• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of burn rate and thermal decomposition of APas oxidizer and PVCand HTPB as fuel binder based composite solid propellants

    2019-05-24 01:40:12ManashKumarDepartmentofMechanicalEngineeringVVITPurnea854301BiharIndia
    Defence Technology 2019年2期

    A.Manash ,P.Kumar Department of Mechanical Engineering,VVIT,Purnea,854301,Bihar,India

    b Department of Mechanical Engineering,K N Modi Engineering and Technology,Modinagar,Gaziabad,U.P,India

    Keywords:Thermal decomposition Burn rate Thermo-gravimetric analysis AP PVC HTPB Fe2O3

    A B S T R A C T In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of APas oxidizer and PVCand HTPBas fuel binder in composite solid propellant.The burning rate study has been carried out at ambient and different pressures of 2.068Mpa,4.760Mpa,6.895Mpa.The mechanism of thermal decomposition of each composition have also been determined by NETZSCH simultaneous thermal analyser,comprising differential scanning calorimeter(DSC)and thermo-gravimetric analyser(TGA).An effort has been made to study the burn rate and decomposition of fuel binder and oxidizer in presence of Fe2O3 and also their overall impact on combustion of propellant.?2018 Published by Elsevier Ltd.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    In the modern rocket technology,there is a need for new propellant for better performance of the rocket motor.The performance of the propellant can be increase by increase the oxidizer content,decrease the oxidizer particle size or adding burning rate modi f i er or catalyst to the propellant.How ever the best and most effective w ay to increase burning rate is the addition of catalysts to the propellants.It is w ell know n that the burning rate of these composite propellants w hich consist of ammonium perchlorate(AP)is enhanced,w hen some transition metal oxides(Fe2O3)are added to the compositions[1,3,5].In the present study,the burning rate and thermal decomposition characteristics of AP as oxidizer and PVC[6]and HTPB[7]as fuel binder based propellant w ith and w ithout Fe2O3 as catalysts w ith different oxidizer loading w ere investigated.

    Considerable effort that has been devoted to understand the decomposition of ammonium perchlorate and its burning rate,how ever very little attention have been paid to the decomposition of fuel binder.How ever,the fact remains that the fuel binder is responsible to hold the particulate oxidizer or metals in its matrix and any suitable additive w hich may improve the heat of combustion or pyrolysis rate of fuel binder should be in f l uencing the overall burning rate of the propellant.According to the present understanding of modern composite solid propellants also needs the vital inputsdetailing the fuel binder decomposition mechanism and its interaction w ith the oxidizer during the rocket combustion process.

    Analytical models of the burning rate and the combustion process do exist,how ever they are useful only for preliminary designs and these analytical models are not much useful for detailed designs or for evaluation of new or modi f i ed propellants because combustion processare substantially undetermined,unpredictable,and unmeasurable to date.Burning rate data are usually obtained in three w ays namely,Standard strand burners,often called Craw ford burners,Small-scale ballistic evaluation motors,or even Full-scale motors w ith proper instrumentation.

    In the present investigation,an effort has been made to conduct for experimental studies of determination of pressure dependent burning rate of AP-HTPBand AP-PVCbased solid propellantsw ith various compositions.Three different percentages of AP oxidizer loading viz.70%,75%and 80%by w eight have been employed,using HTPB and PVC as the fuel binder,ammonium perchlorate as the oxidizer,dioctyl adipate for AP-HTPB formalation and DBPfor APPVCformalation,as the plasticizer,TDIas the curing agent for APHTPB formalation and glycerol as cross linking agent for AP-HTPB formalation.In each propellant composition,the effect of ferric oxide,3%by w eight has been investigated in different studies.Burning rate data have been generated for different pressures of 0.101,2.068,4.760,6.895 MPa for each composition.An effort has also been made to analyze the results in light of existing theories and empirical relations.

    The objective of the research is to determine the burn rate and thermal decomposition of AP-HTPB and AP-PVCw ith and w ithout Fe2O3and compare the result.

    2.Experimental

    2.1.Material

    Ammonium perchlorate procured from ISRO,Alw aye has been used as an oxidizer.Abimodal particle distribution has been chosen to increase the oxidizer loading i.e.to increase the volumetric eff i ciency.The oxidizer particle size of about 44 and 150μm has been used.The oxidizer w as dried at 60°C for half an hour to remove moisture before using it.For the present study,R-45 M-HTPB prepolymer,supplied by Propellant Fuel Complex,Vikram Sarabhai Space Centre(VSSC),Thiruvananthapuram has and PVC resin in commercial grade was obtained from M/s.Calico chemicals,Plastics and f i bres division,Mumbai,in the form of w hite pow der and w as used after drying in oven been used.Ferric red oxide 101(Fe2O3.αH2O)procured from Howards of Ilford Limited,London.The particle size used is 0.1μm and the scanning electron micrographs of nano Fe2O3incorporated in HTPB revealed a w ellseparated characteristic necklace-like structure ofα-Fe2O3particles at high magni f i cation[11].The composition of the propellant has been given in Table 1 and Table 2.

