• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OPTIMAL CONTROL PROBLEMFOR EXACT SYNCHRONIZATION OF ORDINARY DIFFERENTIAL SYSTEMS

    2019-05-25 03:57:02WUKefan
    數(shù)學(xué)雜志 2019年3期

    WU Ke-fan

    (School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

    Abstract: In this paper,we study a kind of optimal problems related to the exact synchronization for a controlled linear ordinary dif f erential system.We establish a necessary and sufficient condition for the optimal control.Moreover,we give the numerical approximation of the optimal control and present some examples to test the ef f ectiveness of the algorithm.

    Keywords: exact synchronization;necessary and sufficient conditions;ordinary dif f erential system;numerical approximation

    1 Introduction

    1.1 Background

    Synchronization is a widespread natural phenomenon.It was first observed by Huygens in 1967[1].For instance,pacemaker cells of the heart function simultaneously;thousands of firef l ies may twinkle at the same time;audiences in the theater can applaud with a rhythmic beat;and field crickets give out a unanimous cry[2–4].The theoretical studies on synchronization phenomena from the perspective of mathematics were started by Wiener in the 1950s[5].

    Mathematically,the exact synchronization for a controlled system is to ask for a control so that the dif f erence of any two components of the corresponding solution to the system(with an initial state)takes value zero at a fixed time and remains the value zero after the aforementioned fixed time.The exact synchronization in the PDEs case was first studied for a coupled system of wave equations both for the higher-dimensional case in the framework of weak solutions in[6–8],and for the one-dimensional case in the framework of classical solutions in[2]and[9].A minimal time control problem for the exact synchronization of some parabolic systems was studied in[10].

    In this paper,we consider an optimal control problem related to the exact synchronization for a kind of linear ordinary dif f erential system.

    1.2 Formulation of the Problem and Hypotheses

    Let A∈ Rn×nand B ∈Rn×mbe two constant matrices,where n≥ 2 and m ≥ 1.Let y0∈Rn.Consider the following controlled linear ordinary dif f erential system

    where u∈L2(0,+∞;Rm)is a control.Write

    for the solution of(1.1).Here and throughout this paper,we denote the transposition of a matrix J by J>.It is well known that for each T>0,y(·;y0,u) ∈ C([0,T];Rn).Given T0>0,y0∈Rnand yd∈L2(0,T0;Rn),we define an optimal control problem as follows

    where

    Two concepts related to this problem are the null controllability and the exact synchronization.Let us recall them.First,the system(1.1)is said to be null controllable at time T,if for any y0∈Rn,there exists a control u∈L2(0,+∞;Rm)with u(t)=0 over(T,+∞),so that y(t;y0,u)=0 for all t≥T.Second,the system(1.1)is said to be exactly synchronizable at time T,if for any y0∈Rn,there exists a control u∈L2(0,+∞;Rm)with u(t)=0 over(T,+∞),so that

    Mathematically,the exact synchronization is weaker than the null controllability.

    Here and throughout this paper,we denote A=(aij)1≤i,j≤n,B=(bij)1≤i≤n,1≤j≤mand

    We shall use h·,·i to denote the inner product of Rnor Rmif there is no risk of causing any confusion.

    In this paper,we assume that A and B satisfy the following hypothesis(H1)or(H2).

    (H1)The pair(A,B)satisfies that

    and that rank(DB,DAB,···,DAn?2B)=n ? 1.Recall that D is given by(1.2).

    (H2)The pair(A,B)satis fies that

    and that

    The main result of this paper is as follows.

    Theorem 1.1Suppose that A and B satisfy either(H1)or(H2).Then problem(P)has a unique optimal control.Moreover,

    (i)If A and B satisfy(H1),u?is the optimal control to problem(P)if and only if u?∈U and there exists a function q∈C([0,T0];Rn)so that

    and

    (ii)If A and B satisfy(H2),u?is the optimal control to problem(P)if and only if u?∈U and there exists a function q∈C([0,T0];Rn)so that

    and

    where y?is the solution to(1.1)corresponding to the optimal control u?,i.e.,y?(·)=y(·;y0,u?).

