• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The detrimental effect of autofrettage on externally cracked modern tank gun barrels

    2019-05-24 01:36:38PerlSaley
    Defence Technology 2019年2期

    M.Perl,T.Saley

    Pearlstone Center for Aeronautical Engineering Studies,Department of Mechanical Engineering,Ben-Gurion University of the Negev,Beer-Sheva,84105,Israel

    Keyw ords:Gun barrel Sw age and hydraulic autofrettage External crack 3-D Finite element

    A B ST R A C T Overstraining gun tubes has a tw ofold advantage.First,it enables the increase of the Safe Maximum Pressure(SMP)in the tube,resulting in a higher muzzle velocity w hich extends the gun's range and its projectile kinetic energy.Second,it reduces the tube's susceptibility to internal cracking w hich prolongs its fatigue life.Unfortunately,autofrettage also bears an inherent detrimental effect as it considerably increases the tensile hoop stress at the outer portion of the barrel's wall,which enhances external cracking of the tube by increasing the prevailing Stress Intensity Factor(SIF).In order to quantify this disadvantageous effect,3-D Mode I SIFs distributions along the front of a single external radial semielliptical crack initiating from the outer surface of an autofrettaged modern gun barrel,overstrained by either the Sw age or the Hydraulic autofrettage processes,are evaluated.The analysis is performed by the f i nite element(FE)method,using singular elements along the crack front.Innovative residual stress f i elds(RSFs),incorporating the Bauschinger effect for both types of autofrettage are applied to the barrel.Hill's[1]RSFis also applied to the tube for comparison reasons.All three RSFs are incorporated in the FE analysis,using equivalent temperature f i elds.Values for KIA-the SIFresulting from the tensile residual stresses induced by autofrettage are evaluated for:a typical barrel of radii ratio R o/R i=2,crack depth to w all-thickness ratios(a/t=0.005-0.1),crack ellipticities(a/c=0.2-1.0),and f i ve levels of Sw age,Hydraulic and Hill's autofrettage(ε=40%,60%,70%,80%,and 100%).In total,375 different 3-D cases are analyzed.The analysis demonstrates undoubtedly the detrimental effect of all types of autofrettage in increasing the prevailing effective stress intensity factor of external cracks,resulting in crack initiation enhancement and crack grow th rate acceleration w hich considerably shortens the total fatigue life of the barrel.Nonetheless,the detrimental effect is autofrettage-type dependent.Sw age and Hydraulic autofrettage RSFs differ substantially from each other.The disadvantageous effect of Sw age autofrettage is much greater than that resulting from Hydraulic autofrettage.The results also emphasize the signi f i cance of the Bauschinger effect and the importance of the 3-D analysis.

    1.Introduction

    Gun barrels,as w ell as other cylindrical pressure vessels,have been autofrettaged for more than a hundred years in order to improve their operational performance.A favorable compressive residual hoop stress is induced at the gun's bore as a result of overstraining.This compressive stress at the tube's w all inner portion has a dual favorable effect.On the one hand,it enables to increases the allow able internal pressure in the tube,resulting in a higher muzzle velocity,w hich in turn extends the gun's range and its munitions kinetic energy.On the other hand,it reduces its susceptibility to internal cracking,w hich prolongs its fatigue life.At the same time,unfortunately,autofrettage also bears an inherent detrimental effect as it induces tensile residual hoop stresses at the outer portion of the barrel's w all,w hich boosts external cracking of the tube by increasing the prevailing Stress Intensity Factor(SIF)for cracks emanating from the outer surface of the barrel.Tw o processes are commonly used to overstrain gun barrels:Hydraulic autofrettage and Sw age autofrettage.Both create similar patterns ofresidual stress f i elds,yet of different distributions and magnitudes.

    While the bene f i cial effect of realistic autofrettage has been thoroughly researched by among others Perl and Saley[2,3],the detrimental effect of overstraining has not been studied at all.For obvious mechanical reasons,the outer surface of barrels may bear functional geometrical discontinuities such as keyseats,grooves,part-through holes,etc.,as w ell as scratches.Under operational conditions,the outer surface of the barrel is subjected to the cyclic action of high pressure pulses during f i ring,and is exposed to corrosive materials and an aggressive environment.The presence of the stress concentrators,the repeated loading and the corrosive environment may result in initiating one or a few 3-D,semi-elliptical radial cracks from the barrel's external surface into the barrel's w all.The largest of these cracks,comm only coined“the major crack”,w hich grow s due to cyclic loading,may become critical,and cause catastrophic barrel failure.

    The fatigue process of such cracks is governed by the prevailing combined Stress Intensity Factor(SIF)KIN[3]w hich,in this case,consists of tw o components:KIP-the SIFdue to internal pressure,and KIA-the positive SIF due to the tensile residual stresses induced by autofrettage i.e.,KIN=KIP+KIA.Several results are presently available for KIPfor external cracks in thick-w alled cylindrical pressure vessels by,among others,Raju and New man[4],Zheng et al.[5],Anderson[6]and Gerasimenko[7].How ever,to the best of the authors know ledge,values for KIAw ere never evaluated for external cracks in autofrettaged cylinders.It is,therefore,the purpose of the present analysis to evaluate KIA,the positive SIFdue to autofrettage,for a single external crack prevailing in an overstrained modern gun barrel applying an innovative,realistic,experimentally based autofrettage model,hereafter explained,w hich enables a very accurate replication of both Hydraulic and Sw age autofrettage residual stress f i elds(RSFs)in a fully or partially overstrained barrel.For comparison reasons,Hill's[1]RSF is also applied.SIFs for a typical modern tank gun barrel of radii ratio Ro/Ri=2,for crack depth to w all-thickness ratios(a/t=0.005-0.1),crack ellipticities(a/c=0.2-1.0),and f i ve levels of Sw age,Hydraulic and Hill's autofrettage(ε=40%,60%,70%,80%,and 100%)are evaluated.This particular range of relative crack depth of a/t=0.005 to 0.1 is chosen to enable the comparison w ith internal cracks[2].

