• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of projected surface area of irregularly shaped fragments Elvedin Kljuno*,Alan Catovic

    2019-05-24 01:38:14MechanicalEngineeringFacultyUniversityofSarajevoVilsonovosetaliste71000SarajevoBosniaandHerzegovina
    Defence Technology 2019年2期

    Mechanical Engineering Faculty,University of Sarajevo,Vilsonovo setaliste 9,71000,Sarajevo,Bosnia and Herzegovina

    Keyw ords:Projected area Fragments Trajectory

    A B S T R A C TThe essence and the main contribution of this paper are consisted of the suggested novel method for estimation of a projected surface area of an irregularly shaped fragment,w hich represents a signi f i cant step tow ard a new method of an aerodynamic force estimation of a fragment motion through a resistive medium.The suggested method is to use a tri-axial ellipsoid that has a continuous surface(given as a mathematical function)to approximate an irregularly shaped fragment so that the fragment trajectory can be estimated faster taking into consideration that the aerodynamic force is proportional to a projected surface area of the fragment.

    1.Introduction

    When calculating a body trajectory,it is necessary to know the value of the reference area f i guring in the expression for the aerodynamic force.The most commonly used value for this area is the value of the projected surface area of the body(perpendicular to the velocity vector)at any instant.For axisymmetric bodies,this surface is taken as their cross-section area(circle).How ever,for an irregularly shaped body this surface is irregular and stochastic(not a continuous one),and it is impossible to determine it analytically.One of the methods for estimating the projected surface area of an irregular shape is to create 3D models of such bodies by 3D scanning them and then inserting the model in a CAD softw are to determine their projected surface areas in the required directions.This method is impractical since their orientation changes during the motion,and for the calculation of the trajectory,it is necessary to know the value of the projected surface area of a body at any given moment(for any possible orientation of the body).

    Representative examples of the irregularly shaped bodies are fragments of HEw arheads,fragments resulting from the fracture of various structures due to the effects of severe storms,fragments created by improvised explosive devices,fragments resulting from the explosion of larger ammunition storages,meteorites that reach Earth's surface,etc.Generally speaking,it is very dif f i cult to estimate the projected surface area(to the plane perpendicular to the velocity vector)of such bodies,yet this parameter is needed for estimation of their trajectory since the aerodynamic force is proportional to projected surface area of a body.

    To get an immediate insight into the idea how to estimate the projected area of the exposed surface of an irregularly shaped rigid body(fragment),the procedure of estimation is show n in Table 1,w hich show s the sequence of steps(a f l owchart).

    Although the procedure w ill be described thoroughly throughout the paper,the table gives an overview of the process,starting from the input parameters(the main dimensions of the fragment and the angles of the arbitrary projection direction),calculating the boundary of the projection in the given direction and ending in the estimated projected area of the real fragment.

    Table 1The f l ow chart of the projected area estimation process.

    2.Literature review

    Literature review yields a relative de f i cit of papers dealing w ith this topic.As far as fragments,generated by the detonation of high explosive w arheads,are concerned,in the available literature an approximate method of estimating the projected surface area of the fragment is often implicitly assumed to approximate the shape of a fragment w ith some know n geometrical body(e.g.a plate,cube,sphere,parallelepiped,or a cylinder)and determine the basic geometric parameters(volume and surface)of the body that approximates the fragment;and based on these data and the fragment mass data to determine the ratio of projected surface area of a body to the body mass(w ith the prediction of,so-called,equivalent body dimension).In this method,the data on the dimensions of the fragments from the experimental tests can also be used,w hereby,using the regression analysis,results are obtained that are better suited to the shapes of real fragments.Thus,according to the American standard for static testing of the spatial distribution of fragments[1],the ratio of the average projected surface area of the fragment and its mass is determined,w here correlation factor must be approximated using regression analysis for each fragment.This method does not take into account the generalized case w hen the velocity vector of the f l uid(air)is arbitrarily oriented,so the real projected surface area of the body is not determined at every moment of motion,w hich means that this method is not adequate for a more accurate calculation of the real fragment trajectory.

    In the literature,there is also a statistical method of estimating the projected surface area of the HEprojectile fragments.Tw isdale[2]states that a probability theory(uniform random orientation)w as used in the calculation of the trajectory of the fragments to estimate the orientation of the tumbling fragments during the f l ight.Moxnes et al.[3]estimated the expected area of the fragment,considering the know n geometric bodies(plate,parallelepiped,cube).

    The researchers from the TNO Institute,w ithin the MISDAC program[4],mention the non-dimensional factor of the fragment shape that is de f i ned as the ratio of the average exposed area of the fragment(according to Cauchy formula equal to 1/4 of the value of the body total surface)and the volume of the fragment represented by V2/3(this parameter w as f i rst introduced by McCleskey in 1988).They also attempted to estimate the effect of fragment tumbling using the assumption that the exposed area of fragment varies from a minimum to a maximum value.Using these methods,the real projected surface area of the fragment during the movement also is not taken into account,but rather its expected(statistical)value,assuming as in the f i rst method that the fragments are approximated by know n geometric shapes.

    From the aforementioned,it is clear that there is a need to estimate the projected surface area of the fragment for each possible orientation of the fragment during the f l ight,in order to estimate the force,and ultimately the trajectory of the fragments w ith different shape,mass,and velocity.

