• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parametric study of single con f i ned fragment launch explosive device

    2019-05-24 01:37:40PnkjChoudhKumrswmyKusumkntDhote
    Defence Technology 2019年2期

    Pnkj K.Choudh ,A.Kumrswmy ,Kusumknt D.Dhote

    a Armament Research&Development Establishment(DRDO),Pune 411021,India

    b Defence Institute of Advanced Technology,Girinagar,Pune 411025,India

    Keywords:Con f i nement Fragment size Empirical relationship Fragment velocity Insensitive munition test Fragment launching device

    A B S T R A C TIn this article,parametric study of single con f i ned fragment launch device w as carried out.The con f i guration proposed w as further studied to derive the empirical relationship for effect of fragment size,charge size,con f i nement thickness on fragment velocity.The simulations were carried out using ANSYSAUTODYNE explicit solver.Fragment velocities w ere estimated as a function of different parametric combinations of explosive quantities,charge length to diameter ratio,fragment height to diameter ratio,con f i nement thickness,fragment material and fragment mass.The data was further converted to charge to metal ratio under fragment and con f i nement.It w as observed that,increase in con f i nement thickness,charge quantity and decrease in fragment height increases the fragment velocity.It is also noted that,charge to metal mass ratio under fragment signi f i cantly affects the fragment velocity.At the end,an empirical relationship for fragment velocity interms of all these parameters was established.Using these relations,two velocities 1831.92 m/s and 2523.9 m/s required for NATO STANAG 4496 IM test were estimated.The design parameters for these velocities are presented.Also,the results estimated using the empirical relationship has been compared w ith published experimental data.Error in the predicted velocities is w ithin the acceptable range.The empirical relationship proposed w ill be useful for f i nalization of design of the fragment launch device.

    1.Introduction

    Impact physics and terminal ballistics are the important areas of military applications.Launching of fragment and consequent study of damage is a requirement in the evaluation of storage safety of ammunitions.NATO STANAG 4496 test for insensitive munition(IM)compliance requires launch of cylindrical fragment of 18.6 g mass and 14.3 mm diameter for primary and alternate test methods at velocities 2530 and 1830 m/s respectively[1].Test requirements for testing personal armours as per NATOSTANAG-2920 for ballistic test method for personal armour materials and combat clothing requires launch of fragments w eighing betw een 0.13 g and 53.78 g at striking velocities betw een 198 m/s and 1524 m/s[2].To meet these test requirements and assessing the performance,projectile or fragment launch devices capable of launching the fragment of desired mass and shape at speci f i ed velocity is essential.

    To launch the projectile or fragment in a w ide range of velocities,electromagnetic propulsions,explosive propulsions,plasma accelerators and gun accelerators are available.Among all these techniques,explosive launch devicesare simple in construction and inexpensive.Large masses in the kilogram regime can be accelerated at high velocities of the order of 6 km/s[3].Techniques other than explosive propulsion are not feasible to carry out limited amount of studies w ithin limited cost.Further,safety of these equipments is essential during the test.Larger safety distances beyond 3m may be required to carry out these test on large size w arheads.In such tests,explosive propulsion or acceleration based techniquesare preferred.Wenzel[4]and Held[5]review ed different types of explosive launch devices used for f i ring of preformed fragments w ith launch velocities,launch masses,their scalability and limitation.These devices can also be used for launching of fragments formed during the f l ight after detonation of explosive i.e.P-charge,shape charge fragments.

    The launch velocity of these fragments depends on the type of phenomenon used for launch.P-charge generator for individual and multiple fragments are capable of projecting heavier fragments at velocities of 3 km/s[5].Flyer plate studies have been done by many authors.Seokbin[6]has discussed the method for obtaining the acceleration pro f i le of f l yer plate.Yadav et al.[7]have reported f l yer plate experiments and brought out that the f l ying velocity increases w ith increase in charge to metal mass ratio.Weickert et al.[8]have performed parametric experiments using various diameter charges of different explosives for f l at plate launch.It w as con f i rmed that the plate velocity is a function of the plate thickness.Joseph et al.[9]have derived correlations betw een plate thickness and charge length for f l yer plate velocity.

    Theoretical estimate of velocity for multiple fragments for cylindrical,spherical and sandw ich con f i gurations are given based on Gurney equation[10].The acceleration of individual fragments in different contact spacing w ith explosive is discussed in detail[11].The method of estimating velocity of multiple premade fragments in forward f i ring con f i guration is also presented[12,13].In case of a cylindrical charge consisting of fragmenting disc at one end w ith initiation at the other end,the modi f i ed Gurney equation w ith charge length to diameter effect w as used for obtaining the fragment velocity[14].