    Pontryagin’s maximum principle of optimal control problems for dif f erential equations was studied for decades[11–15]and the references therein.Recently,Pontryagin’s maximum principle of optimal control problems for the exact synchronization of the parabolic dif f erential equations was considered in[16].However,the sufficient condition for the abovementioned problem was not derived in[16].This paper is organized as follows.In Section 2,we prove Theorem 1.1.In Section 3,we give the numerical approximation of the optimal control and present some examples to test the ef f ectiveness of the algorithm.

    2 Proof of Theorem 1.1

    Under hypothesis(H1)or(H2),by the same arguments as those in[16],we can show the existence and uniqueness of the optimal control of problem(P).We omit the proofs here.Next,we continue the proof of Theorem 1.1.

    (i)We start with the proof of“Necessity” part.For any v ∈ U and λ ∈ (0,1),we set uλ,u?+λ(v?u?).Then uλ∈ U.Denote

    We can show that

    Since u?is the optimal control to problem(P),we get

    Dividing by λ and passing to the limit for λ → 0+in(1.7),we have

    Let p be the solution to the following system

    Multiplying the first equation of(1.9)by z and integrating it over(0,T0),by(1.6)and(1.9),we get

    This,together with(1.8),implies that

    Let ?(·;T0,?0)be the unique solution to the following system

    where ?0=(?01,?02,···,?0n)>.Define

    It is obvious that YT0is closed.We now claim that

    Otherwise,we would have that u??B>p∈L2(0,T0;Rm)YT0.This implies that

    where g ∈ L2(0,T0;Rm).Especially,choosing f==0 in(1.13),we have that

    On one hand,let w(·)be the solution to the following system

    whereeg is the zero extension of g over(0,+∞).Multiplying the first equation of(1.15)by ?(·;T0,?0)and integrating it over(0,T0),by(1.11)and(1.15),we obtain that

    This,together with(1.14),implies that

    where w(T0)=(w1(T0),w2(T0),···,wn(T0))>.

    On the other hand,by(1.3),we denoteμ and α(1,1,···,1)>.Then we can directly check that

    Since w(t)=eA(t?T0)w(T0)for all t≥ T0,it follows from(1.16)and(1.17)that

    This implies thateg+u?∈U.By(1.10),we get that

    which leads to a contraction with(1.13).Hence,(1.12)follows,i.e.,there exists a q0==0,so that

    Set q(·),p(·)+ ?(·;T0,q0).Then by(1.9)and(1.18),we have that

    and u?(t)=B>q(t)a.e.t∈ (0,T0).

    Thus,we finish the proof of the necessity.

    We next turn to the proof of“sufficiency” part.For any u ∈ U,we denote

    where z(·),(z1(·),z2(·),···,zn(·)).We can easily check that(

    and

    Multiplying the first equation of(1.5)by z and integrating it over(0,T0),by(1.19),(1.4)and(1.5),we obtain that

    This,along with(1.20)and(1.21),implies that

    which indicates that u?is the optimal control to problem(P).

    (ii)By the same arguments as those in[16],under hypothesis(H2),we observe that

    We start with the proof of“Necessity” part.Let p and ?(·;T0,?0)(where ?0∈ Rn)be the unique solution to the equations

    and

    respectively.Define

    It is obvious that YT0is closed.By similar arguments as those to prove(1.12),we have that u??B>p∈YT0,i.e.,there exists a q0∈Rn,so that

    Set q(·),p(·)+ ?(·;T0,q0).Then by(1.22)and(1.23),we have that

    and u?(t)=B>q(t)a.e.t∈ (0,T0).

    Thus,we finish the proof of the necessity.

    We next turn to the prove of“sufficiency” part.Its proof is similar to that of“Sufficiency”part in(i).We omit it here.

    3 Numerical Tests

    In this section,we carry out two numerical tests.The tests concern the two cases considered in Theorem 1.1,where(H1)is satisfied in Test 1 and(H2)is satisfied in Test 2.

