• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of gas tungsten arc w elding parameters for the dissimilar welding between AISI 304 and AISI 201 stainless steels

    2019-05-24 01:37:28WichanChuaiphanLoeshpahnSrijaroenpramong
    Defence Technology 2019年2期

    Wichan Chuaiphan ,Loeshpahn Srijaroenpramong

    a Department of Mechanical and Industrial Engineering,Faculty of Engineering,Rajamangala University of Technology Krungthep,2 Nanglinchee Road,Tungmahamek,Sathorn,Bangkok,10120,Thailand

    b Department of Metallurgical Technology,Faculty of Education,Rajamangala University of Technology Krungthep,2 Nanglinchee Road,Tungmahamek,Sathorn,Bangkok,10120,Thailand

    Keyw ords:Dissimilar w eldment AISI 304 stainless steel AISI 201 stainless steel Gas tungsten arc w elding(GTAW)Nitrogen Corrosion behavior Mechanical behavior

    A B S T R A C T This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective w as to f i nd the optimum w elding condition that gave a w eld bead in accordance w ith DIN EN ISO 25817 quality level B,pitting corrosion potential of the w eld metal of not less than that of the AISI 304 base metal and a ratio of delta-ferrite in austenite matrix of the w eld metal of not low er than 3%.Such a ratio is a criterion widely accepted to protect the w eld metal from solidi f i cation cracking.At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.%and applying a welding speed in the range of 2-3.5 mm·s-1 was found to give a complete w eld bead w ith an increased depthper-w idth ratio(promote w eldability).For w elding speed in the range of 3 and 3.5 mm·s-1(promote corrosion resistance).Increasing the w elding speed in such a range decreased the amount of delta-ferrite in the austenite matrix,and increased the pitting corrosion potential of the w eld metal to be 302 m VSCE.This value w as still low er than the pitting corrosion potential of the AISI 304 base metal.Mixing nitrogen in argon shielding gas increased the nitrogen content in the w eld.The optimum condition was found when using a w elding speed of 3 mm·s-1 and mixing 1 vol.%of nitrogen in the argon shielding gas(promote w eldability and corrosion resistance).Pitted areas after potentiodynamic test w ere observed in the austenite in w hich its Cr content w as relatively low.

    1.Introduction

    Austenitic stainless steel grade AISI 304 is a material generally used due to its excellent corrosion resistance.In this alloy,18 w t%chromium(Cr)is added to improve the corrosion resistance,w hereas alloying nickel(Ni)at 8 w t%is used to stabilize the austenite phase[1-3].It is know n that the price of nickel is relatively high as compared to other austenite forming elements,particularly manganese[4,5].As a result,AISI201 w as developed to be an austenitic stainless steel w ith the same 18 w t%of chromium.How ever,manganese is added in this steel at 7 w t%in order to stabilize the austenitic phase and provides corrosion resistance to some extent instead of the nickel and because of this effect the nickel is reduced from 8-10 w t%to 3-5 w t%[4,5].

    An industrial question that inspired this w ork w as w hether it w ould be possible to replace stainless steel grade AISI304(that has partly failed in service)w ith a cheaper stainlesssteel grade AISI201.If a design of a w elding process is applied to join both of these materials,the optimum w elding parameters must be able to provide acceptable w eld bead shape,appropriate microstructure and also apply pitting corrosion resistance to the w eld.It has been w idely reported that the appropriate delta-ferrite in the austenite matrix of the w eld should be in the range of 3-10%[2,6,7].If the delta-ferrite in the w eld is less than 3%,it is susceptible to solidif i cation cracking.This is due to the low amount of ferrite phase in w hich sulphur could dissolve.In this condition,sulphur may form iron sulphide during solidi f i cation and therefore induce solidi f i cation cracking in the w eld[6,7].On the other hand,if delta-ferrite fraction is higher than 10%,there is a tendency that ferrite forms netw orks surrounding the austenite matrix,resulting in the galvanic corrosion betw een these tw o phases[1-3].To control the microstructure of w eld metals for stainless steel,nitrogen in the shielding gas has been used in the w elding process in order to increase the amount of nitrogen,an austenite stabilizer,in the w eld[8-11].Increasing nitrogen content in stainless steel has also been found to improve its pitting corrosion properties.An empirical formula of Pitting Resistance Equivalent Number(PREN)as a function of w t%of Cr,Mo and N has been w idely used as the pitting corrosion index for stainless steels containing different compositions[2,3].Various mechanisms have been proposed to explain the bene f i cial effect of nitrogen on the corrosion resistance of stainless steels,for example the ammonium or nitride formation during the corrosion process[11,12].

    Table 1Chemical compositions of the studied steels.

    According to a survey of the literature,there have not been any published w orks that apply a mixing technique of nitrogen in the shielding gas in order to improve the microstructure and corrosion behavior for the w elding of dissimilar metals.This is particularly the case betw een AISI304 and AISI201 stainless steel.The objective of this w ork w as to f i nd the optimal process parameter values for gas tungsten arc w elding(w elding speed and nitrogen percent mixed in argon shielding gas)to give a w eld metal containing 3-10%of delta ferrite,and a pitting corrosion potential comparable to those of AISI 304 base metal.

