮福利片在线看| 日本五十路高清| 久久国产精品影院| 男女午夜视频在线观看| 亚洲国产精品sss在线观看| 国产一区二区在线av高清观看| 亚洲人成电影观看| 校园春色视频在线观看| 国产精品国产高清国产av| 国产在线观看jvid| 在线观看免费日韩欧美大片| 99久久国产精品久久久| 脱女人内裤的视频| 欧美不卡视频在线免费观看 | 久久精品人人爽人人爽视色| bbb黄色大片| 久久精品国产综合久久久| 纯流量卡能插随身wifi吗| 又黄又爽又免费观看的视频| 老汉色∧v一级毛片| 国产主播在线观看一区二区| 国产一区二区三区在线臀色熟女| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久精品国产欧美久久久| 老熟妇乱子伦视频在线观看| 国产不卡一卡二| 午夜免费激情av| 啦啦啦韩国在线观看视频| 激情视频va一区二区三区| 1024香蕉在线观看| 好男人在线观看高清免费视频 | 久久久国产成人精品二区| 亚洲精品一卡2卡三卡4卡5卡| 日本精品一区二区三区蜜桃| 久久这里只有精品19| 亚洲一区中文字幕在线| 欧美黄色片欧美黄色片| 亚洲人成伊人成综合网2020| 9191精品国产免费久久| 老司机靠b影院| 国产av在哪里看| 亚洲狠狠婷婷综合久久图片| 午夜老司机福利片| 久久久久久久久中文| 精品国产超薄肉色丝袜足j| 欧美激情 高清一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国产在线精品亚洲第一网站| 黑人巨大精品欧美一区二区蜜桃| av视频在线观看入口| 伦理电影免费视频| 亚洲伊人色综图| 亚洲国产精品成人综合色| 免费观看精品视频网站| 男女午夜视频在线观看| 视频在线观看一区二区三区| 色综合欧美亚洲国产小说| 日韩国内少妇激情av| 欧美日本亚洲视频在线播放| 国产精品二区激情视频| 国产精品日韩av在线免费观看 | 成年版毛片免费区| 亚洲久久久国产精品| 亚洲一区高清亚洲精品| 亚洲专区国产一区二区| 亚洲中文av在线| 欧美另类亚洲清纯唯美| 亚洲成人久久性| 亚洲精品中文字幕一二三四区| 丰满人妻熟妇乱又伦精品不卡| 日韩免费av在线播放| cao死你这个sao货| 可以在线观看毛片的网站| 国产又色又爽无遮挡免费看| 久久九九热精品免费| 午夜福利影视在线免费观看| 国产91精品成人一区二区三区| x7x7x7水蜜桃| 精品不卡国产一区二区三区| 久久久精品欧美日韩精品| 高清在线国产一区| 国产精品影院久久| 欧美成人一区二区免费高清观看 | 精品国产亚洲在线| 亚洲人成77777在线视频| 成人18禁在线播放| 神马国产精品三级电影在线观看 | 亚洲欧美激情在线| 久久人妻福利社区极品人妻图片| 欧美另类亚洲清纯唯美| 好男人电影高清在线观看| 亚洲国产欧美一区二区综合| 一级毛片精品| 日韩欧美一区视频在线观看| 国产成人一区二区三区免费视频网站| 侵犯人妻中文字幕一二三四区| 精品久久久久久久毛片微露脸| 亚洲天堂国产精品一区在线| 亚洲自拍偷在线| 久9热在线精品视频| 精品福利观看| 成人亚洲精品一区在线观看| 亚洲精品国产色婷婷电影| 亚洲美女黄片视频| 久久久国产成人免费| 午夜激情av网站| 俄罗斯特黄特色一大片| 午夜免费鲁丝| 久久精品aⅴ一区二区三区四区| x7x7x7水蜜桃| 不卡一级毛片| 一个人观看的视频www高清免费观看 | 嫁个100分男人电影在线观看| 无限看片的www在线观看| 在线天堂中文资源库| 在线播放国产精品三级| 亚洲精品一区av在线观看| tocl精华| 国产精品98久久久久久宅男小说| 黄色视频,在线免费观看| 国内精品久久久久精免费| 日韩欧美一区视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产99白浆流出| 老鸭窝网址在线观看| av电影中文网址| 亚洲精品粉嫩美女一区| 国内久久婷婷六月综合欲色啪| av中文乱码字幕在线| 两性夫妻黄色片| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 国产激情欧美一区二区| 少妇被粗大的猛进出69影院| 国产成人欧美在线观看| 精品电影一区二区在线| 黄片大片在线免费观看| 老熟妇乱子伦视频在线观看| 叶爱在线成人免费视频播放| 国产99久久九九免费精品| av视频免费观看在线观看| 久久久国产成人精品二区| 99久久国产精品久久久| 亚洲三区欧美一区| а√天堂www在线а√下载| 热re99久久国产66热| 国产精品二区激情视频| 亚洲第一电影网av| 国产真人三级小视频在线观看| 日本一区二区免费在线视频| 一区二区三区激情视频| 亚洲精品一卡2卡三卡4卡5卡| 大型黄色视频在线免费观看| 国产精品av久久久久免费| 国产成人欧美在线观看| av免费在线观看网站| 