    Wenzel[4]has presented single fragment launch con f i guration w ith different type of pellets i.e.spherical,disc w ith annular con f i nement,plate,disc w ith air cavity etc.It w as brought out that,the velocity of pellet can be enhanced by f i xing the pellet mass and increasing the explosive mass,w hich is initially linear,however becomes asymptotic once the detonation front reaches the detonation velocity.Further,tw o con f i gurations i.e.disc w ithout con f i nement and disc w ith annular con f i nement have been experimentally evaluated by Held[15,18].Held suggested that,a single fragment w ithout annular con f i nement cannot be accelerated w ell.In addition,the release waves reduce the high pressure zone rapidly after the fragment launch.Therefore,only moderate velocities are achieved w ith uncon f i ned fragment launch.Further,w ith this con f i guration,a w ell predicted mass and shape cannot be achieved.Con f i guration of disc w ith annular con f i nement has achieved reproducible fragment velocities and the fragments have suf f i cient aiming accuracy w ith only small fragment deformation by the detonative acceleration.Therefore,disc launch w ith annular con f i nement has de f i nite advantages.

    Launch velocity of single con f i ned fragment launch explosive device(SCFLED)considered in the present study depends on various con f i guration parameters.The launch velocity of fragment is dif f i cult to be estimated theoretically,w hen con f i nement and fragment height are different.Gurney equation provides an average fragment velocity based on overall con f i guration i.e.overall charge to metal mass ratio,therefore,the effect of fragment dimensions w ithout change of con f i nement dimensions cannot be captured.Effortshave been made in similar linesto further modify the gurney equations or propose empirical relationships for estimation of fragment velocity for non-conventional designs[16,17].

    Careful observation of above literature data indicates that,the general expressions are available for calculation of average fragment velocity of natural fragmentation or preformed multiple fragmentation devices used for forw ard f i ring w arhead applications.However,method of calculation of fragment velocity for single fragment launch devices is not available in the literature.Therefore,the present study has been focused speci f i cally to understand the effect of con f i guration parameters on single fragment launch velocity in SCFLED proposed by Held[18].The data generated from simulation w as used to obtain the generalized relation required to design these devices.The design parameters of these devices for NATO STANAG 4496 test for insensitive munition(IM)compliance has been estimated using generalized relations.

    The launch velocities of 10 g and 20 g masses of disc fragments w ith annular con f i nements have been studied.Effect of changes in the charge to metal mass ratio of overall con f i guration w ith f i xed explosive quantities,fragment length to diameter ratio,front con f i nement thickness and change of fragment material have been studied for fragment launch velocities.After conducting the simulations studies,empirical relationship for above parameters has been proposed.The relationship w as further veri f i ed for fragment velocity of 12 g and 24 g masses w ith reported experimental results.The errors of estimation are w ithin the permissible limits.Thus,the empirical relationship established in this study can be utilized for w orking out the con f i guration for desired mass and launch velocity of fragment.

    2.Numerical modelling

    ANSYS-AUTODYN software has been used for numerical modelling of SCFLED.The Held con f i guration w as f i rst modelled in 3D quarter symmetry.It involves Jones,Wilkins and Lee(JWL)equation of state for explosive and Johnson cook(JC)high strainrate behaviour of mild steel for con f i nement material.The explosive material w as modelled using Euler domain.The con f i nement and fragment w as modelled using Lagrange domain.

    2.1.Geometry details

    In Held con f i guration,the fragment is positioned at the centre of con f i nement at one end of cylindrical explosive charge and detonated from the other end as show n in Fig.1(a).The fragment is con f i ned w ith front con f i nement thickness t equal to fragment height h.The proposed con f i guration hasφ96×95 mm.The values of d and h w ere selected in such a w ay that,the mass of fragment is either 10 g or 20 g and the angle of front con f i nement w ith charge is chosen as 100°.For the parametric study,geometry of launch device w as further simpli f i ed as show n in Fig.1(b)in w hich front con f i nement was changed to 90°.The con f i nement w as modi f i ed at the fragment holding location w ith 45°taper as discussed in the subsequent sections.

    2.2.Material models

    The RDX/WAX/Graphite(94.5/4.5/1)w as used as explosive material in the experimental study.JWL equation of state given in Equation(1)w as used for modelling of explosive,w hich describes the detonation product expansion for high energy explosive materials.JWLparameters for the explosive are given in Table 1.

    The mild steel was considered for con f i nement and fragment material and J-Cmaterial model considered is given in Equation(2).Properties for mild steel involved in analysis are given in Table 2 and Table 3.Whereε·t=

    3.Results and discussion

    3.1.Validation of numerical model

    In 3-D quarter symmetry model used in the present study,the mesh size of 1 mm for explosive,1 mm for con f i nement and 0.25 mm for fragment w ere f i nalized after convergence study for fragment velocity.The simulation was carried out for 5 ms duration to obtain the maximum velocity.The numerical results are validated by experimental data generated by Held[18]for 10 g and 20 g fragment mass.For a given explosive,the key parametersgoverning the fragment velocity are E,Ro=Co/Moand L/D ratio of the explosive charge.The fragment velocity is calculated using modi f i ed Gurney Equation(3)w ith a velocity correction factorηof 0.9[12].The comparative results reveal that,the%error in simulation in comparison w ith experimental results is w ithin the acceptable limit as given in Table 4.