    2.2.Mixing of propellant ingredients

    All the ingredients selected for above compositions w ere stored under controlled humidity conditions.The processing variables like mixing time,level of vacuum applied,mixer temperature and sequence of ingredient addition into the mixer w ere kept similar in all the mixings.The quantities of HTPB and DOA w ere mixed in a stainless steel vessel and then ammonium perchlorate and glycerol w ere added in requisite quantities.The catalyst concentration of 3 w t%of total propellant w eight w as added separately in catalyzed compositions.The mixing w as carried out for 30 min and f i nally the TDI w as added to the propellant mix.The mixing w as again done for 30 min to get the f i nal propellant mix.

    2.3.Casting of propellant slurry

    The propellant slurry w as cast in plastic containers w hich w ere cleaned and greased w ith Metroark grease beforehand.The casting was done under vacuum to avoid blow holes in the strands.

    Table 2Formulation of APas oxidizer and PVCas plastisol based composite solid propellants.

    2.4.Curing of propellant slurry

    The propellant f i lled plastic containers w ere kept in a vacuum electric oven at 60±2°Cfor a period of six days to allow the propellant to cure and attain required mechanical strength.The moulds w ere then removed from the oven and allow ed to cool to room temperature.The propellant samples w ere stored in a desiccator to avoid moisture absorption.

    2.5.Composition of propellant formulation

    In the present w ork,it has been attempted to use AP-HTPBand AP-PVC composite solid propellant and study their combustion aspects.Three different composition w ere used for experimentally studies w ith prior experience of the mechanical and combustion behavior of AP-HTPB and AP-PVCpropellant at the laboratory.The bimodal AP is taken w ith mess size 150 and 300.The AP are loaded at 70,75 and 80 percents by w eight in PVC plastisol processed w ith equal amount of DBPplasticizer.Similarly,the APare loaded at 70,75 and 80 percents by w eight in HTPBprocessed w ith DOA as plasticizer,TDIas curing agent and glycerol.The basic formulations of the samples consisted of AP-HTPB+catalyst and APPVC+catalyst are show n in Tables 1 and 2.

    2.6.Burning rate studies

    The burning rates of AP as oxidizer and PVC and HTPB as fuel binder based composite propellants w ith and w ithout catalysts have been determined at ambient condition and at different pressures,2.06,4.76 and 6.89 MPa,using a conventional strand burner[9].Nitrogen gas has been used to pressurize the bomb.The dial type pressure gauges have been used to record incoming pressure and pressures in bomb and line.A surge tank has been provided in the set-up to ensure that a strict pressure level is maintained in the bomb.This has been show n clearly in Fig.1 and Fig.2.

    The propellant strands,having tw o f i ne drilled holes at a distance of 5 cm to position the fuse w ires,w ere installed in the bomb and igniter w ire was suitably placed at apex of the strand.The cap,w ith the provision for electrical connections in it w as tightened on to the bomb.The bomb w as then pressurized w ith nitrogen gas to required pressure level.The necessary electrical connections w ere made and the strand w as ignited to record time w ith the help of anelectrical timer.Similar procedure has been follow ed for each strand.The burning rates w ere then determined from the time elapsed betw een the tw o fuse w ires or break w ires.Ferric oxide have been reported to be good burning rate modi f i ers,and have been add at 3%by w eight in all composition of the propellants to investigate the effect of catalyst on the burning rate of AP-HTPB propellant.

    Table 1Formulation of APas oxidizer and HTPB as fuel binder based composite solid propellants.

    Fig.2.Line diagram of high pressure strand.

    2.7.Simultaneous thermal analysis

    The simultaneous thermal analysis of the prepared propellant has been carried out on a NETZCH Simultaneous Thermal Analyser(STA 409/PG).The sample w as placed in an alumina crucible and then the lid has been closed.The w eight of the virgin sample w as about 1.0 mg and for catalyzed propellant it was 0.5 mg.Dynamic scans w ere performed at a heating rate of 10°C/min[2]in a temperature range up to 600°C.During the measurement,nitrogen gas w as purged throughout the system at 50 m Lmin-1to maintain an inert environment.