    2.Autofrettage and its simulation

    There has been a continuous effort to increase the pressure carrying capacity of gun barrels aiming at extending their f i ring range since the 17th century.A new metal fabrication process was suggested to achieve this goal by a French Artillery of f i cer Col.L.Jacob[8]at the beginning of the 20th century.Since that time,this process,know n as autofrettage-self-hooping in French,has been used in gun barrel manufacturing,and in a variety of other cylindrical pressure vessel applications such as nuclear reactor vessels,high pressure oil f i eld pipes,low-density polyethylene processing etc.The process of autofrettage,initially meant to enable an increase in the gun's internal pressure,w as also found to reduce the gun's sensitivity to internal cracking,i.e.,inhibiting crack initiation and moderating crack grow th rate,thus extending remarkably the barrel's fatigue life.

    The f i rst process to be used for barrel overstraining w as Hydraulic Autofrettage.In the f i rst stage of this process,the tube is subjected to an increasing internal hydraulic pressure until plastic deformation onsets at the bore.As pressure is further increased,the plastic deformation progresses through the tube's w all until it reaches the outside surface and the barrel is then considered fully autofrettaged.In case the process is interrupted w hile the plastic deformation moved only through part of the tube's w all,the tube is only partially autofrettaged.In the second stage,the hydraulic pressure is released and elastic recovery occurs resulting in a residual stress f i eld through the cylinder's w all.The residual hoop stress component is compressive at the inner portion of the tube's w all and tensile at its outer part.The largest residual compressive hoop stress occurs at the bore,and it monotonically changes into a residual tensile hoop stress reaching its maximum at the external surface of the barrel.

    Due to the very high pressure required,the process of Hydraulic Autofrettage is slow,dangerous,and expensive.Consequently,in the early 1960's Davidson et al.[9]suggested a new process:Sw age Autofrettage.In this process overstraining is accomplished by pushing an oversized tungsten carbide mandrel through the tube's blank,using a solid steel ram.This faster,safer,and cheaper process has been w idely used since its introduction in gun barrel manufacturing,as w ell as in many other industries.Until recently[10,11],the tw o processes w ere considered to yield the same pressure carrying capacity,provided the tube w as overstrained to the same level.How ever,the factual data,accumulated mainly by the gun barrel industry,identi f i ed the clear advantages of Sw age autofrettage over Hydraulic autofrettage in creating a higher residual hoop stress at the bore,and thus,further increasing the tubes pressure carrying capacity and extending the barrel's fatigue life.

    The residual stress f i eld induced by autofrettage serves as the key input to the stress analysis of both the intact and the cracked tubes.In spite of the fact that the tw o types of autofrettage have been in use for many years,the evaluation of their RSFs is complicated because of detailed elasto-plastic characteristics of the tube's material.Furthermore,w hile a tw o dimensional analysis proves satisfactory for Hydraulic autofrettage,Sw age autofrettage necessitates a 3-D analysis to account for the three dimensionality of the process.

    Many attempts have been made by e.g.,[1,11-18]to calculate the RSFdue to Hydraulic and Sw age autofrettage.How ever,only in the last decade Perl and Perry[19,20]suggested a comprehensive 3-D model w hich enables an accurate evaluation of both Hydraulic and Swage autofrettage RSFs.This innovative model,is totally based on the experimentally measured stress-strain curve under repeated reversed loading,thus enabling an accurate characterization of the material's behavior including the Bauschinger effect in both tension and compression.

    Once the material's characteristics of Cr-Ni-Mo-V modern gun barrel steel(a modi f i ed AISI 4340)are experimentally determined,the new model is applied to evaluate the hoop residual stress component for Hydraulic,Sw age and Hill's autofrettage for a partially(ε=40%,70%)or fully(100%)overstrained barrel presented in Fig.1.

    Fig.1.The distribution of the residual hoop stress component for Hydraulic,Swage and Hill's autofrettage in a partially or fully overstrained barrel of R o/R i=2(a)ε=100%,(b)ε=70%,and(c)ε=40%.

    The hoop residual stress(Fig.1)is compressive at the inner portion of the barrel's w all and becomes tensile at its outer part.High internal pressure is applied to the barrel during the f i ring process creating a tensile hoop stressthrough the barrel's wall w ith a maximum at the bore and a minimum at the outer surface of the tube.When the residual stresses are superimposed on the stresses due to internal pressure,the compressive residual hoop stressσResθθ proves bene f i cial as it reduces the effective hoop stress at the inner portion of the barrel.The tensile part of the residual stress how ever,isdetrimental as it increasesthe hoop stressat the outer part of the tube.Tables 1 and 2 respectively represent the values of the residual hoop stressat the inner and the outer surfacesof the tube,for the three types of autofrettage.

    The largest differences betw een the RSFs of the three types of autofrettage occur at the inner and the outer surfaces of the barrel's wall.When considering the bore of a fully autofrettaged barrel(Fig.1(a)),Hill's model predicts the highest negativeat the bore.The realisticat the bore due to Sw age and Hydraulic autofrettage is22%smaller in absolute value for the former,and 41%for the latter than Hill's.This discrepancy results from the decrease in yield stressin compression due to the Bauschinger effect w hich is accounted for by the new model[19,20],w hile ignored by Hill's.Furthermore,in both autofrettage processes,upon unloading the barrel,re-yielding may occur at its inner w all,resulting in a further decrease in the yield stress.The differences innear the bore betw een the three RSFs have a major impact on the fatigue life of the barrel.Higher negativeσreduces the susceptibility to crack initiation and slow s dow n crack grow th rate,yielding a longer fatigue life.Whereas realistic fatigue lives for the barrel are yielded by Sw age and Hydraulic autofrettage,Hill's“ideal”model highly overestimates its value.

    When considering the outer surface of a fully autofrettaged barrel,Hill's model predicts the highest positive(Fig.1(a)).The realisticat the outer surface of the barrel due to Swage and Hydraulic autofrettage is 21%and 26%smaller in value than Hill's respectively.Low er positivedecreases the sensitivity to external cracking and slows dow n crack grow th rate.Hill's model considerably underestimates fatigue life in this case,w hile Sw age and Hydraulic autofrettage types yield realistic fatigue lives for the barrel.