    Test 1For the framework of(i)in Theorem 1.1,we observe that the optimal control u?and the optimal trajectory y?are the solutions to following equations where y(T0)=(y1(T0),y2(T0),···,yn(T0))>,q(T0)=(q1(T0),q2(T0),···,qn(T0))>,y0,ydand T0are given,A and B will be chosen to satisfy(H1).

    Let(tl)l=0,1,···,Nbe an equidistant partition of[0,T0]with the time step ?t=,i.e.,

    For l=0,1,···,N,i=1,2,···,n,we set

    The discretization of(3.1)gives the following system by an implicit finite dif f erence scheme

    This can be reformulated as a linear system of(2N+1)×n equations MY=b,here

    and M is a(2N+1)n×(2N+1)n matrix given by

    where Inis the n-dimension identity matrix,0n×nis the n-dimension zeros matrix,

    Finally,we can solve(3.2)for dif f erent choice of N to obtain the numerical solution y?,then compare them with the exact solution of y?to check the convergence of the algorithm.

    We carry out the test with n=2,m=1,T0=1,

    Clearly A,B satisfy(H1),and the exact solutioncan be obtained by direct computation

    Taking N=10,20,40,we can illustrate the numerical solution y?and the exact solution of y?in the following figures

    Figure 1:the empty circle is the numerical solution y?=,and the solid line is the exact solution y?=when N=10.

    Figure 2:the empty circle is the numerical solution y?=,and the solid line is the exact solution y?=when N=20.

    Figure 3:the empty circle is the numerical solution y?=,and the solid line is the exact solution y?=>when N=40.

    Test 2For the framework of(ii)in Theorem 1.1,we see that the optimal control u?and optimal trajectory y?are the solutions to following equations

    where y(T0)=(y1(T0),y2(T0),···,yn(T0))>,ydand T0are given,A and B will be chosen to satisfy(H2).

    Analogously we take the same scheme as in Test 1 to obtain the discretization of(3.3)as the following system

    This can be reformulated as a linear system of(2N+1)×n equations:

    Here

    and M is a(2N+1)n×(2N+1)n matrix given by

    where Inis the n-dimension identity matrix,and 0n×nis the n-dimension zeros matrix.

    Finally,we can solve(3.4)for dif f erent choice of N to obtain the numerical solution y?,then compare them with the exact solution of y?to check the convergence of the algorithm.We carry out the test with n=m=2,T0=1,

    Clearly A,B satisfy(H2),and the exact solution y?=(y?1,y?2)>can be obtained by direct computation:

    Taking N=10,20,40,we can illustrate the numerical solution y?and the exact solution of y?in the following figures:

    Figure 4:the empty circle is the numerical solution y?=,and the solid line is the exact solution y?=when N=10.

    Figure 5:the empty circle is the numerical solution y?=>,and the solid line is the exact solution y?=when N=20.

    Figure 6:the empty circle is the numerical solution y?=(y?1,y?2)>,and the solid line is the exact solution y?=when N=40.

    From these figures,we observe that the error between the numerical solution and the exact solution decreases with the increase of N.So,if we take the value of N large enough,the exact solution can be approximated nicely by this method.