    2.Experimental

    AISI 304 and AISI 201 stainless steels w ere used as base metals in this study.The chemical compositions measured by emission spectroscopy are listed in Table 1.It should be noted that the AISI 304 had 17.61 w t%Cr,8.85 w t%Ni and 3.97 w t%Mn.The AISI 201 contained 17.40 w t%Cr,w hich w as similar to those of AISI 304.How ever,Ni in AISI 201 w as decreased to 3.13 w t%,and Mn w as added by 7.38 w t%.Nitrogen,w hich is an austenite stabilizer and an element that increases PRENw as also added to AISI201 at 0.26 w t%.The dimension of the sample for w elding w as 200 mm×100 mm×2 mm.The w elding w as carried out using an automatic gas tungsten arc w elding(GTAW)process that used a square butt joint w ithout f i ller material.The w elding parameters used are listed in Table 2,this w elding parameter w as decided through a review of the literature on austenitic stainless steel joints and several experiments until the w eld metal w as acceptable in reference to DIN EN ISO 25817 quality level B[13].

    After w elding,all the w elds w ere examined by using nondestructive methods,such as visual and radiography tests.The w idth of the w elds on the face and root sides w ere measured by a metallographic method(Olympus model:SZ61 Stereo Zoom microscope).The acceptable w eld bead was referenced to DIN EN ISO 25817 quality level B.Chemical compositions in the w eld metal w ere evaluated by a SHIMADZU PDA-8000 emission spectroscopy.Nitrogen content in the w eld w asmeasured by a ZXA-8100 electron probe X-ray microanalyzer(EPMA).The magnetic delta-ferrite content in the w eld metals w as measured using a Ferritescope(Fischerscope model MMS PC2).Tw enty different testing points w ere measured to obtain an average value.In order to examine the microstructure of the w eld metal,the w elded samples w ere mounted w ith molding epoxy,polished w ith SiC paper and follow ed w ith 0.3μm Al2O3pow ders.It w as further electrolytically etched in 10 g of oxalic acid mixed w ith 100 ml of distilled w ater at a voltage of 6 V.The microstructure w as observed w ith an Olympus model BX51 M optical microscope(OM).Compositions of each phase w ere measured by a w avelength dispersive spectrometer(WDS)incorporated w ith a scanning electron microscope(SEM).

    The pitting corrosion resistance of the w eld joints and both base metals w ere evaluated at room temperature in an electrolyte of 3.5%NaCl and w ere tested using a potentiodynamic polarization technique(Autolab model PGSTAT 30 N).The electrochemical corrosion test w as conducted using a standard three electrode cell and was used w ith a saturated calomel electrode(SCE)and platinum w ire as the reference electrode and counter electrode.The sw eeping rate of the potential was1 m V·s-1,according to the ASTM D 1141-98 standard[14].The microstructure of the pitted area,after the test,w as examined by an optical microscope Olympus model BX51 M.

    3.Results and discussion

    3.1.Effect of welding speed on the weld bead shape,microstructure and corrosion property of the weld

    During the f i rst part of the experiment,the w elding operation using varying w elding speedsand pure argon as a shielding gas was carried out.Fig.1 show s a w eld bead produced using a w elding speed that w as low er than 2 mm·s-1.The abbreviations BM and WM show n in Fig.1 and corresponding follow ing f i gures stand for“base metal”and“w eld metal”respectively.It can be seen in Fig.1 that by using a w elding speed low er than 2 mm·s-1,a w eld defect in the form of excess penetration is observed.On the other hand,w hen the w elding speed w as faster than 3.5 mm·s-1,a w eld defect in the form of incomplete penetration occurs as is illustrated in Fig.2.This is due to the excessive w elding speed and as a result,the transfer of heat input into the w eld pool is not enough to produce a melting point of both base metals[1,15].

    Table 2Welding parameters used in this study.

    Fig.1.Weld bead of specimen produced using welding speed lower than 2 mm·s-1 observed on.the face side(a),the root side(b)and the w eld cross-section(c).(BM=base metal).

    Fig.2.Weld bead of specimen produced using w elding speed higher than 3.5 mm·s-1 observed on the face side(a),the root side(b),the w eld cross-section(c)and the w eld cross-section with higher magni f i cation(d).(BM=base metal and WM=weld metal).

    The completed w eld bead in accordance w ith DIN EN ISO 25817 quality level B w as obtained w hen the w elding speed was in the range of 2-3.5 mm·s-1.Fig.3 show s a cross section of the w eldmentsproduced by a w elding speed of 3 mm·s-1.It can be seen that the w eld metal formed at a larger proportion for AISI 201.This behavior can be observed in the w eldments produced by other w elding speeds as show n in Fig.4.From the technical data[16],the volumetric heat capacities of AISI 201 and AISI 304 stainless steels are 3905 and 4015 k J·cm-3·K-1respectively.Therefore,w hen a given amount of heat is supplied to the melt material,the one having a low er volumetric heat capacity(AISI 201)is thus melted w ith a larger volume.It can be further seen from Fig.4 that the w idth of the w eld metal decreases w ith an increase in the w elding speed.This is caused by the low er heat input supplied to the materials during w elding.The decrease of the w idth is a major factor to increase a depth-per-w idth ratio of the w eld w hen the w elding speed is faster(as show n in Fig.5).

    Fig.3.Example of the cross-section of the weld metal produced using the welding speed of 3 mm·s-1.