    Fig.2.(a)The cylinder with one external crack.(b)The parametric angleφde f i ning the points on the crack front.

    Table 1The relative residual hoop stressσRθθe s/σy at the inner surface of the barrel r=R i.

    Table 2The relative residual hoop stressσRθθe s/σy at the outer surface of the barrel r=R o.

    At the inner portion of a partially autofrettaged barrel(ε=60%-80%),the patterns of the three RSFs are similar to that of the fully autofrettaged tube,though getting lower in absolute magnitude as the level of autofrettage decreases(cf.Fig.1(b)and(c)to Fig.1(a)).At the outer portion of a partially autofrettaged barrel,the RSF is different in both pattern and magnitude than in the case of full autofrettage.The magnitude of all RSFs decreases as the level of autofrettage decreases as can be anticipated.Furthermore,in the case ofε=70%(Fig.1(b),and Table 2),Sw age autofrettage predicts the largest positiveσResθθ,w hile Hydraulic autofrettage predicts the smallest one,w ith an intermediate value for Hill's RSF.Hill's and Hydraulic autofrettage RSFs are 16%and 44%lower than Sw agerespectively.In the case ofε=40%(Fig.1(c),and Table 2),Sw age and Hill's autofrettage RSFare practically identical,w hile,due to Hydraulic autofrettage,is 38%low er.

    The discrete values of RSFdistribution are incorporated in the FE analysis in each case,using an equivalent temperature f i eld w hich emulates them very accurately.The discrete values of the equivalent temperature f i eld are calculated using the general algorithm developed by Perl[21].A detailed description of obtaining the equivalent temperature f i eld and its embodiment in the FEanalysis is given in Perl[21].In all the cases herein treated,the RSFs resulting from the equivalent temperature f i eld are compared to the original RSFs and are all found to be practically identical.

    3.Three dimensional analysis

    The three dimensional analysis of the externally cracked barrel is based on Linear Elastic Fracture Mechanics(LEFM).The tube is modeled as an elastic cylinder of inner radius Ri,outer radius Ro,and w all thickness t(Ro/Ri=2,and t=Ri)and length,2L.The cylinder contains an external radial semi-elliptical crack of length 2c and depth a.The cylinder containing one crack is presented in Fig.2(a).In order to avoid end effects,the ratio of the cylinder's length to its inner radius,L/Ri,is taken to be at least as 4.The barrel is assumed to be made of a typical Cr-Ni-Mo-V barrel steel(a modi f i ed AISI 4340)w ith an initial yield stress ofσy=1050 MPa,Young modulus E=203 GPa and Poisson's ratioν=0.3.As a modern tank gun is considered,the internal pressure is set to be p=608 MPa.All the SIFs are calculated by tw o methods:the displacement extrapolation method(DEM)and the J-integral.In the case of very shallow cracks of a/t=0.005,SIFs are calculated along the crack front at intervals ofΔφ=3.6°for cracks of a/c≥0.4,and at intervals ofΔφ=2.25°for cracks of a/c=0.2.For deeper cracks,a/t≥0.01,SIFs are calculated along the crack front at intervals ofΔφ=1.8°for cracks of a/c≥0.4,and at intervals of Δφ=1.125°for cracks of a/c=0.2.

    4.The f i nite elem ent m odel

    Because of its many symmetries only a quarter of the cylinder is analyzed(see Fig.2(a)).The autofrettage RSF is induced in the FE model by an equivalent temperature f i eld as previously explained.The model is solved using the commercial ANSYS13.0 FEcode[22].To accommodate the singular stress f i eld in the vicinity of the crack front,this area is covered w ith a layer of 20-node isoparametric brick elements collapsed to w edges,forming singular elements at the crack front[23].On top of this layer,at least four additional layers,consisting of 20-node isoparametric brick elements,are meshed(see[2]).The rest of the model is divided into tw o zones.Zone I,the f i rst quarter of the cylinder's length near the crack,is meshed w ith tetrahedron elements,w hile Zone II,the rest of the cylinder is meshed w ith brick elements.Near the crack front,the elements are chosen to be small,and their size is gradually increased w hen moving aw ay from the crack.SIFs are extracted using tw o methods built into ANSYS:The J-integral[24],and the crack-face displacement extrapolation method.SIFs are calculated at equally spaced discrete points along the crack front.

    4.1.Validation of the FEmodel

    Since presently there are no values for KIAfor external cracks in autofrettaged cylinders,the FE model is f i rstly validated by calculating KIPdistribution along a semi-circular external crack of depth a/t=0.1,and comparing it w ith the results obtained in API 579-1[25]using the w eight function method.The results presented in Fig.3 show that the present and API 579-1 results are w ithin less than 1%except for the external surface point(φ=0°)w here they differ by about 4.5%.In order to further validate the model,KIAdistribution along the front of a semi-circular external crack of depth a/t=0.1 prevailing in a fully autofrettaged cylinder is evaluated by tw o independent methods:The J-integral method and the displacement extrapolation procedure,w hich then are compared to each other in Fig.4.The maximal difference of about 1.5%betw een the tw o methods occurs atφ=0°,at the intersection of the crack plane w ith the outer surface of the cylinder.As one moves aw ay from this point,the difference in KIA/K00drops to about 0.2%.

    In order to maintain high accuracy of the evaluated SIFs,convergence tests w ere conducted for KIA.The value of KIA/K00at the deepest point(φ=90°)of a semi-circular crack of depth a/t=0.1 served as a convergence criterion.KIA/K00w as evaluated for a fully autofrettaged(Hill's model)barrel.Fig.5 represents the convergence of KIA/K00as a function of the number of DOF.The results indicate that above 1,200,000 DOF,the error is less than 0.02%.Thus,in order to ensure high accuracy,1,600,000 DOF are employed for all cases.

    Fig.3.A comparison betw een the present distribution of KIP/K00 along the front of a semi-circular external crack of depth a/t=0.1,in a fully autofrettaged barrel of R o/R i=2 evaluated by the DEM method and those of API 579-1[25]evaluated by the w eight function method.