    国产视频一区二区在线看| 国产中年淑女户外野战色| 美女黄网站色视频| 麻豆久久精品国产亚洲av| 国产伦一二天堂av在线观看| 人妻丰满熟妇av一区二区三区| 女的被弄到高潮叫床怎么办 | 日日摸夜夜添夜夜添av毛片 | 大型黄色视频在线免费观看| 亚洲精华国产精华液的使用体验 | 在线天堂最新版资源| 中国美白少妇内射xxxbb| 天堂av国产一区二区熟女人妻| 可以在线观看毛片的网站| 九九爱精品视频在线观看| 成人性生交大片免费视频hd| 一级毛片久久久久久久久女| 国产一区二区在线观看日韩| 一a级毛片在线观看| 久久精品人妻少妇| 亚洲中文日韩欧美视频| 精品人妻熟女av久视频| 亚洲国产精品成人综合色| 国产一区二区亚洲精品在线观看| 欧美日韩精品成人综合77777| 免费在线观看影片大全网站| 国产免费男女视频| 国产高清三级在线| 精品久久久久久久久久久久久| 国产美女午夜福利| 少妇裸体淫交视频免费看高清| 久久精品久久久久久噜噜老黄 | 欧美日本视频| 久久精品国产亚洲av天美| 别揉我奶头~嗯~啊~动态视频| 日本免费a在线| 男女做爰动态图高潮gif福利片| 两个人的视频大全免费| 搞女人的毛片| 久久人妻av系列| 啦啦啦啦在线视频资源| 欧美在线一区亚洲| 深爱激情五月婷婷| 性插视频无遮挡在线免费观看| 在现免费观看毛片| 午夜激情欧美在线| 久久久久久久久久久丰满 | 日本黄色片子视频| 午夜老司机福利剧场| 黄色视频,在线免费观看| 超碰av人人做人人爽久久| av视频在线观看入口| 久久久久久久精品吃奶| 久久久久久大精品| 美女高潮喷水抽搐中文字幕| 99热网站在线观看| 日日撸夜夜添| 美女黄网站色视频| 日本 av在线| 国内精品美女久久久久久| 女同久久另类99精品国产91| 欧洲精品卡2卡3卡4卡5卡区| 国产v大片淫在线免费观看| 天堂影院成人在线观看| 久久久国产成人精品二区| 99国产精品一区二区蜜桃av| 精品一区二区免费观看| 12—13女人毛片做爰片一| 成年版毛片免费区| 欧美日韩综合久久久久久 | www日本黄色视频网| 99国产极品粉嫩在线观看| 国产一区二区三区视频了| 亚洲中文字幕日韩| 夜夜看夜夜爽夜夜摸| 少妇高潮的动态图| 国产白丝娇喘喷水9色精品| 久久精品91蜜桃| 久久热精品热| 免费看a级黄色片| 黄色日韩在线| 91在线观看av| 久久久久免费精品人妻一区二区| 搞女人的毛片| 欧美区成人在线视频| h日本视频在线播放| 成人美女网站在线观看视频| 内地一区二区视频在线| 色视频www国产| 在线看三级毛片| 三级毛片av免费| 简卡轻食公司| 国产亚洲精品久久久com| 亚洲最大成人手机在线| 最后的刺客免费高清国语| 日本撒尿小便嘘嘘汇集6| 简卡轻食公司| 国产麻豆成人av免费视频| 精品一区二区三区视频在线| 午夜亚洲福利在线播放| 精品久久国产蜜桃| 国产私拍福利视频在线观看| 午夜福利欧美成人| 久久欧美精品欧美久久欧美| 免费观看在线日韩| 国产精品1区2区在线观看.| av在线亚洲专区| 99久久精品一区二区三区| 99热这里只有是精品50| 又黄又爽又刺激的免费视频.| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女搞黄在线观看 | 在线播放国产精品三级| 国产亚洲精品av在线| 欧美日韩瑟瑟在线播放| 国产亚洲精品综合一区在线观看| 午夜精品一区二区三区免费看| 国产亚洲精品久久久com| 国产精品一区www在线观看 | 国产视频一区二区在线看| 成人精品一区二区免费| 亚洲成a人片在线一区二区| 最新在线观看一区二区三区| 国产精品永久免费网站| av专区在线播放| 91在线观看av| 99久久精品一区二区三区| 日韩欧美国产在线观看| 黄色丝袜av网址大全| 国产色爽女视频免费观看| 亚洲三级黄色毛片| 日韩在线高清观看一区二区三区 | 搞女人的毛片| 看片在线看免费视频| 99精品在免费线老司机午夜| 成人欧美大片| 午夜免费男女啪啪视频观看 | 搡老熟女国产l中国老女人| 亚洲最大成人中文| 日韩,欧美,国产一区二区三区 | 91在线观看av| 国产极品精品免费视频能看的| 久久欧美精品欧美久久欧美| 精品一区二区免费观看| 欧美一区二区国产精品久久精品| 琪琪午夜伦伦电影理论片6080| 99热只有精品国产| 日韩欧美三级三区| 免费看美女性在线毛片视频| 99riav亚洲国产免费| 亚洲人成伊人成综合网2020| 在线免费十八禁| 看免费成人av毛片| 精品国内亚洲2022精品成人| 免费在线观看日本一区| 国产精品野战在线观看| 小蜜桃在线观看免费完整版高清| 中文字幕高清在线视频| 色5月婷婷丁香| 欧美不卡视频在线免费观看| 久久精品91蜜桃| 久久国产乱子免费精品| 热99在线观看视频| 久久精品久久久久久噜噜老黄 | 色哟哟哟哟哟哟| 午夜福利在线观看免费完整高清在 | 国产精品综合久久久久久久免费| 精品一区二区三区视频在线观看免费| 国产老妇女一区| 12—13女人毛片做爰片一| 男人舔奶头视频| 国产蜜桃级精品一区二区三区| 中文字幕熟女人妻在线| 久久久久国内视频| 国产69精品久久久久777片| 黄色欧美视频在线观看| 国产综合懂色| 成人一区二区视频在线观看| 国产精品不卡视频一区二区| 国产亚洲精品久久久久久毛片| 波多野结衣高清无吗| 美女黄网站色视频| a级毛片免费高清观看在线播放| 免费看美女性在线毛片视频| 午夜福利在线观看吧| 三级毛片av免费| 天堂影院成人在线观看| 欧美人与善性xxx| 女同久久另类99精品国产91| 三级国产精品欧美在线观看| 日日啪夜夜撸| 精品人妻视频免费看| 亚洲成人精品中文字幕电影| www.色视频.com| 淫秽高清视频在线观看| 日韩 亚洲 欧美在线| 免费在线观看日本一区| 免费观看在线日韩| 国产主播在线观看一区二区| 狠狠狠狠99中文字幕| 嫁个100分男人电影在线观看| 午夜爱爱视频在线播放| 蜜桃亚洲精品一区二区三区| 老女人水多毛片| netflix在线观看网站| 熟女电影av网| 久久亚洲精品不卡| 深爱激情五月婷婷| 国产人妻一区二区三区在| 天堂影院成人在线观看| 亚洲成av人片在线播放无| 国产精品98久久久久久宅男小说| 此物有八面人人有两片| 国产精品,欧美在线| 亚洲最大成人av| 欧美成人一区二区免费高清观看| 极品教师在线视频| 午夜免费男女啪啪视频观看 | av黄色大香蕉| 可以在线观看毛片的网站| av在线亚洲专区| 国产一级毛片七仙女欲春2| 男人舔女人下体高潮全视频| 久久久久久大精品| 久久国内精品自在自线图片| 午夜爱爱视频在线播放| 欧美中文日本在线观看视频| 老师上课跳d突然被开到最大视频| 精品国内亚洲2022精品成人| 老司机深夜福利视频在线观看| 日本黄色视频三级网站网址| 国产三级中文精品| 久久精品夜夜夜夜夜久久蜜豆| 麻豆国产97在线/欧美| 日韩av在线大香蕉| 1024手机看黄色片| 亚洲人成网站高清观看| 成人高潮视频无遮挡免费网站| 欧美日韩综合久久久久久 | 国产真实伦视频高清在线观看 | 中出人妻视频一区二区| av黄色大香蕉| 成人欧美大片| 欧美日韩瑟瑟在线播放| 永久网站在线| 亚洲欧美日韩无卡精品| 亚洲综合色惰| 欧美一区二区国产精品久久精品| 亚洲七黄色美女视频| 