    Fig.6 presents the nitrogen content in the w eld as a function of the w elding speed.It was found that the nitrogen content in the w eld w as in the range of 0.131-0.177 w t%N.The range values obtained w ere from the inclusion of nitrogen from the addition of nitrogen in shielding gas and nitrogen was present in the primary base metal.Using the fraction of AISI304 and AISI201 taking part in the w eld as show n in Fig.6 and w t%of nitrogen in each base metal listed in Table 1,nitrogen content in the w eld w as calculated.From Fig.6,it can be observed that the measured value and the calculated value are congruent for the w eld metals produced by the w elding speeds of 3 and 3.5 mm·s-1.The former value is low er than the latter for the w eld metal produced by the w elding speed of 2 mm·s-1.To explain this difference,it w as reported that the mass f l ux of nitrogen during the w elding process w as determined by the difference in nitrogen activity in the w eld pool and shielding gas atmosphere[17].In this case the w eld pool contained a certain amount of nitrogen and pure argon w as used as shielding gas,the direction of nitrogen f l ux was from the w eld pool to the shielding gas atmosphere.This resulted in the loss of nitrogen in the w eld[11].It was also reported that increasing heat input to the w eld by f i xing the w elding speed and raising the pow er supply(w elding current and voltage)gave a larger w idth w eld pool.This therefore resulted in the higher f l ow rate of nitrogen from the w eld pool surface to the shielding gas atmosphere[11].In this study,heat input w as increased w hen the w elding speed w as slow er w ith a f i xed w elding current.The largest w idth of w eld w as observed on the w eld produced using a w elding speed of 2 mm·s-1.Due to the enlarged surface area of the w eld,it was possible that the nitrogen f l ux largely left the w eld pool.As a result,the measured nitrogen content in the w eld w as lower than the calculated one in w hich no nitrogen transport w as assumed.At a higher w elding speed,the w idth of the w eld w as smaller.This could cause the amount of nitrogen transported from the w eld pool to the atmosphere to be too low to observe the difference in the measured and calculated nitrogen contents.

    11. Heard: Some critics have considered Hansel and Gretel to be a subversive65 tale, encouraging children to eavesdrop66 on their parents, trespass67, commit murder, and steal property. The children are not ideal role models in the conservative sense, but one can credit them for being survivors68 in a harsh world. If they had not done these things, they would most likely be dead.Return to place in story.

    Fig.7 shows the fraction of delta-ferrite as a function of the w elding speed.It can be found that increasing the w elding speed from 2 to 3.5 mm·s-1decreases the delta-ferrite ratio in the austenite matrix from 8.54 to 3.49%.This amount of delta-ferrite is in the range know n to be immune to cracking during solidi f i cation.

    Fig.4.Face sides(left)and root sides(right)of the w eld metals produced using the w elding speeds of 2,3 and 3.5 mm·s-1.

    The chromium equivalent(Creq)and nickel equivalent(Nieq)are calculated using the follow ing formula[18]:

    It w as reported that the w eld metal solidi f i ed in an austeniteferrite(AF)mode if the Creq/Nieqw as less than 1.50[18].In this w ork,the w eld metals produced using the w elding speeds in the range of 2-3.5 mm·s-1have Creq/Nieqin the range of 1.33-1.39.They then solidi f i ed according to the AF mode.As a consequence,w hen the w elding speed increased,the cooling rate of the w eld w as higher.The time for transformation from austenite to delta ferrite w as then limited.This resulted in low er delta ferrite existing in the

    Fig.5.Depth-per-w idth ratios of w eld metals produced using different w elding speeds.

    w eld produced using the faster w elding speed.

    Fig.6.Nitrogen contents in w eld metals produced using different w elding speeds.

    Fig.7.Fractions of delta-ferrite in weld metals produced using different welding speeds.

    Fig.8 exhibits the pitting corrosion potentials of the w eld metals produced using different w elding speeds.As a reference,the pitting corrosion potentials of AISI 304 and AISI 201 base metals are 331 and 204 m VSCErespectively.Increasing the w elding speed from 2 to 3.5 mm·s-1positively shifts the pitting corrosion potential from 126 to 302 m VSCE.This is considered to be caused by the higher content of nitrogen in the w eld produced by the faster w elding speed.The role of nitrogen to promote pitting corrosion resistance as observed in this w ork corresponds to that w hich appears in the PREN empirical equation.How ever,the pitting corrosion potentials of the w elds produced by the w elding speed of 2-3.5 mm·s-1are still low er than that of the AISI 304 base metal.

    Fig.8.Pitting corrosion potentials of w eld metals produced using different welding speeds.

    Fig.9.Nitrogen contents in w eld metals produced using the w elding speed of 3.5 mm·s-1 w ith.different vol.%of nitrogen in argon shielding gas.

    Fig.10.Fractions of delta-ferrite in weld metals produced using the w elding speed at 3.5 mm·s-1 w ith different vol.%of nitrogen in argon shielding gas.

    From the above results,it w as concluded that using the fastest studied w elding speed of 3.5 mm·s-1can promote the production rate of w elding and still keep the delta-ferrite content in the level immune from solidi f i cation cracking.How ever,it cannot raise the pitting corrosion potential up to the same value as that of AISI 304 stainless steel.

    Fig.11.Polarization curves of base metals and weld metals produced using the welding speed of 3.5 mm·s-1 w ith different vol.%of nitrogen in argon shielding gas.

    Fig.12.Pitting corrosion potentials of w eld metals produced using the w elding speed of 3.5 mm·s-1 w ith different vol.%of nitrogen in argon shielding gas.

    3.2.Effect of nitrogen content on the microstructure and corrosion property of the weld

    Increasing the nitrogen in argon from 0 to 8 vol.%reduces deltaferrite in the austenite matrix of the w eld metal from 3.50 to 1.11%as show n in Fig.10.This is due to increasing nitrogen in the argon shielding gas so the nitrogen content in the w eld increases.Since nitrogen is an austenite stabilizer,it decreases delta-ferrite in the austenite matrix.