    Fig.4.A comparison betw een the distribution of KIA/K00 along the front of a semicircular,external crack of depth a/t=0.1,in a barrel of R o/R i=2 evaluated by the displacement extrapolation method(DEM)and the one obtained by the J-integral.

    Fig.5.KIA/K00(φ=90°)as a function of the number of DOF for a semi-circular,a/c=1,external crack of depth a/t=0.1,in a fully autofrettaged barrel of R o/R i=2.

    5.Num erical results and discussion

    Unlike the case of an internal crack,w here KIAis usually negative reducing the effective SIF,in the case of external cracks,KIAvalues are usually positive,therefore,increasing the effective SIF w hich has a disadvantageous effect on the barrel's fatigue life.In the present analysis KIAvalues are calculated for external radial cracks prevailing in a typical barrel of radiiratio Ro/Ri=2 for a w ide range of relevant crack depth to w all-thickness ratios a/t=0.005,0.01,0.04,0.07,and 0.1,for various crack ellipticities a/c=0.2,0.4,0.6,0.8,and 1.0,and for f i ve levels of Sw age,Hydraulic and Hill's autofrettage ofε=40%,60%,70%,80%,and 100%.In total,375 different 3-D external crack cases are analyzed.In order to enable future comparison and superposition,the SIFs KIAand KIPare normalized further on,w ith respect to:

    5.1.KIA distribution along an external-crack's front in a fully autofrettaged barrel

    KIAvalues for all crack con f i gurations in a fully autofrettaged gun barrel are calculated for Hydraulic,Sw age and Hill's autofrettage RSFs and are normalized w ith respect to K00.In the analysis to follow,KIAdistributions along the crack front are separately presented for semi-circular cracks a/c=1.0 and for semi-elliptical ones a/c<1.0.

    5.1.1.Semi-circular cracks a/c=1.0

    Typical distributions of KIA/K00along the crack front of an external semi-circular crack of depth a/t=0.005 and 0.1,prevailing in a fully autofrettaged barrel are presented in Figs.6 and 7 respectively.Generally speaking,there are tw o patterns of KIA/K00distributions.The f i rst one has its maximum atφ=0°and its minimum atφ=90°.This type of distribution occurs in the cases of Hydraulic and Hill's autofrettage for cracks of depths a/t=0.005 and 0.1,and only for shallow cracks a/t=0.005 in the case of Sw age autofrettage(see Figs.6 and 7).The second distribution pattern is coined Iso-KIAas the distribution is almost even along the crack front.This distribution is characteristic only of deep cracks,e.g.,a/t=0.1,in the case of Sw age autofrettage(see Fig.7).

    Fig.6.KIA/K00 vs.φalong the front of a semi-circular crack of depth a/t=0.005.in a fully autofrettaged cylinder.

    Fig.7.KIA/K00 vs.φalong the front of a semi-circular crack of depth a/t=0.1 in a fully autofrettaged cylinder.

    From Figs.6 and 7 it is evident that the magnitude of KIAdiffers considerably betw een the three types of autofrettage:Hill's yielding the highest KIAvalue,Sw age autofrettage predicting an intermediate value,and Hydraulic autofrettage producing the low est KIA.These results have a direct impact on the effective SIF and thus on the fatigue life of the barrel.In this case Hill's“ideal”RSF excessively and non-realistically underestimate the total fatigue life of the barrel.

    Table 3 summarizes the ratios betw een the maximum values of these distributions,w hich occur atφ=0°,for the f i ve crack depths herein evaluated.The ratios betw een the magnitudes of the maximum SIFdue to the three types of autofrettage are practically crack depth independent.On the average in this case,Sw age and Hydraulic autofrettage produce SIFs w hich are about-19%and 26%low er than Hill's respectively.

    5.1.2.Semi elliptical cracks a/c<1.0

    The distribution of KIA/K00along the crack front of an external radial crack of a/c<1.0 is ellipticity dependent:

    5.1.2.1.Cracks of ellipticity 1.0>a/c>0.8.When crack ellipticity is larger than a/c=0.8,KIA/K00,distributions along the crack front have a similar pattern to that of semi-circular cracks(as in Figs.6 and 7),bearing their maximal values near the outer surface of the barrel.

    Table 3KIA m ax for full Sw age and Hydraulic autofrettage relative to Hill's solution for semi-circular external cracks of various depths.

    Fig.8.KIA/K00 vs.φalong the front of a slender semi-elliptical external crack.of a/c=0.2 and depth a/t=0.005 in a fully autofrettaged cylinder.

    Fig.10.KIA/K00 vs.φalong the front of an iso-semi-elliptical crack of a/c=0.8 and depth a/t=0.005 in a fully autofrettaged cylinder.

    Fig.9.KIA/K00 vs.φalong the front of a slender semi-elliptical external crack.of a/c=0.2 and depth a/t=0.1 in a fully autofrettaged cylinder.

    5.1.2.2.Cracks of ellipticity 0.6>a/c≥0.2.Typical distributions of KIA/K00for slender cracks are presented in Figs.8 and 9 for a crack of ellipticity a/c=0.2 and depths a/t=0.005 and 0.1 respectively.The maximum value for both cracks occurs atφ=90°,the deepest point of the crack.,and the relations betw een KIA/K00values for the three autofrettage types presented in Table 4,are practically crack depth independent and are almost identical to those presented in Table 3 i.e.,≈0.81 and≈0.74.

    5.1.2.3.Cracks of ellipticity 1.0≥a/c≥0.6.In this range of ellipticities,as the one presented in Figs.10 and 11,cracks are iso-KIcracks,having an almost uniform distribution of KIA/K00around the entire crack front.The more crack ellipticity deviates from the iso-KIrange,the higher the non-uniformity of KIA/K00distribution along the crack front as can be seen,for example,in Fig.12 for the three types of autofrettage andε=100%.Based on the present results,cracks can be considered as“iso-cracks”for Hill's autofrettage in the range of ellipticities of 0.8≥a/c≥0.6,for Hydraulic autofrettage 0.8≥a/c≥0.7 and for Sw age autofrettage 1.0≥a/c≥0.8.

    Fig.11.KIA/K00 vs.φalong the front of an iso-semi-elliptical crack of a/c=0.8 and depth a/t=0.1 in a fully autofrettaged cylinder.