    3.The p hysical m odel

    The developed physical model assumes that the fragments are approximated using the tri-axial ellipsoid.An ellipsoid has three pair-w ise perpendicular axes of symmetry w hich intersect at a center of symmetry,called the center of the ellipsoid.The line segments that are delimited on the axes of symmetry by the ellipsoid are called the principal axes.If the three axes have different lengths,the ellipsoid is said to be tri-axial,and the axes are uniquely de f i ned.

    Fig.1 show s a tri-axial ellipsoid approximating the fragment(modeled in 3D Studio Max).Semi-axes of the ellipsoid,a,b,c are half the length of the principal axes.They correspond to the semimajor axis and semi-minor axis of an ellipse.Dimension a is the largest,and c the smallest.

    Fig.2 gives a schematic view of the convex surface and plane(normal to the velocity vector)on w hich the elemental surface d A is projected.The unit vector of the velocity direction is denoted by e→vand the unit vector of the orthogonal direction onto the surface element is denoted by n→.

    Fig.1.Approximation of the fragment with a tri-axial ellipsoid.

    Fig.2.Projection of surface elements(schematic view).

    The projection Apof the exposed part of the surface(Fig.2)can be presented as:

    The condition on the angle means that only one(upper)part of the surface area is considered(Aexp).The upper exposed surface area hascosφ>0,the back of the fragment has cosφ<0 and on the dividing line cosφ=0,since the orthogonal direction on the surface is perpendicular to the velocity direction v→,i.e.n→⊥v→(n→·v→=0).

    Although the enclosing the integral in expression(1)is possible(over the closed surface A of the fragment),w hich allow s the conversion to a volume integral using the Gauss-Ostrogradsky formula,it is not a convenient method since di v(e→v)=0 because e→v≠f(x,y,z),i.e.the projections from both sides are w ith opposite signs and the integral over the closed surface cancels out.Since the upper and low er part have the same projected area Ap,but the projections are w ith opposite signs,then

    Fig.3 show s ellipsoidal surface and projection of its element d A on the plane perpendicular to the velocity vector v→.Vector e→vis a unit vector in the line of the velocity vector(but in the opposite orientation),and the vector n→is a unit vector of the orthogonal direction to the surface d A.

    Generally,the unit vector of the normal can be obtained as

    The term grad→fin(3)is the norm of gradient of f,w here the gradient is in the direction of normal to the surface f.The gradient can be obtained based on the function f,

    in the follow ing form

    The unit vector of the velocity direction:

    Fig.3.Projection of ellipsoidal surface element dA on the plane perpendicular to the velocity.

    w here anglesαv,βvandγvare angles betw een the velocity vector and coordinate axes.Based on(7)and(8):Angleφ(Fig.3)is de f i ned asan angle betw een unit vector n→and velocity vector,so the projection of the surface element on the plane perpendicular to the velocity vector is de f i ned using angle cosine:

    Based on(5):

    w hereαn,βnandγnare angles betw een the unit vector of normal and coordinate axes.Based on(11):

    Using(1),(2),(10),(11)and(12):

    Fig.4 show s schematically the method for determination of the curve c⊥that separates exposed surface(upper part of an ellipsoid or a f i rst part of the incoming surface in the direction of vector velocity)from the rest of the ellipsoid.Velocity vector is perpendicular to curve c⊥in its every point,w hich means that unit vector n→is also perpendicular to the velocity vector.

    Fig.4.Determination of the curve that separates exposed surface from the rest of the ellipsoid.

    The idea here is to f i nd the surface limited by curve c⊥(w hich lies in a plane that is generally not perpendicular to the velocity vector)and then this surface should be projected on a plane(the planeπin Fig.4)perpendicular to the velocity vector.In this w ay,the required projection of the complete ellipsoid that the“view er”sees from the direction of the velocity vector is obtained.

    Curve cπrepresents an intersection of the planeπand ellipsoid.It can be w ritten as:

    In(14)n→πis the unit vector of normal on the planeπ,and r→is the radius vector in the planeπ.From(14):

    Along w ith(15),the curve cπalso satis f i es the equation of the ellipsoid:

    For curve c⊥,the follow ing applies:

    Based on(17):

    Fig.5 show s rotation of coordinate system xyz in order to obtain coordinate systemξηζw here one axis(ζ)is perpendicular to the plane w here the curve c⊥is,and other tw o axes(ξandη)belong to this plane.

    For c⊥(Fig.5),similarly as in Fig.4,the follow ing applies:

    Fig.5.Rotation of coordinate system xyz in order to obtain coordinate systemξηζ.

    Based on(21),a vector of the normal on the plane w here curve c⊥is located can be de f i ned as:

    Based on(22),unit vector of normal e→ζis obtained(in this case it represents the unit vector of axisζ)and this vector can be determined by dividing(22)w ith its magnitude:

    For unit vector e→ζof coordinate axisζgenerally applies:

    w here cosαζ==and cosγζ=

    In order to f i nd rotation angleφ,unit vector eζcan be divided into tw o vectors e→ζxyand e→ζzas:

    w here e→ζxyis the projection of a vector e→ζon xy plane,and vector e→ζzis a component of a unit vector e→ζin the direction of z axis.Components of a vector e→ζcan be obtained using projections of a vector e→ζxyon the axes.This way w e can set up relations from w hich w e can obtain angleφ:

    w here eζ=e→ζ

    =1,Kζis determined using(22),and intensity of vector e→ζxycan be obtained from(26):

    Based on(27)and(28)w e get:

    Angleγζbetw een axisζand z axis can be determined using the component of a unit vector e→ζin the direction of z axis.The cosine of this angle represents component of a unit vector e→ζand this component is also given w ith(26),so:After determination of rotation angles of a coordinate system ξηζin relation to old coordinate system xyz,it is possible to transform coordinates,i.e.express old coordinates using new coordinates:The goal is that in expressions w e have the new coordinate of a rotated coordinate system.After the rotation around z axis for angle

    φ,w e get temporary coordinate systemξ′η′ζ′w hereζ′≡z,because w e have rotation around z axis.The relation betw een coordinates can be expressed in matrix form:

    w here matrix represents rotation matrix for the case of rotation around z axis.Next rotation is rotation of temporary coordinate systemξ′η′ζ′around axisη′for angleθ=γζ,so appropriate connection betw een coordinates is:

    The resulting transformation of coordinates after the tw o rotations is given as:

    w here the matrix of the tw o transformations of coordinates from ξηζinto xyz is:

    Based on(35)w e get:

    For the curve c⊥expressed inside the coordinate systemξηζ expressions(36),(3)and(20)apply:

    When w e substitute(38)into(20)w e obtain:

    w hich can be expressed as:

    In order to eliminate the part of(40)next to2ξη,w e need to rotate coordinate system(Fig.6).

    For the coordinate system from Fig.6 follow ing applies:

    By combining(41-46),w e get:

    Fig.6.Rotation of the coordinate system in order to eliminate the part of(40)next to the term2ξη.

    We can introduce follow ing substitutions in(48):

    In order to eliminate the part of expression(48)next to x y,w e can w rite:

    Area enclosed by the curve c⊥(w hich separates the exposed part of the surface from the back part of the fragmental surface)can be w ritten as:

    w hich represents a projection of the fragment surface onto the plane containing the curve c⊥and the f i nal formula for projected area on the plane perpendicular to the velocity vector is:w here the angleφvζis the angle betw een the velocity vector direction and the direction perpendicular to the plane of the dividing line c⊥.

    In expression(56),follow ing parameters are involved:

    In(57,58),the angle is de f i ned by:

    Parameters d,e and g are given by(44-46),and anglesφandθ are given by(29)and(30),respectively.

    4.Validation of the m odel

    The physical model is validated in tw o ways,using the CAD system and analytically.Four examples of the analytical calculation of projected area of an ellipsoid are given in Appendix A.

    Regarding model validation using CAD tools,using the software(Ansys System)w e determined the projected area(perpendicular to the velocity vector)of an ellipsoid w ith follow ing dimensions of semi-axes:a=34 mm,b=8.65 mm and c=6 mm,for different ellipsoid orientations and for one full ellipsoid rotation(angle increment 15°,velocity vector was in the direction of y axis,rotation axis w as x axis,Fig.7).The results are compared w ith those obtained using the developed model.

    Fig.8 show s the validation of the developed model w ith data obtained from the softw are(Ansys System allow s the determination of the projection of the body exposed surface normal to the coordinate axes)for the tri-axial ellipsoid.

    As can be seen in Fig.8,the matching of the data is excellent because the data obtained using our model and using CAD technique practically coincides for all angles(one full ellipsoid rotation,a 15°increment),i.e.for all orientations of the body.

    5.Application of a model to an irregularly shaped fragment and analysis of the results

    The large percentage of fragments,formed after the explosion of a high-explosive w arhead,has an elongated shape(Fig.9)that can be approximated w ith a tri-axial ellipsoid.

    It is assumed that the largest fragment dimension corresponds to the dimension a of the ellipsoid(the largest of the ellipsoid semiaxes),w hile the dimensions b and c are perpendicular to dimension a,w here c is the smallest dimension(the smallest of the tri-axial ellipsoid semi-axes),and the dimension b is larger than the dimension c and smaller than the dimension a.

    Table 2 providesdata on the ratio of the dimensions a,b,and c of real fragments(generated after the detonation of projectile 130 mm HE M79).From Table 1 it can be seen that the fragments can be approximated w ith tri-axial ellipsoid because there are generally signi f i cant differences in dimensions a,b and c.

    In order to determine the projected area of an irregularly shaped fragment,an arbitrary fragment(Fig.10)w as used(this fragment is similar to one generated by the detonation of the 130 mm HEM79 projectile(show n in Fig.9).To accurately digitize this fragment,Autodesk AUTOCAD softw are w as used.

    The three-dimensional(CAD)fragment model(Fig.10)w as made by modeling the real fragment in three projections,and then by softw are manipulation:extruding in the direction of three coordinate axes,joining the extruded projections and de f i ning their intersection as the f i nal 3D fragment model.

    Fig.7.CAD model of an ellipsoid used for the validation.

    In addition to this procedure,a fragment can be draw n in a 3D graphics program(i.e.3DStudio Max,as show n in Fig.11),but then the 3D model of a fragment has more contours and it is generally more dif f i cult to w ork w ith(also,the modeling process is more complex and takes longer.The third option is to use a 3Dscanner to create a 3D body model and export a model to a CAD system.

    Fig.8.Validation of a model with the data obtained using software for ellipsoid.

    In order to use the fragment,show n in Fig.10,to calculate its projected area using a developed model,it is necessary to know its principal dimensions in three directions a,b and c,w here the largest dimension is a,and c is the smallest(b and c are perpendicular to a).These dimensions are obtained by measuring the dimensions of the fragment.