    Fig.11 show s the shape line of the polarization curves of w eld metals produced using the w elding speed of 3.5 mm·s-1w ith different percentages of nitrogen in the argon.It w as found that nitrogen in w eld metal increased,affecting the polarization curves(No.4,No.5 and No.6)w hich are above the polarization curves of both base metals(No.1 and No.2)and 0%Nitrogen(No.3)respectively.This was due to the role of nitrogen in the w eld metal w hich promoted the stainless steel's high pitting corrosion resistance.For Fig.12 the purpose was to compare the pitting corrosion potentials(E pit.)of both base metals and w eld metals.Clearly,the pitting potentials of the w eld metal w ith nitrogen increased levels of 1%,4%and 8%nitrogen in the argon shielding gas(355,370 and 385 m VSCE)respectively w ere much better w hen compared to the tw o base metals(AISI304,331 m VSCEand AISI201,204 m VSCE).Thisw as due to the element N affect in decreasing the delta-ferrite in the austenite.As a result,the w eld metals could improve the stability of passive f i lms[6,21,22].

    Fig.13.Nitrogen contents in w eld metals produced using the w elding speed of 3 mm·s-1 with different vol.%of nitrogen in argon shielding gas.

    Fig.14.Fractions of delta-ferrite in w eld metals produced using the w elding speed of 3 mm·s-1 w ith different vol.%of nitrogen in argon shielding gas.

    Fig.15.Microstructure of weld metals produced using the welding speed of 3 mm·s-1 and argon shielding gas w ithout nitrogen(a)and w ith 4 vol.%of nitrogen(b).

    Fig.16.Polarization curves of base metals and weld metals produced using the welding speed of 3 mm·s-1 w ith different vol.%of nitrogen in argon shielding gas.

    It can be concluded in this section that by using the w elding speed of 3.5 mm·s-1and mixing nitrogen by 1 vol.%can increase the pitting corrosion potential to 355 m VSCE,w hich is higher than that of the AISI 304 base metal(331 m VSCE).However,this reduces the delta-ferrite to 2.56%.This value is low er than 3%and can cause the w eld metal to be susceptible to solidi f i cation cracking[6,7].

    3.3.Optimization of w elding parameters to obtain the acceptable microstructure and corrosion property of the welds

    In order to optimize the w elding parameters to obtain acceptable microstructure and corrosion property of the w elds,the w elding speed w as decided to be low er than 3.5 mm·s-1.This w as done to keep a high amount of delta-ferrite in the austenite matrix.The reason for this decision w as because w hen nitrogen was mixed in the argon gas in order to raise the pitting corrosion potential,it w ould reduce the amount of delta-ferrite but the value was still higher than 3%.The w elding speed of 3 mm·s-1w as selected for optimization.

    Fig.17.Pitting corrosion potentials in weld metals produced using the welding speed of 3 mm·s-1 with different vol.%of nitrogen in argon shielding gas.

    At the chosen w elding speed,it can be show n in Fig.13 that increasing the nitrogen in argon from 0 to 8 vol.%increases the nitrogen content in the w eld metal from 0.163 to 0.305 w t%.It also reduces delta-ferrite in the austenite matrix of the w eld metal from 3.87 to 1.22%as show n in Fig.14.The microstructure of the w elds produced using the w elding speed of 3 mm·s-1w ith different contents of nitrogen mixed in the argon shielding gas is depicted in Fig.15.It can be seen in Fig.15 that delta-ferrite in the w eld metal produced using higher content of nitrogen in the argon is less and its dendrite tends to be broken.

    The contents of Figs.16 and 17 focus on the results of the pitting corrosion resistance of the sample using the optimization w elding parameter(w elding speed 3 mm·s-1).It can be seen that the passive f i lms of w eldments causes pitting corrosion resistance higher than the AISI 201 base metal.Moreover,nitrogen mixed in argon shielding gas can increase the pitting corrosion resistance at a higher level than the both base metals.The reason for thiscorrosion resistance has been explained previously.An addition for Fig.17,intended to demonstrate the character and behavior of the polarization curve(such as,corrosion current density;Icorr,corrosion potential;Ecorrand passivation region)for the dissimilar w elded metals of austenitic stainless steel grade AISI 304 and AISI 201 by the optimization w elding parameter of GTAW process in this research.

    Fig.18.Microstructure of pitted area(a)and pitted area w ith higher magni f i cation(b)on the w eld metal produced using the welding speed of 3 mm·s-1 and argon shielding gas mixed by 1 vol.%of nitrogen.

    The microstructure of the pitted area on the w eld metal after potentidynamic test is depicted in Fig.18.It can be seen that the pitting selectively takes place in the austenite phase.Table 3 show s the chemical composition of each phase in the w eld metal.It can be seen that Cr content in the austenite is lower than that in the deltaferrite.This may indicate low er corrosion resistance of the passive f i lm on the austenite than the delta-ferrite.From Fig.18 it can be seen that some of the pits are adjacent to the boundary phase betw een the delta-ferrite and austenite.In the case of the AISI 304 stainless steel w eld,it w as reported that pitting w as initiated during this phase boundary and propagated into austenite[22].This implies that the phase boundary is one of the favored sites for corrosion attack.Nitrogen w as show n to play a role in suppressing pitting through various proposed mechanisms such as the formation of ammonium ions in the pits or nitrogen enrichment on the pitting surface[12,23].However,from the microstructural aspect as observed in this w ork,increasing nitrogen in the w eld reduced the phase boundary betw een the delta-ferrite and austenite.This may help improve the pitting corrosion resistance of the w eld.

    From the results in this section,it is concluded that the optimizing parameters are the w elding speed of 3 mm·s-1and the mixing of nitrogen by 1 vol.%in argon.Using these parameters could reduce the delta-ferrite to 3.08%,w hich is not low er than 3%,and raise the pitting corrosion potential to 360 m VSCE,w hich is higher than that of the AISI 304 base metal.

    Table 3Chemical compositions of delta-ferrite and austenite in the w eld metal produced using the w elding speed of 3 mm·s-1 and different vol.%of nitrogen in the argon shielding gas.