免费观看人在逋| 高清黄色对白视频在线免费看| 亚洲午夜理论影院| 亚洲熟妇中文字幕五十中出| 亚洲欧美激情综合另类| 国产成人欧美| 亚洲无线在线观看| 可以在线观看毛片的网站| 国产精品,欧美在线| 国产精品美女特级片免费视频播放器 | 高清毛片免费观看视频网站| 国产成+人综合+亚洲专区| 女性生殖器流出的白浆| 啦啦啦 在线观看视频| 欧美另类亚洲清纯唯美| ponron亚洲| 国产精华一区二区三区| 国产亚洲av高清不卡| 叶爱在线成人免费视频播放| 久久热在线av| 精品人妻在线不人妻| 成人三级做爰电影| 久久欧美精品欧美久久欧美| 可以在线观看的亚洲视频| 亚洲国产高清在线一区二区三 | 欧美一区二区精品小视频在线| 亚洲精品久久国产高清桃花| 不卡av一区二区三区| 国产精品av久久久久免费| 精品午夜福利视频在线观看一区| 国产av在哪里看| 免费在线观看黄色视频的| 在线十欧美十亚洲十日本专区| 国产成人系列免费观看| 99国产精品一区二区蜜桃av| xxx96com| 丰满的人妻完整版| 久久天躁狠狠躁夜夜2o2o| 色老头精品视频在线观看| 国产伦人伦偷精品视频| 九色国产91popny在线| 丰满的人妻完整版| 精品国产一区二区久久| 国产成人欧美| 男女下面进入的视频免费午夜 | 国产精品乱码一区二三区的特点 | 国产成人一区二区三区免费视频网站| 亚洲精品在线美女| 大陆偷拍与自拍| 亚洲国产欧美网| 久久中文看片网| av天堂久久9| 神马国产精品三级电影在线观看 | 男男h啪啪无遮挡| 国产又色又爽无遮挡免费看| 欧美中文日本在线观看视频| 看免费av毛片| 啦啦啦免费观看视频1| 久久亚洲真实| 国产熟女xx| 人人妻人人爽人人添夜夜欢视频| 91大片在线观看| 国产精品,欧美在线| 非洲黑人性xxxx精品又粗又长| 老司机靠b影院| 国产色视频综合| 亚洲自偷自拍图片 自拍| 久久久水蜜桃国产精品网| 少妇的丰满在线观看| 悠悠久久av| 一夜夜www| 亚洲男人的天堂狠狠| 美女免费视频网站| 成人国语在线视频| 一级a爱视频在线免费观看| 亚洲一码二码三码区别大吗| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦免费观看视频1| 亚洲电影在线观看av| 国产高清有码在线观看视频 | 亚洲国产精品成人综合色| 国产av又大| 美女国产高潮福利片在线看| 国产亚洲精品久久久久5区| 精品卡一卡二卡四卡免费| 亚洲狠狠婷婷综合久久图片| 久久久久久大精品| 色综合欧美亚洲国产小说| 欧美性长视频在线观看| 99re在线观看精品视频| 最近最新免费中文字幕在线| 中文字幕精品免费在线观看视频| 99re在线观看精品视频| 久久精品成人免费网站| 啦啦啦观看免费观看视频高清 | 精品免费久久久久久久清纯| 精品久久久久久久人妻蜜臀av | 成人av一区二区三区在线看| 日本a在线网址| 日韩欧美国产在线观看| 日韩 欧美 亚洲 中文字幕| cao死你这个sao货| 欧美国产精品va在线观看不卡| 变态另类丝袜制服| 99国产精品99久久久久| 黄色女人牲交| 国产精品久久视频播放| 中文字幕精品免费在线观看视频| 午夜亚洲福利在线播放| 亚洲情色 制服丝袜| 国产精品一区二区三区四区久久 | 国产高清激情床上av| 精品欧美一区二区三区在线| 啦啦啦免费观看视频1| 午夜福利成人在线免费观看| 日韩免费av在线播放| 午夜老司机福利片| 少妇熟女aⅴ在线视频| 亚洲一码二码三码区别大吗| 久热爱精品视频在线9| 黄色视频,在线免费观看| 91老司机精品| 男女做爰动态图高潮gif福利片 | 91av网站免费观看| av天堂久久9| 长腿黑丝高跟| 人人妻人人澡人人看| 老司机在亚洲福利影院| 黄色视频,在线免费观看| 国产精品乱码一区二三区的特点 | 久久久久久久精品吃奶| 窝窝影院91人妻| 午夜福利,免费看| av片东京热男人的天堂| 91字幕亚洲| 18美女黄网站色大片免费观看| 成人特级黄色片久久久久久久| 成人手机av| 欧美绝顶高潮抽搐喷水| 国产精品精品国产色婷婷| 国产99久久九九免费精品| 久久久久久大精品| 在线播放国产精品三级| 日韩欧美三级三区| 亚洲精品av麻豆狂野| 午夜福利,免费看| 亚洲中文日韩欧美视频| 欧美日韩乱码在线| 看免费av毛片| 男女之事视频高清在线观看| 亚洲成人久久性| 亚洲人成电影免费在线| 国产精品1区2区在线观看.| 黄色女人牲交| 两人在一起打扑克的视频| 国产精品亚洲一级av第二区| а√天堂www在线а√下载| 变态另类成人亚洲欧美熟女 | 99香蕉大伊视频| 久久人人精品亚洲av| 日本三级黄在线观看| 一二三四社区在线视频社区8| 精品久久蜜臀av无| 午夜福利18| 国产亚洲欧美精品永久| 婷婷精品国产亚洲av在线| √禁漫天堂资源中文www| 老汉色av国产亚洲站长工具| 91大片在线观看|