    Gurney equation is used for fragmenting disc w ith multiple fragments.The average fragment velocity for con f i guration is estimated based on Ro.When fragment size is changed w ithout changing the mass of fragment keeping con f i nement thickness constant,the overall Row ill not change.In such cases,Gurney Equation(3)cannot predict the change in fragment velocity.In view of the above,there is a need to establish new empirical relationship for better correlation betw een size of fragment,charge and con f i nement dimensions.

    Subsequent to the above validation,further simpli f i cations w ere made for parametric studies i.e.fragment w as considered rigid and front con f i nement angle w as changed to 90°.The validation of fragment velocity for both the massesrevealed that,there is a slight increase in the velocity of fragment due to change in con f i nement charge angle,w hich in turn increased the mass of explosive.Therefore,rigid fragment and 900con f i nement angle w as considered for all further simulation study.

    3.2.Parametric study of SCFLED

    Fig.1.(a)Held con f i guration(b)Simpli f i ed SCFLED for parametric study.

    The simpli f i ed geometry show n in Fig.1(b)w as used for parametric study.It is necessary to establish dependence of various parameters of SCFLED on the fragment velocity,w hich w ill help in f i nalization of SCFLED design.The single point initiation was considered at the centre of f l at end on the other side.Varying the s at L/D=1,Ro=1.2 and then it started decreasing due to rarefaction w ave and dominating end effects.For L/D>1.0,larger Row ill not help in further increase in the fragment velocity.Further,as the explosive charge quantity is increased,the maximum velocity of geometric parameters keeping the material parameters for explosive,frontal and radial con f i nement f i xed,the effect of these parameters on fragment velocity w as studied.The parameters used during simulations are given in Table 5.

    Table 1JWL material parameters for RDX/WAX/Graphite(94.5/4.5/1).

    Table 2Material properties for mild steel.

    Table 3J-CMaterial parameters for mild steel[19].

    Table 4Fragment velocity for different fragment mass obtained from simulations and errors.

    3.2.1.Effect of length and diameter of explosive

    Tw o fragment masses of 10 g (φ12.75×10)and 20 g(φ15.8×13),same front con f i nement and charge diameter,thickness of con f i nement equal to fragment height w ere considered in the simulation.D w as increased from 83 to 314 mm,L w as increased from 60 to 360 mm and charge quantity w as varied from 0.54 to 20.23 kg L/D ratio of charge w as varied from 0.5 to 1.75for f i xed quantity of charge(Co).Variation of maximum fragment velocity as a function of L/D ratio at different charge quantities obtained from simulations is plotted in Fig.2(a)and values are given in Table 6.

    The effects of Ro on fragment velocity for various L/D ratios have been plotted in Fig.2(b).In case of 10 g fragment,for small quantity of explosive charge i.e.0.54 kg,as the L/D ratio is increased,Ro increased from 1 to 7.63.Fragment velocity increased to a maximum value of 1091 m/s at L/D=1,Ro=1.54 and thereafter it w as observed to be decreasing.As the explosive charge quantity is increased,the maximum velocity of fragment Vmax=2252 m/s w ill shift from L/D=1 to 1.25 at Ro=6.1.

    On the other hand,in case of 20 g fragment,as the L/D ratio is increased,Ro increased from 1 to 5.87 for same explosive charge of 0.54 kg.Fragment velocity increased to a maximum value of 881 m/fragment 2252 m/s w ill shift from L/D=1 to 1.5 at Ro=5.3 for 20.54 kg explosive.

    Table 5Parameters used in simulations.

    It is also observed that,increasing the explosive quantity w ill increase the fragment velocity as seen in Fig.2(b).Overlapping of plots for 10 g and 20 g fragment mass indicates that,the fragment velocity issame at all valuesof Ro.Hence,charge to metal massratio dominated by con f i nement thickness and explosive height under con f i nement affects the maximum fragment velocity.

    3.2.2.Effect of fragment height,diameter and material

    The fragment velocity as a function of different fragment parameters such as fragment height,diameter and material w as obtained for tw o fragments of mass 10 g and 20 g.Explosive dimensions ofφ96×95 mm gives rise to a mass of 1.13 kg.The thickness of front con f i nement varied from 1.5 to 15 mm,the fragment h/d ratio w as also varied keeping the fragment mass constant for each con f i nement thickness.The density of aluminium w as considered 2.71×103kg/m3.During the simulation,it w as observed that,w hen fragment height is less than con f i nement thickness as show n in Fig.3(a),the fragment w ill start moving due to shock pressure.Subsequently,shock in con f i nement travel faster and reaches the free surface ahead of the fragment causing con f i nement material to f l ow over the fragment restricting its motion as show n in Fig.3(b).To overcome this problem,con f i nement w as provided w ith the angle of 45°from the base to outside the con f i nement as show n in Fig.1(b).