    4.Conclusions

    The present w ork studies the gas tungsten arc w elding of dissimilar metals of austenitic stainless steels grade AISI 304 and AISI 201.The effects of w elding speed in the range of 2-3.5 mm·s-1and nitrogen mixed in the argon shielding gas varying from 0 to 8 vol.%on the w eld bead shapes,microstructure,and corrosion behavior of w eld metals w ere also studied.The follow ing conclusions can be draw n.

    4.1 Using pure argon as shielding gas and the w elding current of 75 A,the w elding speed can be varied from 2 to 3.5 mm·s-1to obtain a completed w eld bead(promote w eldability).The increasing of the w elding speed results in a low er heat input.This therefore decreases the w idth of the w eld and increases depth-per-w idth ratio.Increasing the w elding speed increases nitrogen content in the w eld because of the higher proportion of AISI 201 taking part in forming w eld metal.It also decreases delta-ferrite fraction in the austenite matrix and increases the pitting corrosion potential.How ever,the pitting corrosion potential of the w eld is still low er than that of the AISI 304 base metal.

    4.2At a given w elding speed(3 and 3.5 mm·s-1),increasing nitrogen in the argon shielding gas increases the nitrogen content in the w eld.Increasing nitrogen in the w eld reduces deltaferrite in the austenite matrix due to its role as an austenite stabilizer(promote corrosion resistance).It also shifts the pitting corrosion potential to the noble direction.Pits are observed in the austenite phase in w hich Cr content is relatively low.

    4.3Using the w elding speed of 3 mm·s-1and 1 vol.%of nitrogen in the argon shielding gas gives the optimum microstructure and corrosion property of the w eld(promote w eldability and corrosion resistance).Using these parameters,the delta-ferrite is 3.08%,w hich makes the w eld immune from solidi f i cation cracking.The pitting corrosion potential is 360 m VSCE,w hich is higher than that of the AISI 304 base metal.

    Acknow ledgements

    The authors are grateful to the Thai Government scholarship given via Rajamangala University of Technology Krungthep(UTK),Bangkok,Thailand,for their f i nancial support through this funded research project.We are indebted to the Skills Development Department,Ministry of Industry,Thailand,for the use of its w elding equipment.