    5.2.KIA distribution along an external-crack's front in a partially autofrettaged barrel

    Most gun barrels are commonly only partially autofrettaged to aboutε=70%,since the marginal bene f i t in increasing the level of autofrettage fromε=70%toε=100%is about 10-15%[2]in augmenting the allow able internal pressure.How ever,this increase in the level of autofrettage has a major disadvantage of enhancingexternal cracking of the barrel.A second reason for investigating the in f l uence of partial autofrettage is the fact that during the barrel'slife the residual stress f i eld due to autofrettage deteriorates,resulting in a lower overstrain level,w hich in turn affects its fatigue life.

    Table 4KIA m ax for full Sw age and Hydraulic autofrettage relative to Hill's solution for semi-elliptical external cracks of a/c=0.2 for various crack depths.

    Fig.12.The non-uniformity of KIA distribution along the crack front vs.crack ellipticity for the three types of autofrettage andε=100%.

    Fig.13.KIA/K00 vs.φfor an external radial semi-circular crack of depth a/t=0.005 prevailing in a barrel overstrained to three different levels of Hill's,Sw age and Hydraulic autofrettage:ε=100%,70%,and 40%.

    Table 5Values of KIA m ax for an external crack in a partially autofrettaged barrel(ε=70%,60%,40%)relative to a fully overstrained tube for the three types of autofrettage.

    Fig.13(a-c)represents KIA/K00for an external radial semicircular crack of depth a/t=0.005 prevailing in a barrel overstrained to three different levels of Hill's,Sw age and Hydraulic autofrettage:ε=100%,70%,and 40%.As anticipated,the value of KIAdecreases as the level of autofrettage decreases.The relative values of KIAmaxforε=70%,60%,and 40%w ith respect toε=100%for the three types of autofrettage are given in Table 5.

    From Table 5 it can be seen that lowering the level of autofrettage fromε=100%toε=70%reduces considerably the detrimental effect on an external crack by about 30%for Sw age autofrettage and 50%for hydraulic autofrettage.

    6.Concluding rem arks

    The distributions of KIAalong the front of a single external radial crack in an overstrained smooth gun barrel are evaluated for numerous crack con f i gurations evaluating the effects of the type and level of autofrettage and of the crack's geometry.KIAvalues are evaluated for three types of autofrettage:Swage,Hydraulic and Hill's,for f i ve levels of overstrainingε=40%,60%,70%,80%,and 100%,for crack depths of a/t=0.005,0.01,0.04,0.07,and 0.1,and for various crack ellipticities a/c=0.2,0.4,0.6,0.8,and 1.0.

    In spite of the fact that all types of autofrettage herein discussed have an adverse effect on external cracks,they differ considerably in the magnitude of this negative effect.The detrimental effect of both Hydraulic and Sw age autofrettage on the external cracking of a fully autofrettaged gun barrel is found to be much smaller than that anticipated by Hill's“ideal”autofrettage.This results from the fact that Hill's RSFignoresthe Bauschinger effect.The incorporation of the Bauschinger effect in the cases of Swage and Hydraulic autofrettage resultsin a substantial reduction of the material'syield stress and thus,considerably reducing KIAvalues.

    In the case of partial autofrettage,the detrimental effect of the three RSFs is somew hat different.All three RSFs become w eaker as the level of autofrettage decreases,having a less severe detrimental effect on the barrel's life.In the case of 70%overstraining,Sw age autofrettage has a 78%higher detrimental effect than Hydraulic autofrettage,w hile forε=40%,the adverse effect of Sw age overstraining is 61%higher than that of Hydraulic overstraining.

    Reducing the level of Sw age and Hydraulic overstraining from ε=100%toε=70%has only a marginal effect on the barrel's pressure capacity and on the bene f i cial effect on internal cracking.How ever,it considerably reduces the unfavorable effect on external cracking.

    The evaluation of the combined effect of overstraining and pressurization of the barrel on external cracking is presently underw ay.The combined SIFs KIN=KIP+KIAare to be determined as w ell as the maximum value KINmaxw hich controls fracture processes.The results of this study w ill be presented elsew here.