    The effect of con f i nement t/L ratio w ith change in fragment h/d and h/L ratio on fragment velocity are plotted in Fig.4(a)and Fig.4(b)respectively and given in Table 7.For 20 g fragment,it w as observed that,the fragment velocity is 469.9 m/s at t/L=0.01316 and h/d=1.66 increased sharply to 1551 m/s w ith decrease in h/d ratio to 0.2346.Further,increasing t/L to 0.158 w ill increase fragment velocity to 668.7 m/s.It may be noted that,the fragment velocity increased w ith increase in front con f i nement and decrease in h/d ratio.It is also observed that,fragment velocity is independent of fragment mass of same material,h/L and t/L as show n in Fig.4(b).The h/L ratio has indirect bearing on Rfratio under the fragment.of these parameters.It w as observed that,w hen L/D ratio of charge is varied,the overall Rois governed by con f i nement mass or thickness.Further,study of fragment velocities for different h/d ratios and fragment material revealed the effect of charge to metal ratio under the fragment(Rf).Therefore,parameters w ere further converted to charge to m etal mass ratio under fragment Rfand under con f i nement Rcas de f i ned in Equation(4)and Equation(5).All the parameters w ere correlated to fragment

    Fig.2.(a).Fragment velocity vs.L/D and C o(b)Fragment velocity vs.L/D and R o.

    Table 6Variation of V max w ith L/D and charge quantity(C0).

    Fig.3.(a)Fragment height less than con f i nement(b)Obstruction by Con f i nement.

    Simulations w ere further carried out for Al fragment and results w ere compared w ith steel fragment of 10 g and 20 g fragments as shown in Fig.5 Since the density of Al is less than steel,fragment dimensions and fragment velocity of Al are higher.Therefore,for same h/L ratio,the charge to metal ratio under fragment(Rf)for Al fragment w ill be higher con f i rming that fragment velocity is a function of Rf.

    4.Analysis of data and em p irical relationship

    The data w as analysed after obtaining the individual variation velocity using the MATLAB program.

    The empirical relationship correlating charge L/D,Rfand Rcwas established and given in Equation(6).This equation can be used to estimate fragment velocity,V for the given con f i guration and for f i nalization of SCFLED dimensions.

    Fig.4.(a)Fragment velocity with t/L and h/d(b)Fragment velocity with t/L and h/L.

    Table 7Fragment velocity for different values of t/L,h/L and h/d ratios.

    Fig.5.Fragment velocity vs.h/L and t/L for steel and Al fragments.

    Fig.6.In f l uence of parameters on fragment velocity(1831 m/s).

    Using the above empirical relationship,tw o velocities 1831.92 m/s±35.95 m/s,2523.9 m/s 55.8 m/s required for NATO STANAG 4496 IM test w ere estimated.The variation of fragment velocity(green lines)along w ith 95%con f i dence interval(red lines)as a function of L/D,h/d,Rfand Rcare plotted as show n in Fig.6&Fig.7.It has been observed that,Rfhas the highest slope and slight change in the ratio can affect the fragment velocity signi f i cantly.Therefore,considering the parameters L/D,h/d to be 1.0 and Rcto be 2.0,the expected Rfw as estimated as 3.25 and 5.25 respectively.Once the value of Rfis obtained,the charge length and diameters can be determined based on fragment dimensions and the con f i nement thickness can be w orked out from Rc.

    The empirical relation established(Eq.(6))w as further validated w ith experimental data[18].The results are presented in Table 8.Development Establishment,Pune and Vice Chancellor,DIAT,Pune for encouraging to carry out the w ork presented in this article.

    Table 8Fragment velocity for 12.1 g and 24.0 g obtained from empirical relationship.

    5.Conclusions

    1)Increasing the explosive quantity w ill increase the fragment velocity and independent of fragment mass(10 g or 20 g)at any value of Ro.Therefore,overall charge to metal mass ratio(Ro)w hich is dominated by con f i nement thickness and explosive height under con f i nement affects the maximum fragment velocity.

    2)The increase in fragment velocity w ith increase in charge L/D ratio increased initially up to 1-1.5 based on charge quantity and thereafter decreased.Hence,L/D should be kept betw een 1-1.5 for such devices.

    3)The location of fragment in con f i nement w ill obstruct w hen fragment height is less than the con f i nement height.Therefore,a tapered hole of 45°w ould remove the con f i nement material f l ow ing over the fragment.

    4)Increase in front con f i nement increases the fragment velocity and the fragment velocity response becomes asymptotic after certain value of t/L.

    5)The h/d ratio and mass affects the fragment velocity.The height of fragment affects Rfcausing reduction in h/d ratio that in turn increases fragment velocity.It was further con f i rmed by changing the fragment material,thus,Rfcontributes signi f icantly to change in fragment velocity.

    6)The empirical relationship for charge L/D,fragment h/d,Rfand Rcw ith fragment velocity established can predict the velocity w ithin the reasonable accuracy and w ill help in f i nalization of initial design and dimensions of SCFLED.