亚洲最大成人手机在线| 日本黄色片子视频| 国产在视频线在精品| 小蜜桃在线观看免费完整版高清| 伦理电影大哥的女人| 精品人妻1区二区| 色综合亚洲欧美另类图片| 国产精品99久久久久久久久| 1000部很黄的大片| 亚洲精品色激情综合| 久久天躁狠狠躁夜夜2o2o| 两人在一起打扑克的视频| 亚洲精品乱码久久久v下载方式| 午夜免费男女啪啪视频观看 | 欧美不卡视频在线免费观看| 97碰自拍视频| 日日撸夜夜添| 桃红色精品国产亚洲av| 国产又黄又爽又无遮挡在线| 波野结衣二区三区在线| 人人妻,人人澡人人爽秒播| 五月玫瑰六月丁香| 18禁裸乳无遮挡免费网站照片| 精品人妻一区二区三区麻豆 | 蜜桃久久精品国产亚洲av| 色综合婷婷激情| av.在线天堂| 日本与韩国留学比较| 欧美黑人欧美精品刺激| 日韩欧美精品免费久久| 亚洲不卡免费看| 欧美最新免费一区二区三区| 久久久久久久久大av| 91在线精品国自产拍蜜月| 国产人妻一区二区三区在| 午夜久久久久精精品| 欧美不卡视频在线免费观看| 日本五十路高清| 变态另类丝袜制服| 国产精品嫩草影院av在线观看 | 国产毛片a区久久久久| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 亚洲四区av| 天堂影院成人在线观看| 永久网站在线| 国产主播在线观看一区二区| 极品教师在线免费播放| 一进一出抽搐动态| 亚洲成av人片在线播放无| 国产 一区精品| 夜夜爽天天搞| 色av中文字幕| 欧美日韩国产亚洲二区| 精品久久久久久久久亚洲 | 乱码一卡2卡4卡精品| 国产精品国产高清国产av| 国内少妇人妻偷人精品xxx网站| 99在线人妻在线中文字幕| 国产成人av教育| 国产免费男女视频| 久久精品夜夜夜夜夜久久蜜豆| 午夜老司机福利剧场| 99久久成人亚洲精品观看| 内射极品少妇av片p| 欧美+亚洲+日韩+国产| 欧美精品国产亚洲| 最后的刺客免费高清国语| 亚洲久久久久久中文字幕| 欧美人与善性xxx| 欧美又色又爽又黄视频| 男女边吃奶边做爰视频| 日韩亚洲欧美综合| 亚洲人成网站高清观看| 夜夜看夜夜爽夜夜摸| 亚州av有码| 99热6这里只有精品| 搞女人的毛片| 国产 一区精品| 18禁在线播放成人免费| 性色avwww在线观看| 久久久久九九精品影院| 女的被弄到高潮叫床怎么办 | 国产午夜精品久久久久久一区二区三区 | 九九久久精品国产亚洲av麻豆| 欧美一区二区亚洲| 午夜激情欧美在线| 99热精品在线国产| av.在线天堂| 亚洲av.av天堂| 亚洲精品影视一区二区三区av| 中出人妻视频一区二区| 韩国av一区二区三区四区| 日韩人妻高清精品专区| 亚洲av成人av| 99久久精品国产国产毛片| 精品久久久久久久久久久久久| 少妇高潮的动态图| 久久国产乱子免费精品| av在线天堂中文字幕| 精品人妻熟女av久视频| 国产色婷婷99| 999久久久精品免费观看国产| 日韩欧美三级三区| 午夜老司机福利剧场| 最近最新中文字幕大全电影3| 亚洲第一区二区三区不卡| 男女边吃奶边做爰视频| 夜夜夜夜夜久久久久| 国产精品国产高清国产av| 亚洲真实伦在线观看| 国产一区二区激情短视频| 在线免费十八禁| 国产av麻豆久久久久久久| 久久国产乱子免费精品| 久久久久国内视频| 国产av麻豆久久久久久久| 美女大奶头视频| 97热精品久久久久久| 乱码一卡2卡4卡精品| 永久网站在线| 成人特级av手机在线观看| 婷婷丁香在线五月| 亚洲专区国产一区二区| 九色成人免费人妻av| 久久久久性生活片| 搡老熟女国产l中国老女人| 精品人妻1区二区| 