    Fig.12 show s a fragment w ith an irregular shape(modeled in the CAD system)approximated by a tri-axial ellipsoid.The maximum dimension of the fragment in three directions,a,b and c,corresponds to the semi-axes of the tri-axial ellipsoid.Half of the maximum dimension represents semi-axis a,and tw o dimensions in the plane perpendicular to the semi-axis a and are divided into maximum and minimum.Half of this maximum dimension is b,and half of the minimum dimension is c.

    Fig.13 shows the comparison(veri f i cation of results)of the values of fragment projected area(for fragment presented in Figs.10 and 12),obtained using Ansys System(for the 3D CAD model of the fragment),and using a developed model for analytical calculation of projected area.

    The velocity vector in the f i rst case(Fig.13,above)w as in the direction of x axis(show n in Fig.12)and rotation of the fragment w as performed around z axis(w ith angular increments of 15°),w hile in the second case(in Fig.13)the velocity vector w as in the direction of axis z(show n in Fig.12)and the rotation of the fragment w as performed around y axis(also w ith angular increments of 15°).

    Table 2Ratios of the dimensions a,b,and c of real fragments formed after the detonation of projectile 130 mm HEM79.

    In Table 3 are show n the values of projected area of the fragment in both cases(vector velocity in the direction of x and z axis)for different position(orientation)of the fragment,and the relative difference betw een the results obtained by the software(CAD)and using a developed model in w hich the fragment isapproximated by an ellipsoid.

    By analyzing the resultsfrom Table 3,w e see that in the f i rst case(velocity vector in the direction of x axis,Figs.12 and 13 above),relative differences are very small for the orientation of the fragment w here the fragment is exposed w ith a larger surface to the velocity vector.Somew hat larger relative differences are observed for angles w here the fragment is exposed w ith a smaller surface to the velocity vector(orientation of 90°and 270°relative to the initial orientation show n in Fig.12).

    In the second case,the agreement betw een the results is excellent(velocity vector in the direction of z axis,Figs.12 and 13 below),and the relative differences are less than 6%for all orientation of the fragment.This suggests that the approximation of the fragment by ellipsoid is justi f i ed.

    5.Conclusion

    Fig.9.Real fragment(formed after the detonation of an artillery projectile 130 mm HEM79)presented in several projections.

    The paper show ed a method to estimate the projected surface area of a rigid body(fragment)w ith irregular shape.During the f l ight,the fragment rotates and it can take any orientation w ith respect to the relative velocity vector of the f l uid(air).Since the aerodynamic force is proportional to the projected surface area in the direction of the air relative velocity vector,it is necessary to have a method to estimate the projected area in an arbitrary direction.The w ay this estimation w as done in the paper is by establishing an ellipsoidal surface around the irregular fragment.The ellipsoidal shape has three parameters,the three semi-axes,that can be adjusted such that the fragment f i lls-out the ellipsoidal body in the best w ay.The f i rst semi-axis is obtained as a half of the maximum dimension that can be measured on the irregular fragment.The second and the third semi-axes are obtained in the plane perpendicular to the f i rst semi-axis,as a half of the maximum and the minimum size,respectively,in the plane perpendicular to the f i rst semi-axis.

    Fig.10.Digitized 3D model of a real fragment in different projections.

    Fig.11.Rendered 3D models of fragments w e created in 3D Studio Max.

    Fig.12.Irregularly shaped fragment approximated by a tri-axial ellipsoid.

    Fig.13.The comparison of the projected area values for the fragment obtained using the CAD tools and developed model.

    Table 3Values of a projected area of fragment in cases w hen vector velocity w as in the direction of x and z axis for different orientation of the fragment,and the relative difference betw een the results obtained by the softw are(CAD)and using a developed model.

    The derivation show s that the exposed surface of the fragment model is distinguished from the rest of the fragment(the back part)by a planar curve,the ellipse.By projecting this area enclosed by the ellipse onto the plane w hich is perpendicular to the velocity vector,the projected area of the fragment model is calculated,w hich represents an estimation of the real fragment projected area in an arbitrary given direction.

    The estimation was done using a continuous surface given as a mathematical function,w hich is divided into in f i nitesimal elements.The projected area is then obtained as an integral of projected surface elements.

    The obtained results w ere tested for several projection directions using shape of a real fragment,w hich was scanned and digitized.The information about real fragment shape w as inserted into Ansys softw are and the projected area w as obtained for speci f i ed directions.The comparison betw een estimated projected area and the area obtained by the digitized model show ed relatively high agreement betw een data w ith relative error below 6%in one case.This analysis show ed that the w ay to estimate the projected area of a fragment is justi f i ed and can be used as a basis for an aerodynamic force estimation.

    The contribution and advantage of this approach is re f l ected in the fact that it represents an important step tow ard a dynamic modeling that does not require a CFD result to estimate the aerodynamic force.Further,the fragment trajectory can be estimated in a simpli f i ed w ay,since the resistance force can be estimated at an arbitrary time w ith an arbitrary orientation of the fragment in the direction of motion(in the direction of the velocity vector of the fragment's center of gravity).

    Therefore,the future w ork that is going to follow this paper is the aerodynamic(resistance)force estimation,as w ell as the aerodynamic moment estimation.These tw o estimations w ill provide a w ay to calculate the“source term”in the tw o vectordifferential equations:the law of center of mass motion and the law of the momentum change about the center of mass.

    Another bene f i t of estimation of the projected surface area is the possibility to calculate the depth of the fragment penetration after the collision w ith an obstacle in a similar way asthe resistance force is calculated for the fragment motion through a resistive medium.The penetration depth estimation of a fragment w ill be one of the future w ork subjects,as w ell.