    Ack now ledgm ents

    The authors w ish to thank Director,Armament Research&

    国产野战对白在线观看| 午夜福利,免费看| 黄片小视频在线播放| 美女脱内裤让男人舔精品视频| 丝袜人妻中文字幕| av一本久久久久| 免费日韩欧美在线观看| 精品亚洲乱码少妇综合久久| 99精国产麻豆久久婷婷| 少妇人妻久久综合中文| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 亚洲av日韩在线播放| 精品一区二区免费观看| 精品久久久精品久久久| 精品亚洲成国产av| 国产免费现黄频在线看| 极品人妻少妇av视频| 啦啦啦在线免费观看视频4| 欧美日韩精品网址| 国产午夜精品一二区理论片| 丝袜人妻中文字幕| 综合色丁香网| 飞空精品影院首页| 婷婷成人精品国产| 国产免费现黄频在线看| 爱豆传媒免费全集在线观看| 在线 av 中文字幕| 欧美av亚洲av综合av国产av | 美国免费a级毛片| 免费黄网站久久成人精品| a级片在线免费高清观看视频| 在线看a的网站| 十分钟在线观看高清视频www| 热re99久久国产66热| 18禁动态无遮挡网站| 亚洲男人天堂网一区| 亚洲一区二区三区欧美精品| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| 国产淫语在线视频| 亚洲av国产av综合av卡| 久久久精品94久久精品| 热re99久久精品国产66热6| 久久久欧美国产精品| av网站免费在线观看视频| 在线观看三级黄色| 欧美精品亚洲一区二区| 尾随美女入室| 中文字幕人妻熟女乱码| 国产免费一区二区三区四区乱码| 少妇精品久久久久久久| 亚洲av欧美aⅴ国产| 国产男人的电影天堂91| 一二三四在线观看免费中文在| 久久精品熟女亚洲av麻豆精品| 大话2 男鬼变身卡| 免费av中文字幕在线| 国产精品久久久久久精品电影小说| 国产又爽黄色视频| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 一区二区三区激情视频| 久久久久精品人妻al黑| 久久这里只有精品19| 男男h啪啪无遮挡| 免费黄网站久久成人精品| 亚洲成色77777| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| 亚洲成人免费av在线播放| 国产av码专区亚洲av| 免费在线观看黄色视频的| 午夜激情久久久久久久| 美女扒开内裤让男人捅视频| 欧美日韩视频高清一区二区三区二| 亚洲色图综合在线观看| 91精品伊人久久大香线蕉| 午夜91福利影院| 天天躁日日躁夜夜躁夜夜| 国产精品一区二区精品视频观看| 老司机在亚洲福利影院| 侵犯人妻中文字幕一二三四区| 婷婷色av中文字幕| av在线app专区| 男人添女人高潮全过程视频| 欧美黄色片欧美黄色片| 国产男女超爽视频在线观看| 肉色欧美久久久久久久蜜桃| 婷婷色麻豆天堂久久| 男女边吃奶边做爰视频| 日韩 亚洲 欧美在线| 美女午夜性视频免费| 伊人亚洲综合成人网| 黄色视频不卡| tube8黄色片| 九九爱精品视频在线观看| 亚洲国产毛片av蜜桃av| av在线观看视频网站免费| 搡老乐熟女国产| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 国产在线免费精品| 亚洲一码二码三码区别大吗| 免费在线观看黄色视频的| 99久久精品国产亚洲精品| 青青草视频在线视频观看| 又黄又粗又硬又大视频| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区三区在线| 亚洲专区中文字幕在线 | av在线老鸭窝| 人妻一区二区av| 黄频高清免费视频| 黑丝袜美女国产一区| 国产精品.久久久| 黄频高清免费视频| 69精品国产乱码久久久| 日韩制服骚丝袜av| 啦啦啦 在线观看视频| 男女之事视频高清在线观看 | av在线播放精品| 亚洲av福利一区| 精品久久久久久电影网| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品aⅴ在线观看| 男人舔女人的私密视频| 美女中出高潮动态图| 看免费成人av毛片| 大陆偷拍与自拍| 国产熟女午夜一区二区三区| 亚洲av福利一区| 免费在线观看视频国产中文字幕亚洲 | 久久影院123| 国产一区有黄有色的免费视频| 丝袜脚勾引网站| 国产一级毛片在线| 在线观看人妻少妇| 免费在线观看完整版高清| 你懂的网址亚洲精品在线观看| 国产女主播在线喷水免费视频网站| 