亚洲专区中文字幕在线| 久久精品国产清高在天天线| 国内精品宾馆在线| 少妇的逼水好多| 日韩中字成人| 给我免费播放毛片高清在线观看| 小蜜桃在线观看免费完整版高清| 自拍偷自拍亚洲精品老妇| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| 日韩精品中文字幕看吧| 色综合亚洲欧美另类图片| 国内精品宾馆在线| 亚洲av中文字字幕乱码综合| 一级a爱片免费观看的视频| 亚洲va在线va天堂va国产| 午夜日韩欧美国产| 日本 av在线| 成人av在线播放网站| 亚洲欧美日韩东京热| 国产蜜桃级精品一区二区三区| 男人的好看免费观看在线视频| 99精品在免费线老司机午夜| 午夜福利欧美成人| 一个人观看的视频www高清免费观看| 九九爱精品视频在线观看| 国产一级毛片七仙女欲春2| 欧美性猛交╳xxx乱大交人| 欧洲精品卡2卡3卡4卡5卡区| 两个人的视频大全免费| 观看美女的网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人免费电影在线观看| 99热只有精品国产| 熟女人妻精品中文字幕| 中国美白少妇内射xxxbb| 他把我摸到了高潮在线观看| 成人av在线播放网站| 熟妇人妻久久中文字幕3abv| 国产真实伦视频高清在线观看 | 在线播放国产精品三级| 国产一级毛片七仙女欲春2| 亚洲国产欧美人成| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 很黄的视频免费| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 亚洲人与动物交配视频| 国产免费男女视频| 美女黄网站色视频| 男人狂女人下面高潮的视频| 久久精品人妻少妇| 欧美xxxx黑人xx丫x性爽| 日日摸夜夜添夜夜添小说| 国产精品一及| 两人在一起打扑克的视频| 亚洲色图av天堂| 久久久久久久久大av| 99精品久久久久人妻精品| av在线亚洲专区| 国产伦精品一区二区三区视频9| 久久九九热精品免费| 精品久久久久久久人妻蜜臀av| 亚洲自拍偷在线| 国产精品久久视频播放| 欧美最黄视频在线播放免费| 最好的美女福利视频网| 99久久无色码亚洲精品果冻| 国产 一区 欧美 日韩| 久久精品人妻少妇| av视频在线观看入口| 国产色爽女视频免费观看| 国产精品久久久久久亚洲av鲁大| 一区二区三区四区激情视频 | 国产精品无大码| 午夜老司机福利剧场| 国产精品亚洲美女久久久| 欧美黑人欧美精品刺激| 精品久久久久久成人av| 非洲黑人性xxxx精品又粗又长| 99热这里只有是精品50| 日韩欧美精品v在线| 国产亚洲av嫩草精品影院| 内射极品少妇av片p| 国产一区二区在线av高清观看| 久久久久久久久久久丰满 | 十八禁网站免费在线| 99久国产av精品| 一进一出抽搐gif免费好疼| 日本爱情动作片www.在线观看 | 久久人妻av系列| 欧美日本亚洲视频在线播放| 熟女人妻精品中文字幕| 熟女电影av网| 99国产精品一区二区蜜桃av| 亚洲中文日韩欧美视频| 美女黄网站色视频| 国产v大片淫在线免费观看| 日本免费一区二区三区高清不卡| 一个人观看的视频www高清免费观看| 国产欧美日韩精品一区二区| 午夜a级毛片| 亚洲人成伊人成综合网2020| 中文亚洲av片在线观看爽| 亚洲av第一区精品v没综合| 亚洲午夜理论影院| 国产一区二区激情短视频| 国产综合懂色| 精品一区二区免费观看| 91精品国产九色| 午夜福利在线在线| 久久久国产成人免费| 国产精品1区2区在线观看.