    国产精品电影一区二区三区| 曰老女人黄片| 国产成人精品在线电影| 国产免费男女视频| 丁香六月欧美| 在线观看免费视频网站a站| 久99久视频精品免费| 淫秽高清视频在线观看| 国产精品成人在线| 久久香蕉精品热| 精品卡一卡二卡四卡免费| 中出人妻视频一区二区| 成人黄色视频免费在线看| 久久香蕉国产精品| 日本黄色日本黄色录像| 一进一出抽搐gif免费好疼 | 亚洲国产精品合色在线| 亚洲精品久久午夜乱码| 最近最新中文字幕大全电影3 | 在线视频色国产色| 精品国产乱码久久久久久男人| 中文字幕人妻熟女乱码| 一级毛片精品| 每晚都被弄得嗷嗷叫到高潮| 国产黄a三级三级三级人| 十八禁人妻一区二区| 美女扒开内裤让男人捅视频| 亚洲自偷自拍图片 自拍| 日韩精品青青久久久久久| 国产成年人精品一区二区 | xxx96com| 国产aⅴ精品一区二区三区波| 亚洲欧美激情综合另类| 男女高潮啪啪啪动态图| 亚洲男人的天堂狠狠| 国产激情久久老熟女| av网站在线播放免费| 性欧美人与动物交配| 十分钟在线观看高清视频www| 久久久国产成人精品二区 | 久久久国产欧美日韩av| 免费av毛片视频| 国产91精品成人一区二区三区| 日韩欧美一区二区三区在线观看| 久久精品人人爽人人爽视色| 亚洲一码二码三码区别大吗| 亚洲黑人精品在线| 级片在线观看| 成人特级黄色片久久久久久久| 国产精品香港三级国产av潘金莲| 日韩人妻精品一区2区三区| 成人国语在线视频| 亚洲午夜精品一区,二区,三区| 久久国产乱子伦精品免费另类| 淫秽高清视频在线观看| 精品日产1卡2卡| 欧美国产精品va在线观看不卡| 久久久国产欧美日韩av| 久久99一区二区三区| 亚洲成国产人片在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产精品影院久久| 日本a在线网址| 可以免费在线观看a视频的电影网站| av电影中文网址| 涩涩av久久男人的天堂| 69av精品久久久久久| 婷婷丁香在线五月| 亚洲五月色婷婷综合| 黄色女人牲交| 久9热在线精品视频| 人妻丰满熟妇av一区二区三区| 久久久久久免费高清国产稀缺| a级片在线免费高清观看视频| 高清黄色对白视频在线免费看| 国产三级黄色录像| 99热只有精品国产| 国产91精品成人一区二区三区| 欧美黑人精品巨大| 美女午夜性视频免费| 色在线成人网| 精品久久久久久,| 国产蜜桃级精品一区二区三区| 亚洲第一青青草原| 久久中文看片网| 国产精品九九99| 亚洲中文av在线| 大型av网站在线播放| 丝袜人妻中文字幕| 人人妻人人澡人人看| 午夜免费鲁丝| 嫩草影视91久久| 久久久久久久午夜电影 | 免费看a级黄色片| 啦啦啦 在线观看视频| 国产熟女午夜一区二区三区| 免费一级毛片在线播放高清视频 | 国产成人精品在线电影| 亚洲国产中文字幕在线视频| 亚洲三区欧美一区| 亚洲性夜色夜夜综合| 最新在线观看一区二区三区| 国产亚洲av高清不卡| 99热只有精品国产| aaaaa片日本免费| 9191精品国产免费久久| 日本欧美视频一区| 欧美在线一区亚洲| 国产激情欧美一区二区| 女人高潮潮喷娇喘18禁视频| 久久天躁狠狠躁夜夜2o2o| 国产高清国产精品国产三级| 日本免费一区二区三区高清不卡 | 极品人妻少妇av视频| 国产熟女xx| 亚洲国产精品sss在线观看 | 欧美不卡视频在线免费观看 | 一级毛片女人18水好多| 女人高潮潮喷娇喘18禁视频| cao死你这个sao货| 免费av中文字幕在线| 激情视频va一区二区三区| 亚洲久久久国产精品| 久99久视频精品免费| 一本综合久久免费| 他把我摸到了高潮在线观看| 男人操女人黄网站| netflix在线观看网站| 久久国产精品男人的天堂亚洲| 久久亚洲真实| 一级毛片精品| 久久精品aⅴ一区二区三区四区| 国产精品久久视频播放| 在线观看免费高清a一片| 免费看a级黄色片| 69av精品久久久久久| 国产日韩一区二区三区精品不卡| 午夜免费成人在线视频| 久久精品成人免费网站| 可以在线观看毛片的网站| 久久久久亚洲av毛片大全| а√天堂www在线а√下载| 多毛熟女@视频| 久久香蕉精品热| 亚洲熟妇熟女久久| 婷婷丁香在线五月| ponron亚洲| 俄罗斯特黄特色一大片| 精品久久久久久久久久免费视频 | 亚洲五月婷婷丁香| 韩国av一区二区三区四区| 美女午夜性视频免费| 黄片大片在线免费观看| 极品人妻少妇av视频| 咕卡用的链子| 18禁国产床啪视频网站| 国产极品粉嫩免费观看在线| 色老头精品视频在线观看| 亚洲男人天堂网一区| 视频区图区小说| 亚洲va日本ⅴa欧美va伊人久久| av在线播放免费不卡| 这个男人来自地球电影免费观看| 国产99久久九九免费精品| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲av高清一级| 制服人妻中文乱码| 亚洲精品一区av在线观看| 久久久久久久久久久久大奶| 黄片播放在线免费| 国产精品久久久av美女十八| 制服诱惑二区| 中文字幕高清在线视频| 一级毛片女人18水好多| 在线观看免费日韩欧美大片| 少妇的丰满在线观看| 国产亚洲精品综合一区在线观看 | 99国产精品99久久久久| 少妇 在线观看| 亚洲伊人色综图| 亚洲狠狠婷婷综合久久图片| 免费在线观看黄色视频的| 1024视频免费在线观看| av片东京热男人的天堂| 男男h啪啪无遮挡| 国内久久婷婷六月综合欲色啪| 两人在一起打扑克的视频| 国产亚洲精品综合一区在线观看 | 欧美黑人精品巨大| 五月开心婷婷网| www.www免费av| 国产精品偷伦视频观看了| www国产在线视频色| 美女福利国产在线| 夜夜看夜夜爽夜夜摸 | 国内毛片毛片毛片毛片毛片| 麻豆国产av国片精品| 国产成人欧美在线观看| netflix在线观看网站| 久久国产精品影院| 色在线成人网| 90打野战视频偷拍视频| 99在线视频只有这里精品首页| 欧洲精品卡2卡3卡4卡5卡区| 老司机深夜福利视频在线观看| 99国产极品粉嫩在线观看| 国产亚洲欧美在线一区二区| 欧美日韩视频精品一区| a在线观看视频网站| 亚洲av成人av| 