美女主播在线视频| 亚洲精品,欧美精品| 又大又爽又粗| 亚洲国产欧美一区二区综合| 欧美激情高清一区二区三区 | 精品少妇久久久久久888优播| 亚洲欧美中文字幕日韩二区| 亚洲成人一二三区av| 两个人免费观看高清视频| 日韩精品免费视频一区二区三区| av在线老鸭窝| 国产亚洲精品第一综合不卡| 九九爱精品视频在线观看| 亚洲美女搞黄在线观看| 国产伦理片在线播放av一区| 妹子高潮喷水视频| 欧美日韩一级在线毛片| 伦理电影大哥的女人| 韩国精品一区二区三区| 色播在线永久视频| 一本—道久久a久久精品蜜桃钙片| 天天添夜夜摸| 国产亚洲av片在线观看秒播厂| 亚洲欧美一区二区三区久久| 桃花免费在线播放| 精品国产乱码久久久久久男人| 午夜福利视频在线观看免费| 美国免费a级毛片| 久久久久国产一级毛片高清牌| 成年美女黄网站色视频大全免费| 一级爰片在线观看| 老司机在亚洲福利影院| 国产亚洲午夜精品一区二区久久| 一级,二级,三级黄色视频| 国产精品免费视频内射| 日本午夜av视频| 精品酒店卫生间| 老司机影院成人| 久久久精品94久久精品| 在线观看免费日韩欧美大片| 捣出白浆h1v1| 中文字幕亚洲精品专区| 午夜福利视频精品| 91精品国产国语对白视频| 亚洲精品成人av观看孕妇| 另类亚洲欧美激情| 1024视频免费在线观看| 熟女av电影| 在线免费观看不下载黄p国产| 欧美国产精品一级二级三级| 91国产中文字幕| 亚洲精品美女久久久久99蜜臀 | 人人妻人人添人人爽欧美一区卜| 免费观看a级毛片全部| 成人免费观看视频高清| 亚洲图色成人| 亚洲精品日本国产第一区| 伦理电影免费视频| 看非洲黑人一级黄片| 欧美激情高清一区二区三区 | 久久精品久久久久久噜噜老黄| 国产一卡二卡三卡精品 | 久久人人97超碰香蕉20202| 毛片一级片免费看久久久久| 欧美日韩成人在线一区二区| 欧美在线黄色| 97人妻天天添夜夜摸| 男女边吃奶边做爰视频| 午夜av观看不卡| 午夜福利免费观看在线| av线在线观看网站| 亚洲国产最新在线播放| 国产精品人妻久久久影院| 日韩av不卡免费在线播放| 捣出白浆h1v1| 亚洲第一av免费看| 韩国高清视频一区二区三区| 大片免费播放器 马上看| 一边亲一边摸免费视频| 久久精品亚洲av国产电影网| 国产一区二区激情短视频 | 美女大奶头黄色视频| 免费在线观看完整版高清| 日日啪夜夜爽| 最近的中文字幕免费完整| 国精品久久久久久国模美| 精品一区二区免费观看| 麻豆av在线久日| 国产探花极品一区二区| 在线观看一区二区三区激情| 男人爽女人下面视频在线观看| 亚洲情色 制服丝袜| 日韩大片免费观看网站| 日韩成人av中文字幕在线观看| 国产成人a∨麻豆精品| 免费久久久久久久精品成人欧美视频| 亚洲熟女精品中文字幕| 欧美xxⅹ黑人| 久久鲁丝午夜福利片| 男女无遮挡免费网站观看| 女的被弄到高潮叫床怎么办| 中文字幕精品免费在线观看视频| 国产精品欧美亚洲77777| 精品久久久久久电影网| 亚洲av国产av综合av卡| 精品国产一区二区三区久久久樱花| 国产精品.久久久| 日本wwww免费看| 中国国产av一级| 无限看片的www在线观看| 欧美日韩国产mv在线观看视频| 狂野欧美激情性bbbbbb| 晚上一个人看的免费电影| 免费看不卡的av| 欧美黑人精品巨大| 精品亚洲成a人片在线观看| 亚洲国产欧美日韩在线播放| 亚洲精品日本国产第一区| av在线播放精品| 黑人猛操日本美女一级片| 亚洲国产av影院在线观看| 久久天躁狠狠躁夜夜2o2o | 日韩 欧美 亚洲 中文字幕| 亚洲专区中文字幕在线 | av国产精品久久久久影院| 国产精品一二三区在线看| 国产精品久久久av美女十八| 十八禁网站网址无遮挡| 叶爱在线成人免费视频播放| 18在线观看网站| 最新在线观看一区二区三区 | 国产成人精品福利久久| 男女床上黄色一级片免费看| 韩国精品一区二区三区| 美女视频免费永久观看网站| 黄网站色视频无遮挡免费观看| 色婷婷久久久亚洲欧美| 精品卡一卡二卡四卡免费| 日本爱情动作片www.