    白带黄色成豆腐渣| 国产高清视频在线播放一区| 成年女人看的毛片在线观看| 亚洲成人中文字幕在线播放| 亚洲美女视频黄频| 久久久久久久精品吃奶| 日本撒尿小便嘘嘘汇集6| 色综合欧美亚洲国产小说| 欧美最黄视频在线播放免费| 午夜两性在线视频| 欧美三级亚洲精品| 亚洲激情在线av| 免费观看人在逋| 久久天躁狠狠躁夜夜2o2o| 欧美乱妇无乱码| 国产亚洲精品久久久com| 成熟少妇高潮喷水视频| 久久久久免费精品人妻一区二区| 此物有八面人人有两片| 久久久精品欧美日韩精品| 日韩高清综合在线| 熟女少妇亚洲综合色aaa.| 99热精品在线国产| 午夜视频精品福利| www.999成人在线观看| 成人无遮挡网站| 老司机福利观看| 国产亚洲精品一区二区www| 91字幕亚洲| 日韩欧美三级三区| 国产亚洲精品久久久com| 日本三级黄在线观看| 亚洲中文日韩欧美视频| 日本黄大片高清| 久久婷婷人人爽人人干人人爱| 51午夜福利影视在线观看| 热99re8久久精品国产| 久久人妻av系列| av福利片在线观看| avwww免费| 亚洲av熟女| e午夜精品久久久久久久| 国产av一区在线观看免费| 精品国内亚洲2022精品成人| 亚洲成人免费电影在线观看| 搡老岳熟女国产| 亚洲无线在线观看| 最新在线观看一区二区三区| 天堂av国产一区二区熟女人妻| 亚洲人成网站在线播放欧美日韩| 日本五十路高清| 五月玫瑰六月丁香| 免费看十八禁软件| 亚洲欧美日韩高清在线视频| 全区人妻精品视频| 精品国产三级普通话版| 欧美成人性av电影在线观看| 亚洲av电影不卡..在线观看| 一本综合久久免费| av天堂中文字幕网| 午夜影院日韩av| 国产亚洲欧美在线一区二区| 精品久久久久久久末码| 真人一进一出gif抽搐免费| 国产黄a三级三级三级人| 久久久久久大精品| 亚洲aⅴ乱码一区二区在线播放| 成年人黄色毛片网站| 夜夜夜夜夜久久久久| 久久久久精品国产欧美久久久| 一级毛片女人18水好多| 香蕉久久夜色| 在线观看免费视频日本深夜| 12—13女人毛片做爰片一| 久久亚洲精品不卡| 日韩欧美三级三区| 色综合站精品国产| 丝袜人妻中文字幕| 在线免费观看不下载黄p国产 | 国产高清三级在线| 色哟哟哟哟哟哟| 中文字幕人妻丝袜一区二区| 中文字幕精品亚洲无线码一区| 看黄色毛片网站| 国产午夜福利久久久久久| 亚洲av免费在线观看| 老鸭窝网址在线观看| svipshipincom国产片| 欧美绝顶高潮抽搐喷水| 国内揄拍国产精品人妻在线| 又大又爽又粗| 观看免费一级毛片| 男人舔奶头视频| 亚洲狠狠婷婷综合久久图片| 久久精品国产99精品国产亚洲性色| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| 最近在线观看免费完整版| 天堂网av新在线| 我的老师免费观看完整版| 日本精品一区二区三区蜜桃| 一进一出抽搐动态| 老司机深夜福利视频在线观看| 欧美一区二区精品小视频在线| 中文字幕人妻丝袜一区二区| 亚洲色图 男人天堂 中文字幕| 国产成人欧美在线观看| 久久久水蜜桃国产精品网| 久久午夜综合久久蜜桃| 91av网一区二区| 黄色 视频免费看| 精品福利观看| 老司机午夜福利在线观看视频| 99精品在免费线老司机午夜| 欧美色视频一区免费| 亚洲avbb在线观看| 真实男女啪啪啪动态图| 又爽又黄无遮挡网站| 亚洲中文日韩欧美视频| 国产成人精品久久二区二区免费| 亚洲中文字幕日韩| 老熟妇仑乱视频hdxx| 757午夜福利合集在线观看| 国产野战对白在线观看| 他把我摸到了高潮在线观看| 亚洲av成人av| 国产精品久久久人人做人人爽| 变态另类成人亚洲欧美熟女| 亚洲精品粉嫩美女一区| 国产精品女同一区二区软件 | 可以在线观看的亚洲视频| 亚洲在线观看片| 少妇熟女aⅴ在线视频| 又粗又爽又猛毛片免费看| 丰满人妻一区二区三区视频av | 亚洲精品国产精品久久久不卡| 禁无遮挡网站| 久久午夜综合久久蜜桃| 亚洲一区二区三区不卡视频| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久久久99蜜臀| 母亲3免费完整高清在线观看| 91麻豆av在线| 在线观看舔阴道视频| 国产极品精品免费视频能看的| 日本与韩国留学比较| 最新中文字幕久久久久 | 精品日产1卡2卡| 禁无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 免费观看精品视频网站| 欧美日韩瑟瑟在线播放| 亚洲专区中文字幕在线| 久久这里只有精品中国| 国产亚洲欧美在线一区二区| 国产欧美日韩一区二区精品| 美女扒开内裤让男人捅视频| 99久久99久久久精品蜜桃| 三级男女做爰猛烈吃奶摸视频| 一区二区三区高清视频在线| 国产91精品成人一区二区三区| 日本a在线网址| 狂野欧美白嫩少妇大欣赏| 看免费av毛片| 亚洲 欧美 日韩 在线 免费| 国产一区在线观看成人免费| 麻豆av在线久日| 欧美3d第一页| 99久久精品一区二区三区| 欧美日韩黄片免| 男人舔奶头视频| 久久人人精品亚洲av| www.999成人在线观看| 香蕉国产在线看| av黄色大香蕉| 成人国产综合亚洲| 日本五十路高清| 亚洲真实伦在线观看| 啦啦啦免费观看视频1| 亚洲熟妇中文字幕五十中出| 亚洲五月天丁香| 国产97色在线日韩免费| 精品久久久久久久久久久久久| 老司机深夜福利视频在线观看| av天堂在线播放| 五月玫瑰六月丁香| 禁无遮挡网站| 国产 一区 欧美 日韩| 欧美日韩精品网址| 美女免费视频网站| 国产精品精品国产色婷婷| 三级毛片av免费| 国产成人精品久久二区二区免费| 久久久久久人人人人人| 日本精品一区二区三区蜜桃| 中国美女看黄片| 高清在线国产一区| 久久精品亚洲精品国产色婷小说| 国产主播在线观看一区二区| 免费在线观看亚洲国产| 日韩精品中文字幕看吧| 一二三四社区在线视频社区8| 亚洲精品456在线播放app | 国产精品女同一区二区软件 | 听说在线观看完整版免费高清| 成人18禁在线播放| 91av网一区二区| 久久久色成人| 又紧又爽又黄一区二区| 香蕉丝袜av| 