亚洲国产精品一区二区三区在线| 国产精品成人在线| 91老司机精品| 热99国产精品久久久久久7| 一区二区三区激情视频| 国产蜜桃级精品一区二区三区| 嫩草影院精品99| 香蕉国产在线看| 黄色怎么调成土黄色| 日韩中文字幕欧美一区二区| √禁漫天堂资源中文www| 国产1区2区3区精品| 9热在线视频观看99| 精品国产一区二区三区四区第35| 欧美黑人欧美精品刺激| 嫁个100分男人电影在线观看| 国产高清国产精品国产三级| 一二三四在线观看免费中文在| 在线观看一区二区三区激情| 国产精品爽爽va在线观看网站 | 99精品在免费线老司机午夜| 亚洲一区二区三区色噜噜 | 极品人妻少妇av视频| 九色亚洲精品在线播放| 淫秽高清视频在线观看| 脱女人内裤的视频| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 久久久国产欧美日韩av| 久久这里只有精品19| 亚洲成人免费电影在线观看| 久久中文字幕一级| 国产99久久九九免费精品| 国产高清激情床上av| 国产成人影院久久av| 美国免费a级毛片| 99re在线观看精品视频| 女人精品久久久久毛片| 亚洲全国av大片| 亚洲五月天丁香| 国产1区2区3区精品| 国产精品国产av在线观看| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 日本a在线网址| 久久国产亚洲av麻豆专区| 久久精品aⅴ一区二区三区四区| 欧美色视频一区免费| 美女国产高潮福利片在线看| 十八禁网站免费在线| 成人亚洲精品av一区二区 | 99久久综合精品五月天人人| 好男人电影高清在线观看| 日韩高清综合在线| 高清欧美精品videossex| 久久精品影院6| 在线播放国产精品三级| 国产一区在线观看成人免费| 国产麻豆69| 丰满饥渴人妻一区二区三| 午夜亚洲福利在线播放| 亚洲av片天天在线观看| 19禁男女啪啪无遮挡网站| 正在播放国产对白刺激| 搡老岳熟女国产| 久久久精品国产亚洲av高清涩受| 国产无遮挡羞羞视频在线观看| 看免费av毛片| 国产精品免费一区二区三区在线| 法律面前人人平等表现在哪些方面| 久久欧美精品欧美久久欧美| 在线观看免费午夜福利视频| 热re99久久精品国产66热6| 久久亚洲真实| 亚洲午夜理论影院| 国产精品九九99| 久久国产精品人妻蜜桃| 午夜福利一区二区在线看| 桃色一区二区三区在线观看| 波多野结衣高清无吗| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 亚洲精品中文字幕一二三四区| 看片在线看免费视频| 久久天堂一区二区三区四区| 久久伊人香网站| 波多野结衣高清无吗| 久9热在线精品视频| 亚洲欧美日韩另类电影网站| 午夜亚洲福利在线播放| 欧美乱色亚洲激情| av在线天堂中文字幕 | 男女床上黄色一级片免费看| 男女高潮啪啪啪动态图| 黄色女人牲交| 国产片内射在线| 免费少妇av软件| 桃色一区二区三区在线观看| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 国产成人欧美| 午夜精品在线福利| 欧美亚洲日本最大视频资源| 桃红色精品国产亚洲av| 一边摸一边做爽爽视频免费| 国产黄色免费在线视频| 久久香蕉精品热| 最近最新免费中文字幕在线| 曰老女人黄片| 亚洲黑人精品在线| 97人妻天天添夜夜摸| 免费女性裸体啪啪无遮挡网站| 在线国产一区二区在线| videosex国产| 黑人操中国人逼视频| 亚洲熟妇熟女久久| 日日摸夜夜添夜夜添小说| www.999成人在线观看| 国产av一区在线观看免费| 日韩 欧美 亚洲 中文字幕| 亚洲成国产人片在线观看| 亚洲精品在线观看二区| 女人精品久久久久毛片| 亚洲成人精品中文字幕电影 | 久久婷婷成人综合色麻豆| 男人的好看免费观看在线视频 | 18禁黄网站禁片午夜丰满| 日韩中文字幕欧美一区二区| 国产精华一区二区三区| 国产99白浆流出| 在线观看免费日韩欧美大片| 久久久久久免费高清国产稀缺| 18禁裸乳无遮挡免费网站照片 | 国产精品一区二区免费欧美| 午夜福利,免费看| 国内久久婷婷六月综合欲色啪| av在线播放免费不卡| 人妻久久中文字幕网| 久久久国产欧美日韩av| 精品欧美一区二区三区在线| 在线观看一区二区三区激情| 欧美成人免费av一区二区三区| 91成人精品电影| e午夜精品久久久久久久| 嫩草影视91久久| 人人妻人人澡人人看| 男人舔女人的私密视频| 日本vs欧美在线观看视频| 婷婷精品国产亚洲av在线| 亚洲人成伊人成综合网2020| 乱人伦中国视频| 女警被强在线播放| 国产av在哪里看| 久久这里只有精品19| 黑人巨大精品欧美一区二区蜜桃| 97超级碰碰碰精品色视频在线观看| 黄色 视频免费看| 久久九九热精品免费| 亚洲熟女毛片儿| 国产黄色免费在线视频| 超碰97精品在线观看| 久久午夜亚洲精品久久| 久久婷婷成人综合色麻豆| 波多野结衣一区麻豆| 12—13女人毛片做爰片一| 高清毛片免费观看视频网站 | 最近最新中文字幕大全电影3 | 精品一区二区三区视频在线观看免费 | 日韩大码丰满熟妇| 亚洲欧美精品综合一区二区三区| 午夜免费激情av| 一边摸一边做爽爽视频免费| 欧美日韩视频精品一区| 亚洲 国产 在线| 久久久精品国产亚洲av高清涩受| 亚洲美女黄片视频| 好男人电影高清在线观看| 18美女黄网站色大片免费观看| 777久久人妻少妇嫩草av网站| 母亲3免费完整高清在线观看| 9热在线视频观看99| 母亲3免费完整高清在线观看| 国产精品98久久久久久宅男小说| 一区二区三区精品91| 国产99白浆流出| 麻豆国产av国片精品| 亚洲一区二区三区色噜噜 | 两个人看的免费小视频| 免费在线观看完整版高清| 国产av一区在线观看免费| 少妇粗大呻吟视频| 成人手机av| 老司机靠b影院| 欧美人与性动交α欧美精品济南到| 国产高清视频在线播放一区| 性少妇av在线| 国产精品久久久av美女十八| 久久久国产一区二区| 婷婷六月久久综合丁香| 搡老乐熟女国产| 亚洲久久久国产精品| 可以在线观看毛片的网站| 