在线观看| 欧美少妇被猛烈插入视频| 自拍欧美九色日韩亚洲蝌蚪91| 视频区图区小说| 婷婷色综合大香蕉| 国产精品无大码| 亚洲精品视频女| 国产免费福利视频在线观看| 久久久国产精品麻豆| 亚洲久久久国产精品| 久久亚洲国产成人精品v| 成人午夜精彩视频在线观看| 国产野战对白在线观看| 亚洲av在线观看美女高潮| 婷婷成人精品国产| 久久久久久免费高清国产稀缺| 亚洲一区中文字幕在线| 2021少妇久久久久久久久久久| 咕卡用的链子| 精品卡一卡二卡四卡免费| 久久韩国三级中文字幕| 日日爽夜夜爽网站| 黄色怎么调成土黄色| 国产亚洲最大av| 午夜激情久久久久久久| av又黄又爽大尺度在线免费看| 少妇人妻久久综合中文| 精品一区二区三区四区五区乱码 | 无遮挡黄片免费观看| 女人被躁到高潮嗷嗷叫费观| 丝袜在线中文字幕| 悠悠久久av| 久久久久久人人人人人| 国产精品蜜桃在线观看| 久久精品久久久久久久性| 国产亚洲一区二区精品| 国产亚洲av高清不卡| 亚洲欧美中文字幕日韩二区| 国产老妇伦熟女老妇高清| 一边摸一边抽搐一进一出视频| 老司机深夜福利视频在线观看 | 成年动漫av网址| 久热这里只有精品99| 午夜免费男女啪啪视频观看| 热99久久久久精品小说推荐| 午夜免费男女啪啪视频观看| 女性被躁到高潮视频| 日韩大片免费观看网站| 少妇的丰满在线观看| 七月丁香在线播放| 99久久精品国产亚洲精品| 最近最新中文字幕免费大全7| 十分钟在线观看高清视频www| 十分钟在线观看高清视频www| 各种免费的搞黄视频| 大片电影免费在线观看免费| 成人国语在线视频| xxx大片免费视频| 国产亚洲午夜精品一区二区久久| 国产片内射在线| 好男人视频免费观看在线| 考比视频在线观看| 亚洲成av片中文字幕在线观看| 亚洲成av片中文字幕在线观看| 国产一区二区三区综合在线观看| 亚洲成av片中文字幕在线观看| 黄色一级大片看看| 亚洲男人天堂网一区| 精品酒店卫生间| 免费观看人在逋| 欧美精品人与动牲交sv欧美| 高清黄色对白视频在线免费看| 色精品久久人妻99蜜桃| 18在线观看网站| 最黄视频免费看| 少妇人妻 视频| 777米奇影视久久| 国产精品免费大片| 久久久久国产一级毛片高清牌| 伦理电影免费视频| 亚洲 欧美一区二区三区| 久久国产亚洲av麻豆专区| 高清不卡的av网站| 丰满少妇做爰视频| 一本久久精品| 亚洲欧美日韩另类电影网站| 如何舔出高潮| 丝袜喷水一区| kizo精华| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| 十八禁高潮呻吟视频| 亚洲av电影在线进入| 久久久精品国产亚洲av高清涩受| 久久韩国三级中文字幕| 丝瓜视频免费看黄片| 免费高清在线观看日韩| 如日韩欧美国产精品一区二区三区| 中国三级夫妇交换| 人人澡人人妻人| 日本欧美国产在线视频| 老汉色∧v一级毛片| 国产精品麻豆人妻色哟哟久久| 国产精品久久久av美女十八| 国产成人一区二区在线| 大陆偷拍与自拍| av在线观看视频网站免费| 99久久精品国产亚洲精品| 久久ye,这里只有精品| 在线观看国产h片| 最近手机中文字幕大全| 亚洲欧美激情在线| 精品国产一区二区三区四区第35| 日韩伦理黄色片| 免费日韩欧美在线观看| 成年动漫av网址| 18在线观看网站| 人人妻人人添人人爽欧美一区卜| 老司机靠b影院| 国产精品久久久人人做人人爽| 又大又爽又粗| 丁香六月欧美| 18禁观看日本| 天天影视国产精品| 成人免费观看视频高清| 婷婷色麻豆天堂久久| 最近最新中文字幕免费大全7| 观看美女的网站| 中文乱码字字幕精品一区二区三区| 久久久久国产精品人妻一区二区| 飞空精品影院首页| av视频免费观看在线观看| 女性生殖器流出的白浆| 汤姆久久久久久久影院中文字幕| av片东京热男人的天堂| 精品一区二区三区av网在线观看 | 亚洲人成77777在线视频| 一区二区三区精品91| 国产97色在线日韩免费| 成人18禁高潮啪啪吃奶动态图| 不卡av一区二区三区| 成年av动漫网址| 成人午夜精彩视频在线观看| 亚洲成色77777| 午夜av观看不卡| 男女高潮啪啪啪动态图| 最近手机中文字幕大全| 性高湖久久久久久久久免费观看| 久久人妻熟女aⅴ| 人人妻人人澡人人看| av天堂久久9| av不卡在线播放| 久久久久久人人人人人| 国产精品国产av在线观看| 性高湖久久久久久久久免费观看| 十八禁人妻一区二区| 高清av免费在线| 王馨瑶露胸无遮挡在线观看| 亚洲av综合色区一区| 午夜免费男女啪啪视频观看| 亚洲欧美一区二区三区黑人| 99热国产这里只有精品6| 两个人看的免费小视频| 一边摸一边抽搐一进一出视频| 男女午夜视频在线观看| av有码第一页| 波多野结衣一区麻豆| 久久热在线av| 亚洲五月色婷婷综合| 国产精品香港三级国产av潘金莲 | 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜制服| 精品久久久久久电影网| 一二三四中文在线观看免费高清| 一边摸一边做爽爽视频免费| 秋霞伦理黄片| 交换朋友夫妻互换小说| 亚洲国产欧美在线一区| 亚洲精品国产av成人精品| 99久久人妻综合| 久久久国产精品麻豆| 操出白浆在线播放| 亚洲,一卡二卡三卡| 丝袜在线中文字幕| 