    3.Results and discussion

    3.1.Burning rate study

    3.1.1.Burning rate study of APas oxidizer and HTPB as fuel binder based composite solid propellants

    The burning rate results obtain from AP[4,5]as oxidizer and HTPB[7]as fuel binder based composite solid propellant w ith and w ithout Fe2O3[1,3,5]w ith different oxidizer loading has been show n in Table 3.The virgin propellant w ith 70%solid loading having the burning rates in the order of 4.16 mm/s to 9.25 mm/s at the pressure ranges of 0.101 MPa,2.068 MPa,4.760 MPa and 6.895 MPa,at similar pressure range the burning rates have been found in order of 4.26 mm/s to 7.96 mm/s for 75%AP loading.In case of catalyzed propellant for 70%APloading the burning rate is higher than virgin propellant w hich is in the order of 5.55 mm/s to 10.63 mm/s in same pressure condition.For higher oxidizer loading of 75%AP content w ith Fe2O3the burning rates are in range of 4.44 mm/s to 17.54 mm/s,w hich higher burning rate than virgin propellant for same oxidizer loading.The propellant containing 80%AP loading show s unexpected higher burning rate in the order 4.87 mm/s to 33.31 mm/s,this may be due the poor mechanical property of the propellant.So their burning rate has not taken in account.The pressure index value for virgin propellant is 0.098 and 0.433 and for catalyzed propellant is 0.2 and 0.45.

    3.1.2.Burning rate study of AP-PVC based composite solid propellants

    The burning rate results obtain from APas oxidizer and PVC[6]as fuel binder based composite solid propellant w ith and w ithout Fe2O3[1,3,5]w ith different oxidizer loading has been show n in Table 4.The virgin propellant w ith 70%solid loading having the burning rates in the order of 1.89 mm/s to 6.41 mm/s at the pressure ranges of 0.101 MPa,2.068 MPa,4.760 MPa and 6.895 MPa,at similar pressure range the burning rates have been found in order of 2.01 mm/s to 6.626 mm/s for 75%APloading.In case of catalyzed propellant for 70%APloading the burning rate is higher than virgin propellant w hich is in the order of 2.20 mm/s to 7.93 mm/s in same pressure condition.For higher oxidizer loading of 75%AP content w ith Fe2O3the burning rates are in range of 2.10 mm/s to 9.21 mm/s,w hich higher burning rate than virgin propellant for same oxidizer loading.The propellant containing 80%AP loading show s unexpected higher burning rate in the order 2.164 mm/s to 9.89 mm/s.The main emphasis has been put in the present investigation is higher loading of AP i.e.80 w t%w ith Fe2O3does not sustained,w hich show s brittle nature is not applicable for experimental w ork.So their burning rate has not taken in account.The pressure index value for virgin propellant is 0.301 and 0.376 and for catalyzed propellant is 0.316 and 0.356(see Figs.3 and 4).

    3.2.Thermal decomposition study

    3.2.1.Thermal decomposition study of APas oxidizer and HTPB as fuel binder based composite solid propellants

    The thermal decomposition studies of propellants having different oxidizer loading w ith and w ithout Fe2O3as catalyst at a heating rate of 10°Cper min-1[2]has been show n in Fig.5.The DSCthermograph of various compositions AP-HTPB propellants

    Table 3Burning rate of APas oxidizer and HTPBas fuel binder with Fe2O3 based Composite Solid Propellants at different pressures.

    Table 4Pressure dependence of burning rate of APas oxidizer and HTPBas fuel binder w ith Fe2O3 based composite solid propellants at different pressure.

    Fig.3.Comparison of burning rate 70,75 and 80%of AP-HTPB composite solid propellant w ith catalyst.

    Fig.4.Comparison of burning rate 70,75 and 80%of AP-PVC composite solid propellant.

    Fig.5.Comparison of STA graph showing DSC/TG of AP-HTPB composite solid propellant.

    clearly indicates the endothermic peak is nearly equal at 245°C w ith onset temperature 120-140°C.In the endothermic peak temperature phase transition of AP from orthorhombic to cubic structure takes place.The f i rst exothermic peak of the propellant lies below 360°C and second peaks at below 500°C.DSC characteristics of the propellants w ith Fe2O3have four distinct exothermic peaks.The f i rst exothermic peak lies on 290°C,it represent the low temperature decomposition(LTD)of APand the second exothermic peak is at 365°C,represent the high temperature decomposition(HTD)of AP,f i nally the third and fourth exothermic peak is at 465°Cand 525°Crepresent the depolymerization activity of HTPB.But these peak are not appears in 70%oxidizer loading propellant,it has only tw o peaks.The f i rst and third exothermic peak is due to the combustion of AP[8]and second and fourth peak is due to the decomposition of HTPB[10].From the graph it is clear that Fe2O3marginally lower the phase transition and f i rst decomposition temperature of AP but Fe2O3is observed to in f l uence the second decomposition peak enormously.This indicates that Fe2O3markedly in f l uences the condensed phase combustion reaction.

    Fig.6.Comparison of STA graph showing DSC/TG of AP-PVC composite solid propellant.

    Table 5Burning rate of APas oxidizer and PVCas fuel binder w ith Fe2O3 based Composite Solid Propellants at different pressures.

    Table 6Pressure dependence of burning rate of APas oxidizer and HTPBas fuel binder w ith Fe2O3 based composite solid propellants at different pressure.