    Appendix A.Examples of projected area calculation and comparison w ith numerical results

    If w e w ant to determine,using the model developed in our paper,the projected surface of the ellipsoid in the simplest casew hen the velocity vector is in the direction of the individual axes(x or y or z,Fig.14)then this projected surface can be checked analytically as w ell,because in this case the projected surface is always equal to the product of the ellipsoid semi-axes andπ.a)Let semi-axes of the ellipsoid be:a=0.05 m,b=0.1 m and c=0.02 m.In the case w hen the velocity vector is in the direction of the axis x(Fig.14,left):

    Fig.14.Schematic view of projected surfaces of ellipsoid w hen the velocity vector is in the direction of coordinate axis.

    Then,according to our model,follow ing applies:

    Using know n formula for an ellipse,this projected area has the same value(as obtained here using our model)because the obtained values a1and b1are actually an ellipse semi-axes,perpendicular to the velocity vector.

    b)In the case w hen the velocity vector is in the direction of the axis y(Fig.14,center),then the velocity vector is:

    so follow ing applies:

    Using formula for an ellipse,projected area also has the same value as obtained using our model.

    c)In the case w hen the velocity vector is in the direction of the axis z(Fig.14,right),then the velocity vector is:

    v→=k→, (A26)

    Then,it can be w ritten:

    As in previous cases,using formula for an ellipse,projected area also has the same value as obtained using our model.

    d)As an addition,w e w ill present general case for the same ellipsoid(semi-axes:a=0.05 m,b=0.1 m i c=0.02 m),but in this case the velocity vector w ill be:

    so it can be w ritten(according to our model):

    Finally,the semi-axes and the projected area are:

    蜜臀久久99精品久久宅男| av国产免费在线观看| 久久久久久久久久人人人人人人| 亚洲精品aⅴ在线观看| 精品国产三级普通话版| 少妇的逼好多水| 日本爱情动作片www.在线观看| 精品欧美国产一区二区三| 国产在线一区二区三区精| 国产成人午夜福利电影在线观看| av网站免费在线观看视频 | 日日撸夜夜添| 国产av在哪里看| 国产一级毛片七仙女欲春2| 中国美白少妇内射xxxbb| 午夜免费男女啪啪视频观看| 国产成人精品一,二区| 精品酒店卫生间| 亚洲精品,欧美精品| 高清av免费在线| 插阴视频在线观看视频| 99热这里只有是精品50| 高清午夜精品一区二区三区| 国产精品人妻久久久影院| 毛片一级片免费看久久久久| 尤物成人国产欧美一区二区三区| 亚洲电影在线观看av| 久久这里只有精品中国| 欧美日韩国产mv在线观看视频 | 久久久久精品性色| 午夜免费观看性视频| 成人亚洲精品一区在线观看 | 国产精品久久久久久精品电影| 五月伊人婷婷丁香| 少妇丰满av| 日韩不卡一区二区三区视频在线| 久久久成人免费电影| 在线观看一区二区三区| 精品不卡国产一区二区三区| 91久久精品电影网| 国产精品三级大全| 免费黄色在线免费观看| 97超碰精品成人国产| 国产爱豆传媒在线观看| 淫秽高清视频在线观看| 99热这里只有是精品在线观看| 成年女人在线观看亚洲视频 | 亚洲精品色激情综合| 久久午夜福利片| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久| 成人国产麻豆网| 一区二区三区四区激情视频| 亚洲不卡免费看| 国内精品一区二区在线观看| 草草在线视频免费看| 女人十人毛片免费观看3o分钟| 女人被狂操c到高潮| 国产精品99久久久久久久久| 欧美bdsm另类| 一个人观看的视频www高清免费观看| 国产精品久久久久久久久免| 欧美人与善性xxx| 亚洲真实伦在线观看| 一级毛片电影观看| 麻豆av噜噜一区二区三区| 久久久欧美国产精品| 久久精品人妻少妇| 免费看美女性在线毛片视频| 18禁动态无遮挡网站| 国产探花极品一区二区| 99热网站在线观看| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 网址你懂的国产日韩在线| 日韩不卡一区二区三区视频在线| 午夜精品在线福利| 日韩一区二区视频免费看| 国产一级毛片七仙女欲春2| 国产精品一区二区三区四区久久| 成人av在线播放网站| 精品久久久久久久人妻蜜臀av| av网站免费在线观看视频 | 十八禁国产超污无遮挡网站| 成人毛片a级毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 水蜜桃什么品种好| 伦精品一区二区三区| 亚洲精品乱码久久久久久按摩| 国产成人福利小说| 韩国av在线不卡| 欧美变态另类bdsm刘玥| 国产真实伦视频高清在线观看| 青春草亚洲视频在线观看| a级毛色黄片| 中国美白少妇内射xxxbb| 国产黄频视频在线观看| 国产成人a∨麻豆精品| 又爽又黄a免费视频| 欧美三级亚洲精品| 久久久久久久午夜电影| 嘟嘟电影网在线观看| 一个人看视频在线观看www免费| 欧美日韩在线观看h| 免费大片18禁| 欧美极品一区二区三区四区| 熟女电影av网| 亚洲自偷自拍三级| 国产精品美女特级片免费视频播放器| 黄色一级大片看看| 日韩欧美三级三区| 亚洲精品成人av观看孕妇| 欧美人与善性xxx| 婷婷色综合大香蕉| 高清欧美精品videossex| 国产色婷婷99| 只有这里有精品99| 在线观看免费高清a一片| 亚洲天堂国产精品一区在线| 男的添女的下面高潮视频| 夫妻午夜视频| 国产单亲对白刺激| 国产av码专区亚洲av| 久久久久久久久久黄片| 久久精品国产亚洲网站| 国内精品一区二区在线观看| 亚洲熟妇中文字幕五十中出| 国产亚洲一区二区精品| 三级经典国产精品| 日韩av免费高清视频| 麻豆成人午夜福利视频| 日本熟妇午夜| 美女国产视频在线观看| 成人性生交大片免费视频hd| av在线老鸭窝| 久久久久久久久久成人| 国产女主播在线喷水免费视频网站 | 我要看日韩黄色一级片| 午夜福利视频精品| 亚洲精品456在线播放app| 久久久久久久久中文| .国产精品久久| 晚上一个人看的免费电影| 国产成人a区在线观看| 亚洲av中文字字幕乱码综合| 午夜福利在线观看免费完整高清在| 国产成人91sexporn| 精品一区在线观看国产| 欧美日韩国产mv在线观看视频 | 麻豆久久精品国产亚洲av| 在线观看一区二区三区| 青春草亚洲视频在线观看| 两个人视频免费观看高清| 成人无遮挡网站| 亚洲国产精品成人久久小说| 丝瓜视频免费看黄片| 国产伦精品一区二区三区四那| 99视频精品全部免费 在线| 插逼视频在线观看| 超碰av人人做人人爽久久| 国产成人a∨麻豆精品| 日日摸夜夜添夜夜添av毛片| 男的添女的下面高潮视频| 美女国产视频在线观看| 欧美日韩视频高清一区二区三区二| 嫩草影院精品99| 国产有黄有色有爽视频| 麻豆久久精品国产亚洲av| 国产三级在线视频| 热99在线观看视频| 天堂√8在线中文| 色综合站精品国产| 国产精品久久视频播放| 人妻系列 视频| 伊人久久精品亚洲午夜| 国产成人精品婷婷| 免费看av在线观看网站| 天堂中文最新版在线下载 | 国产亚洲5aaaaa淫片| 欧美zozozo另类| 精品人妻一区二区三区麻豆| 久久久亚洲精品成人影院| 观看美女的网站| 午夜精品国产一区二区电影 | 国产亚洲精品av在线| 成年版毛片免费区| 亚洲av国产av综合av卡| 国产黄a三级三级三级人| 91久久精品国产一区二区成人| 男人爽女人下面视频在线观看| 啦啦啦啦在线视频资源| 一级毛片aaaaaa免费看小| 精品国产露脸久久av麻豆 | 欧美一级a爱片免费观看看| av专区在线播放| 亚洲av二区三区四区| 国产一区二区在线观看日韩| 国产成人aa在线观看| 大香蕉久久网| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片| 你懂的网址亚洲精品在线观看| 久久久精品94久久精品| 