亚洲久久久国产精品| 青草久久国产| 丰满少妇做爰视频| 18禁观看日本| 女人久久www免费人成看片| 观看av在线不卡| 啦啦啦中文免费视频观看日本| 亚洲av综合色区一区| 在线精品无人区一区二区三| 黄片无遮挡物在线观看| 亚洲情色 制服丝袜| 久久久精品区二区三区| 国产伦理片在线播放av一区| 亚洲精品,欧美精品| 久久久久久久久免费视频了| 热re99久久精品国产66热6| 国产精品二区激情视频| 欧美日韩视频精品一区| 国产99久久九九免费精品| 亚洲精品中文字幕在线视频| 99re6热这里在线精品视频| 中文欧美无线码| 久久青草综合色| 一边摸一边做爽爽视频免费| 18禁国产床啪视频网站| 只有这里有精品99| 9色porny在线观看| 老汉色∧v一级毛片| 性高湖久久久久久久久免费观看| 久久久精品国产亚洲av高清涩受| 色播在线永久视频| 无遮挡黄片免费观看| 满18在线观看网站| 欧美少妇被猛烈插入视频| 精品少妇一区二区三区视频日本电影 | 国产精品99久久99久久久不卡 | 日本vs欧美在线观看视频| 精品久久久精品久久久| 天天影视国产精品| 亚洲国产欧美一区二区综合| 丰满少妇做爰视频| 国产日韩欧美在线精品| 各种免费的搞黄视频| 久久久国产欧美日韩av| 中国三级夫妇交换| 国产精品麻豆人妻色哟哟久久| 中文字幕色久视频| 亚洲av综合色区一区| videosex国产| 少妇的丰满在线观看| 一级a爱视频在线免费观看| 人妻 亚洲 视频| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 操美女的视频在线观看| 男女午夜视频在线观看| 日日撸夜夜添| 狂野欧美激情性bbbbbb| 国产在线视频一区二区| 操美女的视频在线观看| 欧美日韩精品网址| 精品少妇黑人巨大在线播放| 亚洲av男天堂| 久热爱精品视频在线9| 免费观看av网站的网址| 高清欧美精品videossex| 天堂中文最新版在线下载| av国产久精品久网站免费入址| 亚洲在久久综合| 成人影院久久| 国产精品香港三级国产av潘金莲 | 久久久久视频综合| 国产又爽黄色视频| 欧美国产精品一级二级三级| 久久久精品免费免费高清| 丰满乱子伦码专区| 赤兔流量卡办理| 国产高清国产精品国产三级| 国产精品国产av在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产精品香港三级国产av潘金莲 | 国产淫语在线视频| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 国产精品欧美亚洲77777| 欧美变态另类bdsm刘玥| 久久影院123| 欧美人与善性xxx| 免费观看性生交大片5| 亚洲中文av在线| 国产免费视频播放在线视频| 波野结衣二区三区在线| 丝袜美足系列| 人体艺术视频欧美日本| 欧美 亚洲 国产 日韩一| 成人毛片60女人毛片免费| 97人妻天天添夜夜摸| 1024视频免费在线观看| 国产乱来视频区| 欧美日韩成人在线一区二区| 免费看av在线观看网站| 国产精品偷伦视频观看了| 国产精品蜜桃在线观看| 在线观看免费午夜福利视频| 亚洲精品国产区一区二| 两性夫妻黄色片| 国产精品久久久久久久久免| 一区二区三区精品91| 在现免费观看毛片| 国产成人精品福利久久| 成人影院久久| 国产又爽黄色视频| 国产精品秋霞免费鲁丝片| 一区二区三区激情视频| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 高清视频免费观看一区二区| 一边亲一边摸免费视频| 精品亚洲乱码少妇综合久久| 亚洲熟女精品中文字幕| 狂野欧美激情性bbbbbb| 狠狠婷婷综合久久久久久88av| 久久97久久精品| 亚洲国产精品999| 亚洲国产中文字幕在线视频| 男女午夜视频在线观看| 在线观看免费午夜福利视频| 麻豆精品久久久久久蜜桃| 男女下面插进去视频免费观看| 精品国产国语对白av| 亚洲国产日韩一区二区| 啦啦啦视频在线资源免费观看| 色网站视频免费| 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲欧美激情在线| 香蕉国产在线看| 国产精品国产三级国产专区5o| 色精品久久人妻99蜜桃| 亚洲精品第二区| 在线观看免费日韩欧美大片| 丰满饥渴人妻一区二区三| 亚洲色图 男人天堂 中文字幕| 国产精品蜜桃在线观看| 精品一区二区三区四区五区乱码 | 中文字幕色久视频| 91成人精品电影| 99久久精品国产亚洲精品| 免费黄网站久久成人精品| 69精品国产乱码久久久| 免费看av在线观看网站| 免费高清在线观看视频在线观看|