    3.2.2.Thermal decomposition study of APas oxidizer and PVCas fuel binder based composite solid propellants

    The thermal decomposition studies of propellants having different oxidizer loading w ith and w ithout Fe2O3as catalyst at a heating rate of 10°Cper min-1[2]has been show n in Fig.6.The DSC thermograms of AP-PVC composite solid propellants are given in Fig.6.It is clearly show s that the onset temperature comes in betw een 106±2 except 70 w t%composition.The endothermic peak from orthorhombic to cubic crystal forms at 245±20C and subsequent exothermic decomposition at 378.70C(Table 4).But in presence of Fe2O3the exothermic peaks reduces at 301°C(see Tables 5-8).

    3.3.Thermo-gravimetric analysis

    The thermo-gravimetric studies of AP-HTPB[12]and AP-PVC[13]based composite solid propellants have also been carried out under nitrogen atmosphere at a heating rate of 10°C/min using Simultaneous Thermal Analyser.The thermograms of all the eleven samples and comparison of the present investigation have been recorded in Figs.5 and 6.The result on the percentage of mass loss and corresponding temperatures for different systems are summarized in Tables 9 and 10.The AP-HTPBdata reveals that all the composite solid propellant are stable up to temperature of 250±30°C.An analysis of result that the 20%mass loss and corresponding temperature reveals that initial decomposition process occurs at higher temperature.The themal decomposition temperature in case of Fe2O3is higher as comparison to uncatalysed APHTPBcomposite solid propellant.The AP-PVC(Fig.6)data reveals that all the composite solid propellant are stable up to temperature of 257±40°C.An analysis of result that the 20%mass loss and corresponding temperature reveals that initial decomposition processoccurs at 257°C.The themal decomposition temperature in case of Fe2O3is lesser as comparison to uncatalysed AP-PVC composite solid propellant.

    4.Conclusions

    The follow ing conclusions can be draw n from the present investigationson the combustion characteristics of APasoxidizer and HTPB as fuel binder w ith Fe2O3based composite solid propellant.

    1)The burning rate of AP-HTPB composite solid propellants results very impressive data w ith expected combustion index values.

    2)It was observed that the burning rate increases w ith increase of chamber pressure and also,the combustion pressure rate increases w ith increase in oxidizer loading for all the cases.Further,the phase transition,melting and decomposition processes of the oxidizer are pressure sensitive and associated peaks register a positive temperature shift w ith pressure.

    3)Conversely,the addition of catalyst w ith 3 w t%ferric oxide especially in high pressure region show s drastic increase in burning rate w ith increase in AP%loading.

    4)The thermal decomposition of AP-HTPB clearly show s an endothermic phase transition peak from orthorhombic to cubic crystal at 245±2°C.

    Table 7DSCresults of APas oxidizer and HTPB as fuel binder w ith Fe 2O3 based Composite Solid Propellants.

    5)The HTPBused in the propellants is fairly stable upto 300oCand starts slightly decomposing thereafter.But w ith the addition of APthis exothermic decomposition peak of HTPB binder shifted from 375°Cto 326°Cand 450°C-415°C.

    6)Similar trend has been found for AP-PVCbased propellants as observed in AP-HTPB based propellants w ith slightly low er data result.

    7)The thermal decomposition of AP-PVC clearly show s an endothermic phase transition peak appears at 245°C and subsequent exothermic peak temperature value decreases w ith the addition of ferric oxide.

    Table 8DSCresults of APas oxidizer and PVCas fuel binder w ith Fe 2O3 based Composite Solid Propellants.

    Table 9Percentage of Mass Loss of AP-HTPBversus Temperature(o C)data Obtained from TG Analysis.

    Table 10Percentage of mass loss of AP-PVCversus temperature(o C)data obtained from TG analysis.

    8)The resultant data of net exothermicity are correspond to anticipated AP-HTPBthan the AP-PVCbased composite solid propellants.

    9)The thermo-gravimetric analysis show s that 100%mass loss in AP-HTPBbased propellants decomposes at 420.3°Cw hereas in case of AP-PVC 80%mass loss occur at 397.6°C.