| 国产精品自产拍在线观看55亚洲| 亚洲av成人精品一区久久| 一a级毛片在线观看| 日本黄色片子视频| 91久久精品电影网| 久久天躁狠狠躁夜夜2o2o| 亚洲成av人片在线播放无| 少妇的逼好多水| 国产高清三级在线| 香蕉av资源在线| 久久精品国产亚洲av天美| 五月伊人婷婷丁香| 97超级碰碰碰精品色视频在线观看| 国产高清视频在线播放一区| 99久久精品国产国产毛片| 欧美日韩瑟瑟在线播放| 国国产精品蜜臀av免费| 老女人水多毛片| 国产精品无大码| 精品无人区乱码1区二区| 久久久久久九九精品二区国产| 久久国内精品自在自线图片| .国产精品久久| 91久久精品国产一区二区成人| 欧美激情国产日韩精品一区| 国产精品三级大全| 级片在线观看| 欧美人与善性xxx| 亚洲av免费在线观看| 日韩欧美在线二视频| av中文乱码字幕在线| 麻豆成人午夜福利视频| 女同久久另类99精品国产91| 两个人视频免费观看高清| 在线播放无遮挡| 国产国拍精品亚洲av在线观看| 久久久久精品国产欧美久久久| 亚洲精品成人久久久久久| 麻豆精品久久久久久蜜桃| 一进一出抽搐gif免费好疼| 久久午夜福利片| 日韩,欧美,国产一区二区三区 | 中文字幕av成人在线电影| 美女cb高潮喷水在线观看| 99久久九九国产精品国产免费| 极品教师在线免费播放| 欧美潮喷喷水| 亚州av有码| 久久精品国产亚洲av天美| 成人三级黄色视频| 午夜激情福利司机影院| 国产午夜福利久久久久久| 欧美黑人巨大hd| 伊人久久精品亚洲午夜| 极品教师在线免费播放| 精品久久久久久久人妻蜜臀av| 五月玫瑰六月丁香| 精品久久久噜噜| 亚洲av成人av| 麻豆一二三区av精品| 乱人视频在线观看| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添av毛片 | 美女被艹到高潮喷水动态| 亚洲av免费在线观看| 内地一区二区视频在线| 国产不卡一卡二| 欧美3d第一页| 亚洲美女黄片视频| 女人被狂操c到高潮| 国产 一区精品| 成熟少妇高潮喷水视频| avwww免费| 亚洲精品乱码久久久v下载方式| 热99在线观看视频| 别揉我奶头 嗯啊视频| 九九久久精品国产亚洲av麻豆| 欧美日韩亚洲国产一区二区在线观看| 午夜影院日韩av| 欧美中文日本在线观看视频| 少妇丰满av| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 久久人妻av系列| 天堂√8在线中文| 真人做人爱边吃奶动态| 中文字幕熟女人妻在线| 国产午夜精品论理片| 欧美一区二区亚洲| 国产精品亚洲美女久久久| 99九九线精品视频在线观看视频| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久av| 亚洲三级黄色毛片| 丰满乱子伦码专区| 成人永久免费在线观看视频| а√天堂www在线а√下载| 亚洲色图av天堂| 99riav亚洲国产免费| 欧美三级亚洲精品| 国产亚洲精品久久久com| 国产爱豆传媒在线观看| 中文字幕精品亚洲无线码一区| 亚洲乱码一区二区免费版| 精品午夜福利视频在线观看一区| 男女下面进入的视频免费午夜| 亚洲美女搞黄在线观看 | 国产精品无大码| 老司机午夜福利在线观看视频| 午夜福利欧美成人| 国产精品永久免费网站| 日韩欧美三级三区| 啦啦啦韩国在线观看视频| 丰满乱子伦码专区| netflix在线观看网站| 制服丝袜大香蕉在线| 欧美日韩瑟瑟在线播放| 色精品久久人妻99蜜桃| 在线观看免费视频日本深夜| 真人一进一出gif抽搐免费| 22中文网久久字幕| 国产视频内射|