精品久久久久久久久久免费视频| 精品国产三级普通话版| 午夜激情福利司机影院| 国语自产精品视频在线第100页| 亚洲精品美女久久av网站| 精品一区二区三区四区五区乱码| 日韩精品中文字幕看吧| 欧美一区二区国产精品久久精品| 欧美另类亚洲清纯唯美| 1000部很黄的大片| 男女视频在线观看网站免费| 天堂av国产一区二区熟女人妻| 搡老岳熟女国产| 俺也久久电影网| 国产99白浆流出| 亚洲九九香蕉| 最新美女视频免费是黄的| 国内少妇人妻偷人精品xxx网站 | 欧美激情久久久久久爽电影| 久久久水蜜桃国产精品网| 狠狠狠狠99中文字幕| 国产伦人伦偷精品视频| 熟妇人妻久久中文字幕3abv| 国产亚洲精品综合一区在线观看| 成年女人看的毛片在线观看| 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 男女之事视频高清在线观看| tocl精华| 国产精品永久免费网站| 免费在线观看视频国产中文字幕亚洲| 男人舔奶头视频| 老汉色av国产亚洲站长工具| 免费看美女性在线毛片视频| 亚洲黑人精品在线| 青草久久国产| 欧美色欧美亚洲另类二区| 黑人欧美特级aaaaaa片| 欧美乱色亚洲激情| 日本成人三级电影网站| 人人妻,人人澡人人爽秒播| 在线永久观看黄色视频| 欧美黄色淫秽网站| 日本成人三级电影网站| 91在线精品国自产拍蜜月 | 中文在线观看免费www的网站| 精品电影一区二区在线| 中国美女看黄片| 日韩欧美在线乱码| 久久精品aⅴ一区二区三区四区| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区mp4| or卡值多少钱| 看免费av毛片| 国产欧美日韩一区二区三| 狂野欧美白嫩少妇大欣赏| 国产精品98久久久久久宅男小说| 久久中文字幕一级| 久久久久久久久免费视频了| 日本与韩国留学比较| 中文字幕熟女人妻在线| 日韩av在线大香蕉| 国产成人精品无人区| 欧美成狂野欧美在线观看| 一进一出抽搐动态| 久久午夜综合久久蜜桃| 黄色日韩在线| 欧美在线黄色| 亚洲熟妇中文字幕五十中出| 午夜激情福利司机影院| 天天一区二区日本电影三级| 国产高清激情床上av| 午夜精品在线福利| 怎么达到女性高潮| 男人舔奶头视频| 91在线精品国自产拍蜜月 | 女人被狂操c到高潮| 不卡av一区二区三区| 热99在线观看视频| 99国产精品一区二区蜜桃av| 人妻久久中文字幕网| 国产激情偷乱视频一区二区| 日本五十路高清| 日日干狠狠操夜夜爽| 国产久久久一区二区三区| 国产99白浆流出| 免费电影在线观看免费观看| 欧美一区二区国产精品久久精品| 久久久久国内视频| 国产v大片淫在线免费观看| 激情在线观看视频在线高清| 天堂动漫精品| 欧美大码av| 国产精品久久久av美女十八| 在线观看日韩欧美| 中文亚洲av片在线观看爽| 国产精品女同一区二区软件 | 深夜精品福利| 午夜久久久久精精品| av国产免费在线观看| 99久久国产精品久久久| 男人舔奶头视频| 久久久国产成人免费| 婷婷亚洲欧美| 一个人观看的视频www高清免费观看 | 91老司机精品| 18禁国产床啪视频网站| 黄色丝袜av网址大全| 国产不卡一卡二| 美女高潮的动态| 神马国产精品三级电影在线观看| 欧美日韩福利视频一区二区| 国产爱豆传媒在线观看| bbb黄色大片| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 成年版毛片免费区| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜精品一区,二区,三区| 黄色视频,在线免费观看| 国产av麻豆久久久久久久| 免费电影在线观看免费观看| 又爽又黄无遮挡网站| 国产精品亚洲一级av第二区| 亚洲狠狠婷婷综合久久图片| 成人无遮挡网站| 亚洲国产精品成人综合色| 国产97色在线日韩免费| 三级男女做爰猛烈吃奶摸视频| 琪琪午夜伦伦电影理论片6080| 免费av毛片视频| 变态另类丝袜制服| 观看免费一级毛片| 一a级毛片在线观看| 成年免费大片在线观看| 欧美日韩综合久久久久久 | 男女床上黄色一级片免费看| 国内精品久久久久久久电影| 麻豆久久精品国产亚洲av| cao死你这个sao货| 韩国av一区二区三区四区| 久久久水蜜桃国产精品网| 一本精品99久久精品77| 18禁国产床啪视频网站| 床上黄色一级片| 久久精品国产99精品国产亚洲性色| 麻豆久久精品国产亚洲av| 精品久久久久久久末码| 日本熟妇午夜| 中文字幕熟女人妻在线| 日日夜夜操网爽| 久久中文看片网| 中出人妻视频一区二区| 日本免费一区二区三区高清不卡| 两个人视频免费观看高清| 国产1区2区3区精品| 久久久成人免费电影| av片东京热男人的天堂| 中文资源天堂在线| 99精品欧美一区二区三区四区| e午夜精品久久久久久久| 成人国产一区最新在线观看| 男人的好看免费观看在线视频| 婷婷亚洲欧美| 我要搜黄色片| 亚洲人成伊人成综合网2020| 变态另类成人亚洲欧美熟女| 亚洲18禁久久av| 成年女人毛片免费观看观看9| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 亚洲精品456在线播放app | 国内少妇人妻偷人精品xxx网站 | 搞女人的毛片| 亚洲国产精品999在线| 最近最新免费中文字幕在线| 国产综合懂色| 精品久久久久久,| 两个人视频免费观看高清| 小蜜桃在线观看免费完整版高清| 国产精品,欧美在线| 99久久综合精品五月天人人| av天堂在线播放| 99久久国产精品久久久| 国产一级毛片七仙女欲春2| 又大又爽又粗| 又紧又爽又黄一区二区| 欧美zozozo另类| 国产亚洲精品av在线| 成人特级av手机在线观看| 夜夜躁狠狠躁天天躁| 午夜免费观看网址| 精品久久久久久久久久久久久| 国产主播在线观看一区二区| 免费看日本二区| 天天躁狠狠躁夜夜躁狠狠躁| 18禁裸乳无遮挡免费网站照片| 亚洲欧美精品综合一区二区三区| 制服丝袜大香蕉在线| 99久久99久久久精品蜜桃| 国产亚洲欧美在线一区二区| 亚洲在线自拍视频| 男女下面进入的视频免费午夜| 