    香蕉av资源在线| 麻豆国产av国片精品| 99视频精品全部免费 在线| 天堂网av新在线| 小蜜桃在线观看免费完整版高清| 在线十欧美十亚洲十日本专区| 免费av观看视频| 日本熟妇午夜| 欧美精品啪啪一区二区三区| 亚洲经典国产精华液单 | 久久久精品大字幕| 亚洲最大成人中文| 中文字幕av在线有码专区| 18+在线观看网站| 特级一级黄色大片| 婷婷精品国产亚洲av| 熟女电影av网| 午夜福利18| 一个人看的www免费观看视频| 国产精品国产高清国产av| 亚洲av中文字字幕乱码综合| 欧美乱色亚洲激情| 成年版毛片免费区| 久久久久久久亚洲中文字幕 | 亚洲美女视频黄频| 天堂动漫精品| АⅤ资源中文在线天堂| 国产一区二区在线av高清观看| 观看美女的网站| 久99久视频精品免费| 亚洲欧美精品综合久久99| 成人av在线播放网站| 亚洲精品456在线播放app | 免费av毛片视频| 美女黄网站色视频| 国产欧美日韩一区二区三| 少妇人妻一区二区三区视频| 深夜a级毛片| 亚洲中文字幕一区二区三区有码在线看| 免费av不卡在线播放| 午夜免费男女啪啪视频观看 | 又紧又爽又黄一区二区| 欧美精品啪啪一区二区三区| 搡老熟女国产l中国老女人| 欧美高清成人免费视频www| 成人精品一区二区免费| 亚洲三级黄色毛片| 久久99热6这里只有精品| 精品无人区乱码1区二区| 亚洲狠狠婷婷综合久久图片| 天堂动漫精品| 精品乱码久久久久久99久播| 乱人视频在线观看| 精品无人区乱码1区二区| 中文字幕av在线有码专区| 日韩精品青青久久久久久| 国产黄a三级三级三级人| 男人和女人高潮做爰伦理| 丰满人妻熟妇乱又伦精品不卡| 99国产精品一区二区三区| 99国产极品粉嫩在线观看| 九色成人免费人妻av| 99在线视频只有这里精品首页| 国内久久婷婷六月综合欲色啪| 一个人看视频在线观看www免费| 不卡一级毛片| 哪里可以看免费的av片| 在线看三级毛片| 搡老熟女国产l中国老女人| 亚洲av成人不卡在线观看播放网| 国产精品女同一区二区软件 | 午夜精品一区二区三区免费看| 一级黄色大片毛片| 久久国产乱子免费精品| 欧美成人a在线观看| 别揉我奶头 嗯啊视频| 九九热线精品视视频播放| АⅤ资源中文在线天堂| 国产中年淑女户外野战色| 国产在线男女| 精品人妻视频免费看| 69人妻影院| 久久99热6这里只有精品| 特级一级黄色大片| 少妇丰满av| 免费人成视频x8x8入口观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美午夜高清在线| 俺也久久电影网| 久久国产精品人妻蜜桃| 国产精品1区2区在线观看.| 久久精品国产亚洲av香蕉五月| av视频在线观看入口| 老司机福利观看| 两性午夜刺激爽爽歪歪视频在线观看| 丁香欧美五月| 午夜亚洲福利在线播放| 级片在线观看| 国产高潮美女av| 国产黄a三级三级三级人| 51国产日韩欧美| 中文字幕高清在线视频| 自拍偷自拍亚洲精品老妇| 超碰av人人做人人爽久久| 国产单亲对白刺激| 韩国av一区二区三区四区| 亚洲美女黄片视频| 极品教师在线免费播放| 中文字幕免费在线视频6| 国产精品乱码一区二三区的特点| 亚洲片人在线观看| 成人av在线播放网站| 欧美高清成人免费视频www| 亚洲国产精品sss在线观看| 两个人视频免费观看高清| 亚洲人成网站在线播| .国产精品久久| 国产91精品成人一区二区三区| 性色avwww在线观看| 久久久久久久亚洲中文字幕 | 最新在线观看一区二区三区| 国产毛片a区久久久久| 国产伦精品一区二区三区视频9| 久久天躁狠狠躁夜夜2o2o| 久久精品国产亚洲av天美| 精品国产亚洲在线| a级毛片免费高清观看在线播放| 日韩 亚洲 欧美在线| 好看av亚洲va欧美ⅴa在| 一级a爱片免费观看的视频| 一个人观看的视频www高清免费观看| 亚洲人成伊人成综合网2020| 别揉我奶头 嗯啊视频| 成年女人看的毛片在线观看| 国产精品日韩av在线免费观看| 少妇人妻精品综合一区二区 | 午夜a级毛片| 亚洲精品久久国产高清桃花| 麻豆一二三区av精品| 麻豆成人av在线观看| 国产熟女xx| 中文字幕熟女人妻在线| 美女黄网站色视频| 欧美性感艳星| 久久久国产成人免费| 毛片女人毛片| 三级毛片av免费| 久久久国产成人免费| 夜夜夜夜夜久久久久| 麻豆国产av国片精品| 很黄的视频免费| 如何舔出高潮| 国产又黄又爽又无遮挡在线| 波多野结衣巨乳人妻| 午夜两性在线视频| 