国产成人精品在线电影| 久久精品亚洲熟妇少妇任你| 中国美女看黄片| 精品国产超薄肉色丝袜足j| 久久久国产成人免费| 伊人久久大香线蕉亚洲五| av片东京热男人的天堂| 男女下面进入的视频免费午夜 | 高清毛片免费观看视频网站 | 日韩高清综合在线| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 免费少妇av软件| svipshipincom国产片| 黄片小视频在线播放| 淫妇啪啪啪对白视频| 亚洲久久久国产精品| 真人做人爱边吃奶动态| 午夜亚洲福利在线播放| 久热爱精品视频在线9| 中文欧美无线码| 免费在线观看影片大全网站| 免费不卡黄色视频| 久久亚洲精品不卡| xxx96com| 亚洲av电影在线进入| 亚洲va日本ⅴa欧美va伊人久久| 母亲3免费完整高清在线观看| 中文亚洲av片在线观看爽| 久久午夜亚洲精品久久| 免费高清视频大片| 日日爽夜夜爽网站| 性色av乱码一区二区三区2| 又黄又爽又免费观看的视频| 黄片大片在线免费观看| 97碰自拍视频| 成熟少妇高潮喷水视频| 宅男免费午夜| 成人特级黄色片久久久久久久| 他把我摸到了高潮在线观看| 精品少妇一区二区三区视频日本电影| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人免费av在线播放| 欧美日韩视频精品一区| 国产亚洲精品久久久久久毛片| 最近最新免费中文字幕在线| 欧美不卡视频在线免费观看 | 亚洲欧美激情在线| 久久久久久免费高清国产稀缺| 国产亚洲精品第一综合不卡| 丝袜美腿诱惑在线| 欧美中文综合在线视频| 精品国产超薄肉色丝袜足j| a级片在线免费高清观看视频| 操美女的视频在线观看| 激情视频va一区二区三区| а√天堂www在线а√下载| 我的亚洲天堂| 日韩欧美一区视频在线观看| 日本一区二区免费在线视频| 国产免费男女视频| 免费高清视频大片| 中文字幕色久视频| 三上悠亚av全集在线观看| 麻豆av在线久日| 欧美 亚洲 国产 日韩一| 女生性感内裤真人,穿戴方法视频| 亚洲男人的天堂狠狠| 99国产极品粉嫩在线观看| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| 国产成人精品在线电影| 99国产精品99久久久久| 五月开心婷婷网| 看黄色毛片网站| 午夜福利,免费看| 搡老乐熟女国产| 黄色视频不卡| 亚洲自偷自拍图片 自拍| 亚洲精华国产精华精| 动漫黄色视频在线观看| 三级毛片av免费| 99国产极品粉嫩在线观看| 成人三级做爰电影| 宅男免费午夜| 色播在线永久视频| 久久精品91无色码中文字幕| 国产高清视频在线播放一区| www国产在线视频色| 亚洲视频免费观看视频| 麻豆一二三区av精品| 亚洲av第一区精品v没综合| 黑人巨大精品欧美一区二区mp4| 大香蕉久久成人网| 日韩欧美国产一区二区入口| 国产精品久久电影中文字幕| 国产一区二区三区综合在线观看| 久久精品亚洲精品国产色婷小说| 18禁美女被吸乳视频| 国产精品亚洲一级av第二区| 国产成人av教育| 精品国产一区二区三区四区第35| 淫妇啪啪啪对白视频| 99精国产麻豆久久婷婷| 国产精品免费视频内射| 国产熟女午夜一区二区三区| 亚洲国产毛片av蜜桃av| 丰满迷人的少妇在线观看| 久久久久久亚洲精品国产蜜桃av| 精品一品国产午夜福利视频| 国产99久久九九免费精品| 中文字幕人妻丝袜制服| 一区二区三区激情视频| 国产麻豆69| 一区福利在线观看| 亚洲精品av麻豆狂野| 18禁美女被吸乳视频| 不卡一级毛片| 老司机福利观看| 在线天堂中文资源库| 日韩国内少妇激情av| 国产精华一区二区三区| 国产三级在线视频| 欧美大码av| 亚洲狠狠婷婷综合久久图片| 免费在线观看视频国产中文字幕亚洲| 18美女黄网站色大片免费观看| 18禁观看日本| 国产激情久久老熟女| 成年人免费黄色播放视频| 久久精品亚洲熟妇少妇任你| tocl精华| 一级a爱片免费观看的视频| 国产在线精品亚洲第一网站| 久久人妻福利社区极品人妻图片| 亚洲熟女毛片儿| 桃色一区二区三区在线观看| 宅男免费午夜| 日韩国内少妇激情av| 久9热在线精品视频| 丁香欧美五月| 怎么达到女性高潮| 久久精品国产亚洲av高清一级| 悠悠久久av| 97超级碰碰碰精品色视频在线观看| 国产精品久久久人人做人人爽| 真人做人爱边吃奶动态| 母亲3免费完整高清在线观看| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 成人免费观看视频高清| 水蜜桃什么品种好| 热99re8久久精品国产| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区免费| 亚洲精华国产精华精| av天堂在线播放| 制服人妻中文乱码| 久久人妻福利社区极品人妻图片| 国产无遮挡羞羞视频在线观看| 中文字幕色久视频| 国产一区二区在线av高清观看| 国产精品国产高清国产av| 欧美日韩一级在线毛片| 国产精品国产av在线观看| 黑人操中国人逼视频| 99riav亚洲国产免费| 久久国产乱子伦精品免费另类| 人人澡人人妻人| 亚洲欧美一区二区三区黑人| 免费在线观看影片大全网站| 国产亚洲欧美精品永久| 淫秽高清视频在线观看| 又紧又爽又黄一区二区| 夜夜夜夜夜久久久久| 亚洲男人天堂网一区| 热99国产精品久久久久久7| 国产熟女午夜一区二区三区| 80岁老熟妇乱子伦牲交| 国产伦一二天堂av在线观看| 香蕉国产在线看| 午夜福利欧美成人| 一级毛片高清免费大全| 色精品久久人妻99蜜桃| 日韩欧美国产一区二区入口| 久久久久久久久免费视频了| 交换朋友夫妻互换小说| 黑人巨大精品欧美一区二区蜜桃| av天堂久久9| 亚洲七黄色美女视频| 午夜精品国产一区二区电影| 国产成人欧美在线观看| 午夜福利欧美成人| 久久香蕉激情| 免费av中文字幕在线| 婷婷六月久久综合丁香| 夫妻午夜视频| 日韩 欧美 亚洲 中文字幕| 精品日产1卡2卡| 久久精品aⅴ一区二区三区四区| 正在播放国产对白刺激| 巨乳人妻的诱惑在线观看| 色尼玛亚洲综合影院|