丝袜喷水一区| av国产免费在线观看| 国产精品嫩草影院av在线观看| 亚洲欧美成人精品一区二区| 97超视频在线观看视频| 久久久久久久国产电影| 在线观看av片永久免费下载| 男女视频在线观看网站免费| 国产亚洲精品av在线| 日日撸夜夜添| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 午夜激情久久久久久久| av卡一久久| 久久久久性生活片| 亚洲精品乱码久久久v下载方式| 一个人看的www免费观看视频| 国产成人福利小说| 高清在线视频一区二区三区| 亚洲真实伦在线观看| 久久久久九九精品影院| 伊人久久精品亚洲午夜| 亚洲内射少妇av| 特大巨黑吊av在线直播| 男人舔奶头视频| 国产精品久久久久久av不卡| 日日摸夜夜添夜夜添av毛片| 床上黄色一级片| 中文字幕亚洲精品专区| 人人妻人人澡欧美一区二区| 精品一区二区三区视频在线| 看十八女毛片水多多多| 超碰av人人做人人爽久久| 天堂网av新在线| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品电影小说 | 日韩亚洲欧美综合| 欧美不卡视频在线免费观看| 有码 亚洲区| 亚洲精品国产av蜜桃| 国产免费一级a男人的天堂| 亚洲精品久久午夜乱码| 少妇的逼水好多| 亚洲熟女精品中文字幕| 国语对白做爰xxxⅹ性视频网站| 欧美成人午夜免费资源| 国产精品一区二区在线观看99 | 精品久久久久久久久av| 亚洲va在线va天堂va国产| 又爽又黄无遮挡网站| 日韩在线高清观看一区二区三区| 国产一级毛片七仙女欲春2| 天美传媒精品一区二区| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 又爽又黄无遮挡网站| 欧美精品一区二区大全| 国产精品女同一区二区软件| 国产精品国产三级国产专区5o| 尤物成人国产欧美一区二区三区| 免费无遮挡裸体视频| 又大又黄又爽视频免费| 亚洲内射少妇av| 国产片特级美女逼逼视频| 午夜视频国产福利| 丰满人妻一区二区三区视频av| 国产精品伦人一区二区| 亚洲精品自拍成人| 亚洲精品日本国产第一区| 国内精品一区二区在线观看| 午夜亚洲福利在线播放| 91狼人影院| 国产av不卡久久| 欧美 日韩 精品 国产| 欧美xxⅹ黑人| 免费观看无遮挡的男女| 国产伦一二天堂av在线观看| 久久久精品欧美日韩精品| 日本一本二区三区精品| www.色视频.com| 国产精品伦人一区二区| 国产精品无大码| 人妻少妇偷人精品九色| 夜夜看夜夜爽夜夜摸| 在线观看美女被高潮喷水网站| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 欧美成人精品欧美一级黄| 国内少妇人妻偷人精品xxx网站| 一级毛片我不卡| 日本熟妇午夜| 日韩强制内射视频| 国产精品人妻久久久久久| 中文精品一卡2卡3卡4更新| 80岁老熟妇乱子伦牲交| 亚洲综合色惰| 亚洲国产成人一精品久久久| 免费看a级黄色片| 中文乱码字字幕精品一区二区三区 | 一级毛片 在线播放| 国产v大片淫在线免费观看| 久久精品人妻少妇| 51国产日韩欧美| 国产有黄有色有爽视频| 最后的刺客免费高清国语| 少妇熟女aⅴ在线视频| 亚洲精品国产成人久久av| 欧美一级a爱片免费观看看| www.色视频.com| 亚洲av电影不卡..在线观看| 精华霜和精华液先用哪个| 国产视频内射| 国产精品综合久久久久久久免费| 麻豆成人午夜福利视频| 两个人的视频大全免费| 成人av在线播放网站| 一级毛片黄色毛片免费观看视频| 好男人视频免费观看在线| 日韩国内少妇激情av| 综合色av麻豆| 国产色婷婷99| 国产精品久久久久久精品电影| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 亚洲精品第二区| 国产成人精品久久久久久| 美女内射精品一级片tv| 日韩国内少妇激情av| 成人漫画全彩无遮挡| 午夜视频国产福利| 亚洲精品国产成人久久av| 成人一区二区视频在线观看| 精品午夜福利在线看| 极品教师在线视频| 久久99蜜桃精品久久| 韩国av在线不卡| 在线观看av片永久免费下载| 狂野欧美白嫩少妇大欣赏| 纵有疾风起免费观看全集完整版 | 亚洲欧美日韩东京热| 国产精品爽爽va在线观看网站| 亚洲丝袜综合中文字幕| 丰满乱子伦码专区| 小蜜桃在线观看免费完整版高清| 男女国产视频网站| 午夜免费观看性视频| 日韩av免费高清视频| 免费少妇av软件| 亚洲av男天堂| 天堂俺去俺来也www色官网 | 日韩一本色道免费dvd| 深爱激情五月婷婷| 亚洲欧美一区二区三区国产| 免费人成在线观看视频色| 日韩精品青青久久久久久| 免费观看性生交大片5| 午夜久久久久精精品| 永久免费av网站大全| 2021少妇久久久久久久久久久| 少妇高潮的动态图| 日日摸夜夜添夜夜爱| 岛国毛片在线播放| 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 久久久精品94久久精品| 91精品一卡2卡3卡4卡| 国产亚洲午夜精品一区二区久久 | 1000部很黄的大片| 精品人妻熟女av久视频| 亚洲精品自拍成人| 好男人在线观看高清免费视频| 国产一区二区三区综合在线观看 | 国产精品久久久久久av不卡| 中文字幕免费在线视频6| 国产爱豆传媒在线观看| 狂野欧美白嫩少妇大欣赏| 中文字幕av成人在线电影| 亚洲国产色片| 一区二区三区高清视频在线| 亚洲国产欧美人成| 成人二区视频| 伦理电影大哥的女人| 亚洲国产精品专区欧美| 亚洲精品第二区| 黄色配什么色好看| 一级毛片电影观看| 麻豆成人av视频| 日本av手机在线免费观看| 搞女人的毛片| 两个人视频免费观看高清| 国产毛片a区久久久久| 视频中文字幕在线观看| 久久久久国产网址| 国模一区二区三区四区视频| 亚洲第一区二区三区不卡| 国产精品嫩草影院av在线观看| 国产免费一级a男人的天堂| 国产淫片久久久久久久久| 在线观看av片永久免费下载| 国产精品一二三区在线看| 国产av在哪里看| 亚洲精品中文字幕在线视频 | 亚洲国产色片| 