国产一级毛片七仙女欲春2| 日韩精品青青久久久久久| 男女做爰动态图高潮gif福利片| 宅男免费午夜| 国产高清有码在线观看视频| 色精品久久人妻99蜜桃| 亚洲欧美激情综合另类| 高潮久久久久久久久久久不卡| 国产精品电影一区二区三区| 欧美一区二区精品小视频在线| 亚洲内射少妇av| 久久99热6这里只有精品| 亚洲经典国产精华液单 | 午夜激情欧美在线| 婷婷亚洲欧美| 久久精品国产清高在天天线| 99热6这里只有精品| 国内精品一区二区在线观看| 美女高潮喷水抽搐中文字幕| 亚洲成a人片在线一区二区| 日韩精品中文字幕看吧| 十八禁网站免费在线| x7x7x7水蜜桃| 久久香蕉精品热| a级毛片免费高清观看在线播放| 国产成人欧美在线观看| 色哟哟哟哟哟哟| 欧美一区二区国产精品久久精品| 女人被狂操c到高潮| 99视频精品全部免费 在线| 天堂√8在线中文| bbb黄色大片| 国产激情偷乱视频一区二区| 村上凉子中文字幕在线| 成人性生交大片免费视频hd| 老司机深夜福利视频在线观看| 男人舔女人下体高潮全视频| 三级毛片av免费| 欧美精品啪啪一区二区三区| 九色成人免费人妻av| 91麻豆av在线| 悠悠久久av| 中文字幕熟女人妻在线| 亚洲人成伊人成综合网2020| 伊人久久精品亚洲午夜| 内地一区二区视频在线| 日本熟妇午夜| 国产野战对白在线观看| 九色成人免费人妻av| 国产麻豆成人av免费视频| 久久久久久久久久成人| 少妇人妻一区二区三区视频| 亚洲精品粉嫩美女一区| 日本 欧美在线| 中文字幕免费在线视频6| 国产精品久久久久久久电影| 国产精品,欧美在线| 麻豆成人午夜福利视频| 在线观看舔阴道视频| 在线十欧美十亚洲十日本专区| 国产三级中文精品| 男女之事视频高清在线观看| 中出人妻视频一区二区| 又黄又爽又免费观看的视频| 国产精品免费一区二区三区在线| 最后的刺客免费高清国语| 乱码一卡2卡4卡精品| 成人国产一区最新在线观看| 色噜噜av男人的天堂激情| 色吧在线观看| 乱人视频在线观看| 国产一区二区三区在线臀色熟女| 男人和女人高潮做爰伦理| av专区在线播放| 亚洲成人久久性| 亚洲成人中文字幕在线播放| 国产精品爽爽va在线观看网站| 久久6这里有精品| 亚洲最大成人手机在线| 老女人水多毛片| 日本黄色视频三级网站网址| 黄片小视频在线播放| 男女视频在线观看网站免费| 日本在线视频免费播放| 亚洲色图av天堂| 亚洲国产精品sss在线观看| 我要看日韩黄色一级片| 欧美中文日本在线观看视频| 久久久久免费精品人妻一区二区| 国产高潮美女av| 成年女人永久免费观看视频| 国内精品久久久久久久电影| 欧美高清成人免费视频www| 日韩欧美国产一区二区入口| 欧美一区二区国产精品久久精品| 午夜激情欧美在线| 91狼人影院| 一进一出好大好爽视频| 亚洲人与动物交配视频| .国产精品久久| 美女xxoo啪啪120秒动态图 | 午夜福利欧美成人| 欧美日韩福利视频一区二区| 网址你懂的国产日韩在线| 亚洲无线在线观看| 亚洲人成网站高清观看| 3wmmmm亚洲av在线观看| 51国产日韩欧美| 国产精品久久久久久久电影| 中国美女看黄片| 国产亚洲精品av在线| 国产成年人精品一区二区| 中出人妻视频一区二区| 99国产极品粉嫩在线观看| www.www免费av| 国产伦一二天堂av在线观看| 乱人视频在线观看| 十八禁国产超污无遮挡网站| 99久久精品热视频| 国产精品伦人一区二区| 三级男女做爰猛烈吃奶摸视频| 麻豆久久精品国产亚洲av| 在现免费观看毛片| 一本一本综合久久| 国产欧美日韩一区二区精品| 色尼玛亚洲综合影院| 久久久久免费精品人妻一区二区| 婷婷精品国产亚洲av在线| 亚洲国产欧洲综合997久久,| 久久九九热精品免费| 国产精品久久久久久久久免 | 国内精品美女久久久久久| 欧美精品国产亚洲| 热99re8久久精品国产| 九色国产91popny在线| 国产一区二区三区视频了| 亚洲av.av天堂| 真人一进一出gif抽搐免费| 波多野结衣巨乳人妻| 亚洲美女黄片视频| 国产精品精品国产色婷婷| 成熟少妇高潮喷水视频| 亚洲色图av天堂| 美女黄网站色视频| 精品久久久久久成人av| 精华霜和精华液先用哪个| 午夜激情欧美在线| 精品人妻偷拍中文字幕| 国产美女午夜福利| 国产高清视频在线播放一区| 欧美乱妇无乱码| 欧美绝顶高潮抽搐喷水| 俄罗斯特黄特色一大片| 亚洲三级黄色毛片| 亚洲熟妇熟女久久| 国产又黄又爽又无遮挡在线| 一级a爱片免费观看的视频| 两人在一起打扑克的视频| 