久久精品国产99精品国产亚洲性色| 国产99白浆流出| 免费看十八禁软件| 曰老女人黄片| 黄频高清免费视频| 日韩欧美在线乱码| 天堂√8在线中文| 中文字幕最新亚洲高清| 91av网一区二区| 99久久国产精品久久久| 变态另类成人亚洲欧美熟女| 黄色视频,在线免费观看| 午夜精品一区二区三区免费看| 久久这里只有精品中国| 欧美3d第一页| 一区二区三区高清视频在线| 久久天躁狠狠躁夜夜2o2o| 不卡av一区二区三区| or卡值多少钱| 国产欧美日韩精品一区二区| 99热只有精品国产| 亚洲avbb在线观看| 欧美av亚洲av综合av国产av| 中文字幕精品亚洲无线码一区| 国语自产精品视频在线第100页| 免费大片18禁| 99热精品在线国产| 亚洲av美国av| svipshipincom国产片| 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| avwww免费| 女人被狂操c到高潮| 亚洲国产精品sss在线观看| www.精华液| 2021天堂中文幕一二区在线观| 午夜激情欧美在线| 日本免费一区二区三区高清不卡| 亚洲精华国产精华精| 国产精品电影一区二区三区| 亚洲国产欧洲综合997久久,| 人妻夜夜爽99麻豆av| 日韩欧美三级三区| 午夜成年电影在线免费观看| 国产高清激情床上av| 蜜桃久久精品国产亚洲av| 国产真人三级小视频在线观看| 久久精品国产99精品国产亚洲性色| 午夜福利在线在线| 一级作爱视频免费观看| 999久久久精品免费观看国产| 18美女黄网站色大片免费观看| 一二三四在线观看免费中文在| 欧美日韩乱码在线| 国产亚洲精品av在线| 嫩草影院精品99| 亚洲国产欧美网| 成年女人永久免费观看视频| 精品国产乱子伦一区二区三区| av欧美777| 夜夜夜夜夜久久久久| 国产精品影院久久| 非洲黑人性xxxx精品又粗又长| 伊人久久大香线蕉亚洲五| 日本一二三区视频观看| 女同久久另类99精品国产91| 亚洲九九香蕉| 久久精品国产综合久久久| 偷拍熟女少妇极品色| 黑人操中国人逼视频| 19禁男女啪啪无遮挡网站| 日本一本二区三区精品| 91麻豆精品激情在线观看国产| 国产激情久久老熟女| 国产一区二区在线观看日韩 | 国产一区二区三区在线臀色熟女| 真人做人爱边吃奶动态| 国产午夜精品久久久久久| 亚洲在线自拍视频| 亚洲av免费在线观看| 久久人妻av系列| 99热只有精品国产| 亚洲人成网站高清观看| 亚洲,欧美精品.| 久久热在线av| 日本精品一区二区三区蜜桃| 亚洲天堂国产精品一区在线| 91麻豆精品激情在线观看国产| av黄色大香蕉| 国产私拍福利视频在线观看| 国产人伦9x9x在线观看| 欧美午夜高清在线| 校园春色视频在线观看| 老汉色av国产亚洲站长工具| 欧美性猛交╳xxx乱大交人| 成人一区二区视频在线观看| 天堂√8在线中文| 中文在线观看免费www的网站| 一a级毛片在线观看| 黄色丝袜av网址大全| 一区福利在线观看| 久久这里只有精品19| 欧美又色又爽又黄视频| www国产在线视频色| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色| 午夜免费成人在线视频| av片东京热男人的天堂| 亚洲自拍偷在线| 亚洲av电影不卡..在线观看| 草草在线视频免费看| 一本精品99久久精品77| 亚洲av美国av| 国产精品电影一区二区三区| 色综合站精品国产| 成人欧美大片| 亚洲av日韩精品久久久久久密| 免费一级毛片在线播放高清视频| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看| а√天堂www在线а√下载| 免费无遮挡裸体视频| 国产亚洲精品久久久com| 12—13女人毛片做爰片一| 国内精品久久久久久久电影| 久久久国产欧美日韩av| 亚洲男人的天堂狠狠| 午夜免费观看网址| 高潮久久久久久久久久久不卡| 国产精品一区二区三区四区久久| 中文字幕高清在线视频| 99国产综合亚洲精品| 国产精品一区二区三区四区免费观看 | 久久人妻av系列| 天堂√8在线中文| 色综合婷婷激情| 51午夜福利影视在线观看| 欧美日韩综合久久久久久 | 精品午夜福利视频在线观看一区| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 丁香欧美五月| 校园春色视频在线观看| 久久99热这里只有精品18| 久久热在线av| 女生性感内裤真人,穿戴方法视频| 国产成人精品久久二区二区免费| 国内毛片毛片毛片毛片毛片| 国产伦一二天堂av在线观看| 亚洲av第一区精品v没综合| 国语自产精品视频在线第100页| 男插女下体视频免费在线播放| 日韩免费av在线播放| 最新在线观看一区二区三区| 亚洲乱码一区二区免费版| cao死你这个sao货| 午夜两性在线视频| 国产真实乱freesex| 精品人妻1区二区| 老司机福利观看| 国产精品免费一区二区三区在线| 制服人妻中文乱码| 亚洲精品美女久久久久99蜜臀| 色综合婷婷激情| 两个人视频免费观看高清| 日本成人三级电影网站| 成年人黄色毛片网站| 日韩欧美国产一区二区入口| 色视频www国产| 一级a爱片免费观看的视频| 法律面前人人平等表现在哪些方面| 久久天堂一区二区三区四区| 国产精品电影一区二区三区| 国产精品av久久久久免费| 欧美乱色亚洲激情| 久久天躁狠狠躁夜夜2o2o| 人妻夜夜爽99麻豆av| 国产精品亚洲av一区麻豆| 国产精品免费一区二区三区在线| 小蜜桃在线观看免费完整版高清| 日韩欧美免费精品| 精品国产亚洲在线| 精品久久久久久成人av| 麻豆国产97在线/欧美| 又紧又爽又黄一区二区| 免费看日本二区| 久久精品综合一区二区三区| 国产精品1区2区在线观看.| 午夜激情福利司机影院| 88av欧美| 国产精品一区二区精品视频观看| 国产97色在线日韩免费| 国产成人福利小说| 国产精品98久久久久久宅男小说| 国产69精品久久久久777片 | 在线观看舔阴道视频| 最近在线观看免费完整版| 在线永久观看黄色视频| 免费看光身美女| 99热6这里只有精品| 十八禁网站免费在线| 老熟妇乱子伦视频在线观看|