久久久亚洲精品成人影院| 免费黄色在线免费观看| 国产真实伦视频高清在线观看| 亚洲成人一二三区av| 国产精品一区二区性色av| 91精品伊人久久大香线蕉| 成人欧美大片| 亚洲欧洲国产日韩| 欧美成人精品欧美一级黄| av免费观看日本| 亚洲人成网站在线播| 亚洲欧洲国产日韩| 亚洲av成人精品一区久久| 国产精品人妻久久久影院| 国产淫语在线视频| 狂野欧美激情性xxxx在线观看| 国产又色又爽无遮挡免| 偷拍熟女少妇极品色| 日韩,欧美,国产一区二区三区| av在线播放精品| 色综合色国产| 亚洲国产最新在线播放| 国产精品一区二区性色av| 国产黄色视频一区二区在线观看| 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 国产精品一区二区三区四区免费观看| 国产成人福利小说| 国产亚洲av片在线观看秒播厂 | 午夜亚洲福利在线播放| .国产精品久久| 国内精品宾馆在线| 午夜福利在线在线| 成人鲁丝片一二三区免费| 又大又黄又爽视频免费| 国产成人a区在线观看| 夫妻午夜视频| 国产成人一区二区在线| 男女视频在线观看网站免费| 寂寞人妻少妇视频99o| 麻豆成人午夜福利视频| 日本与韩国留学比较| 中文字幕制服av| 热99在线观看视频| 午夜精品一区二区三区免费看| 激情五月婷婷亚洲| 日本熟妇午夜| 欧美日韩国产mv在线观看视频 | 三级毛片av免费| 联通29元200g的流量卡| 久久精品久久久久久噜噜老黄| 日日撸夜夜添| 国产精品蜜桃在线观看| 天天躁夜夜躁狠狠久久av| 日韩亚洲欧美综合| www.av在线官网国产| 床上黄色一级片| 国产成人a区在线观看| 国产成人91sexporn| 男人狂女人下面高潮的视频| 边亲边吃奶的免费视频| 午夜福利视频1000在线观看| av天堂中文字幕网| 亚洲四区av| 中文字幕av成人在线电影| 超碰97精品在线观看| 国产一区二区在线观看日韩| 亚洲av成人精品一区久久| 亚洲综合色惰| 国产精品伦人一区二区| 成人毛片a级毛片在线播放| 国产在视频线精品| 伦理电影大哥的女人| av在线天堂中文字幕| 亚洲欧美成人精品一区二区| 国产成人a∨麻豆精品| 欧美xxⅹ黑人| 久久精品久久久久久久性| 日韩伦理黄色片| 又黄又爽又刺激的免费视频.| 国产亚洲午夜精品一区二区久久 | av网站免费在线观看视频 | 中文字幕av成人在线电影| 干丝袜人妻中文字幕| 国产精品久久久久久精品电影| 国产淫语在线视频| 嫩草影院新地址| 精品国产露脸久久av麻豆 | 免费观看av网站的网址| 狂野欧美白嫩少妇大欣赏| 亚洲精品成人久久久久久| videos熟女内射| av一本久久久久| 国产精品一区二区三区四区免费观看| 五月天丁香电影| 国产一区二区三区av在线| 午夜久久久久精精品| 色综合站精品国产| 国产黄片美女视频| 国产精品一区www在线观看| 国产 一区精品| 在线观看人妻少妇| a级毛片免费高清观看在线播放| 少妇熟女aⅴ在线视频| 国产亚洲av嫩草精品影院| 久久99精品国语久久久| 国产久久久一区二区三区| 亚洲熟妇中文字幕五十中出| 一个人看视频在线观看www免费| 亚洲va在线va天堂va国产| 亚洲av国产av综合av卡| 亚洲国产精品国产精品| 亚洲国产欧美人成| 白带黄色成豆腐渣| 成人av在线播放网站| 免费观看a级毛片全部| 精品人妻一区二区三区麻豆| 91久久精品国产一区二区三区| 大香蕉久久网| 能在线免费观看的黄片| 最新中文字幕久久久久| 大又大粗又爽又黄少妇毛片口| 午夜亚洲福利在线播放| 欧美xxⅹ黑人| 嘟嘟电影网在线观看| 亚洲精品色激情综合| 国产精品99久久久久久久久| 国产亚洲精品久久久com| 午夜福利在线在线| 精品人妻一区二区三区麻豆| 国产高清国产精品国产三级 | 麻豆成人av视频| 精品久久久精品久久久| 国产亚洲5aaaaa淫片| 高清在线视频一区二区三区| 噜噜噜噜噜久久久久久91| 一个人看的www免费观看视频| 亚洲成人久久爱视频| 亚洲av成人精品一二三区| 欧美潮喷喷水| 久久99热这里只频精品6学生| 欧美xxⅹ黑人| 国产v大片淫在线免费观看| av又黄又爽大尺度在线免费看| 亚洲无线观看免费| 禁无遮挡网站| 哪个播放器可以免费观看大片| 欧美一级a爱片免费观看看| 91在线精品国自产拍蜜月| 日本黄大片高清| 91精品国产九色| 一边亲一边摸免费视频| 色综合色国产| 亚洲精品第二区| 国产成人91sexporn| 免费观看精品视频网站| 激情五月婷婷亚洲| 国产乱来视频区| 国产免费又黄又爽又色| 精品国产三级普通话版| 亚洲av成人精品一区久久| or卡值多少钱| 成人高潮视频无遮挡免费网站| 能在线免费看毛片的网站| 国内精品美女久久久久久| 国产麻豆成人av免费视频| 国产精品无大码| 欧美成人精品欧美一级黄| 久久99热这里只有精品18| 老师上课跳d突然被开到最大视频| 亚洲国产av新网站| 国产精品蜜桃在线观看| 免费电影在线观看免费观看| 国产激情偷乱视频一区二区| 国产高清国产精品国产三级 | 天美传媒精品一区二区| 国产毛片a区久久久久| 日韩av在线大香蕉| 日本免费在线观看一区| 熟女人妻精品中文字幕| 久久久午夜欧美精品| 女人被狂操c到高潮| 久久久久久久久大av| 欧美一级a爱片免费观看看| 国产精品女同一区二区软件| 人人妻人人澡人人爽人人夜夜 | 午夜久久久久精精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲成色77777| 男插女下体视频免费在线播放| 日韩欧美 国产精品| 在线免费观看不下载黄p国产| 日韩精品有码人妻一区| 亚洲人成网站在线观看播放| 男女边吃奶边做爰视频| 欧美区成人在线视频| 亚洲精品中文字幕在线视频 | 亚洲一区高清亚洲精品| 亚洲欧美日韩无卡精品| 蜜桃亚洲精品一区二区三区| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播| 久久久成人免费电影| 亚洲三级黄色毛片| 一级二级三级毛片免费看| 国产激情偷乱视频一区二区| 免费大片18禁| 精品国产露脸久久av麻豆 | 亚洲精品一二三|