国产老妇女一区| 亚洲av熟女| 熟妇人妻久久中文字幕3abv| 少妇的逼好多水| 亚洲人成网站高清观看| 日本精品一区二区三区蜜桃| 欧美国产日韩亚洲一区| 中文字幕人成人乱码亚洲影| 久久精品国产99精品国产亚洲性色| 精品一区二区三区人妻视频| 青草久久国产| 三级国产精品欧美在线观看| 亚洲成av人片免费观看| 久久香蕉精品热| 久久天躁狠狠躁夜夜2o2o| 一本综合久久免费| 国产精品日韩av在线免费观看| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av在线| 亚洲人成电影免费在线| 12—13女人毛片做爰片一| 日韩欧美精品免费久久 | 俺也久久电影网| 亚洲av二区三区四区| 日本a在线网址| 亚洲成av人片在线播放无| 一二三四社区在线视频社区8| 亚洲美女搞黄在线观看 | 午夜老司机福利剧场| 日日夜夜操网爽| 婷婷六月久久综合丁香| 精品人妻一区二区三区麻豆 | 国产免费男女视频| 免费观看人在逋| 丁香六月欧美| 天堂√8在线中文| 精品久久久久久久久久免费视频| 搡女人真爽免费视频火全软件 | 天美传媒精品一区二区| 成人高潮视频无遮挡免费网站| 国产精品三级大全| 午夜日韩欧美国产| 免费看美女性在线毛片视频| 18+在线观看网站| 色哟哟·www| 亚洲欧美日韩高清在线视频| 美女高潮喷水抽搐中文字幕| 日本一本二区三区精品| 亚洲熟妇熟女久久| 日日夜夜操网爽| 五月玫瑰六月丁香| 99精品在免费线老司机午夜| 搡女人真爽免费视频火全软件 | 国产精品一区二区三区四区久久| 少妇人妻精品综合一区二区 | 色精品久久人妻99蜜桃| 波野结衣二区三区在线| 欧美xxxx黑人xx丫x性爽| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 国产精品亚洲美女久久久| 国产精品精品国产色婷婷| 免费av观看视频| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 啪啪无遮挡十八禁网站| 欧美不卡视频在线免费观看| 18美女黄网站色大片免费观看| 亚洲国产日韩欧美精品在线观看| 综合色av麻豆| 搡老熟女国产l中国老女人| 精品久久国产蜜桃| 午夜免费男女啪啪视频观看 | 草草在线视频免费看| 国内久久婷婷六月综合欲色啪| 亚洲片人在线观看| 最近最新中文字幕大全电影3| 少妇被粗大猛烈的视频| 久久伊人香网站| 香蕉av资源在线| av在线老鸭窝| 久久精品综合一区二区三区| 在线播放无遮挡| 亚洲av一区综合| 国产免费男女视频| 嫩草影院入口| 亚洲中文字幕一区二区三区有码在线看| 18美女黄网站色大片免费观看| 激情在线观看视频在线高清| 午夜福利在线观看吧| 免费无遮挡裸体视频| 18美女黄网站色大片免费观看| av福利片在线观看| 亚洲欧美日韩高清专用| 中文字幕av成人在线电影| 狂野欧美白嫩少妇大欣赏| av中文乱码字幕在线| 国产精品伦人一区二区| 久久99热这里只有精品18| 国产色爽女视频免费观看| 国产欧美日韩精品亚洲av| 免费在线观看日本一区| 亚洲内射少妇av| 免费av观看视频| 午夜亚洲福利在线播放| av福利片在线观看| 99在线视频只有这里精品首页| 亚洲精品在线美女| 精品人妻熟女av久视频| av在线观看视频网站免费| 国产69精品久久久久777片| 97人妻精品一区二区三区麻豆| 成人鲁丝片一二三区免费| 亚洲国产精品sss在线观看| 久久久国产成人精品二区| 精品久久久久久久久亚洲 | 波多野结衣巨乳人妻| or卡值多少钱| 亚洲欧美日韩东京热| 欧美黑人巨大hd| 婷婷精品国产亚洲av| 给我免费播放毛片高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 在线观看美女被高潮喷水网站 | 有码 亚洲区| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出| 91在线观看av| 日韩av在线大香蕉| 不卡一级毛片| 亚洲av免费高清在线观看| 国产精品一区二区三区四区久久| 女人被狂操c到高潮| 婷婷亚洲欧美| 美女xxoo啪啪120秒动态图 | 午夜两性在线视频| 精品久久久久久久末码| 天堂网av新在线| 亚洲综合色惰| 在线看三级毛片| 精品一区二区三区人妻视频| 亚洲最大成人手机在线| 免费av观看视频| 欧美黄色片欧美黄色片| 成人亚洲精品av一区二区| 91av网一区二区| 美女高潮的动态| 永久网站在线| 毛片女人毛片| 日本成人三级电影网站| 欧美激情在线99| 欧美+日韩+精品| 久久精品综合一区二区三区| netflix在线观看网站| 国产乱人视频| 99riav亚洲国产免费| 午夜免费男女啪啪视频观看 | 免费人成在线观看视频色| www日本黄色视频网| 亚洲人成伊人成综合网2020| 欧美日韩黄片免| 最近最新免费中文字幕在线| 精品久久久久久久人妻蜜臀av| 国产伦精品一区二区三区视频9| 亚洲欧美日韩高清专用| 国产免费一级a男人的天堂| 一本一本综合久久| 999久久久精品免费观看国产| 欧美成人性av电影在线观看| 国产在线男女| 亚洲自偷自拍三级| 男女那种视频在线观看| 亚洲熟妇中文字幕五十中出| 成人一区二区视频在线观看| 精品乱码久久久久久99久播| 国产久久久一区二区三区| 亚洲美女黄片视频| 亚洲欧美激情综合另类| 成人三级黄色视频| 一个人观看的视频www高清免费观看| 在线免费观看的www视频| 18禁在线播放成人免费| 亚洲最大成人手机在线| 亚洲欧美日韩高清在线视频| 欧美区成人在线视频| 久久精品夜夜夜夜夜久久蜜豆| 偷拍熟女少妇极品色| 久99久视频精品免费| 亚洲在线观看片| 一区二区三区激情视频| 深爱激情五月婷婷| 99久久精品国产亚洲精品| 国内精品久久久久精免费| 国产精品综合久久久久久久免费| 有码 亚洲区| 最新在线观看一区二区三区| 欧美日本视频| 国产蜜桃级精品一区二区三区| 亚洲最大成人手机在线| 色5月婷婷丁香| 好男人电影高清在线观看| 听说在线观看完整版免费高清| 三级毛片av免费| 国产精品亚洲美女久久久| 免费av毛片视频| 国产成人av教育| 好看av亚洲va欧美ⅴa在| 最新中文字幕久久久久| 男插女下体视频免费在线播放| 国产精品一区二区免费欧美| 我的老师免费观看完整版| 日日干狠狠操夜夜爽| av在线老鸭窝| 日韩成人在线观看一区二区三区| 亚洲精华国产精华精| 少妇的逼水好多| 久久久成人免费电影| 久久久国产成人免费| 亚洲国产日韩欧美精品在线观看| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 麻豆一二三区av精品| 国产主播在线观看一区二区| 在现免费观看毛片| 亚洲国产日韩欧美精品在线观看| 国产精品av视频在线免费观看| 亚洲欧美日韩高清专用| 亚洲欧美日韩东京热| 日本精品一区二区三区蜜桃| 精品熟女少妇八av免费久了| 亚洲国产精品合色在线| 99久久精品热视频| 国产精品美女特级片免费视频播放器| 欧美日韩国产亚洲二区| 18禁黄网站禁片免费观看直播| 毛片女人毛片| 成人永久免费在线观看视频| 国产国拍精品亚洲av在线观看| 51国产日韩欧美| 亚洲成人免费电影在线观看| 五月玫瑰六月丁香| 亚洲精品乱码久久久v下载方式| 亚洲精品一卡2卡三卡4卡5卡| 久久人人爽人人爽人人片va | 日韩欧美在线二视频| 三级国产精品欧美在线观看| 久久6这里有精品| 99久久精品一区二区三区| 亚洲av.av天堂| 久久草成人影院| 91字幕亚洲| 99久久无色码亚洲精品果冻| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 免费看日本二区| 日本黄色视频三级网站网址| 久久6这里有精品| 在线播放无遮挡| 国产黄a三级三级三级人| 亚洲美女搞黄在线观看 | 欧美性感艳星| 十八禁国产超污无遮挡网站| 亚洲av免费在线观看| 久久久久精品国产欧美久久久| 男人舔奶头视频| 精品人妻熟女av久视频| 国产精品98久久久久久宅男小说| av欧美777| 亚洲最大成人手机在线| 变态另类成人亚洲欧美熟女| 日韩欧美免费精品| 国产av一区在线观看免费| 日韩中字成人| 国产精品美女特级片免费视频播放器| 波野结衣二区三区在线| 69av精品久久久久久| 亚洲,欧美,日韩| 嫩草影院精品99| 久久久精品大字幕| 亚洲综合色惰| 精品日产1卡2卡| 自拍偷自拍亚洲精品老妇| 狂野欧美白嫩少妇大欣赏| 老熟妇仑乱视频hdxx| 男女视频在线观看网站免费| 国产午夜精品论理片| 欧美日韩中文字幕国产精品一区二区三区| 两人在一起打扑克的视频| 午夜福利在线观看免费完整高清在 | 男人和女人高潮做爰伦理| 久久国产精品影院| 舔av片在线| 少妇的逼水好多| 欧美一区二区国产精品久久精品| 国产又黄又爽又无遮挡在线| 男女下面进入的视频免费午夜| 一进一出抽搐动态| 中文亚洲av片在线观看爽| 欧美黑人巨大hd| 亚洲av二区三区四区|