• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnesium nanocomposites:An overview on time-dependent plastic(creep)deformation

    2019-05-24 01:36:18HaghshenasGupta
    Defence Technology 2019年2期

    M.Haghshenas ,M.Gupta

    a Department of Mechanical Engineering,University of North Dakota,ND,USA

    b Department of Mechanical Engineering,National University of Singapore,Singapore

    Keywords:Mg nanocomposite Creep Strength Reinforcement Nanoparticles

    A B S T R A C T Magnesium(Mg)nanocomposites are created w hen nano-size particles are embedded into the Mg(or Mg alloy)matrix.The Mg nanocomposites,cited as high-strength energy-saving materials of future,are a group of emerging materials w ith excellent combination of strength and ductility and superior speci f i c strength property(strength-to-weight ratio).Having said this,Mg nanocomposites are considered as promising replacement for other structural alloys(i.e.aluminum and titanium)wherever low density and high strength are required,i.e.transportation,aerospace,defense,etc.To be able to apply this group of materials for real components,different failure mechanisms at ambient and elevated temperatures under static and dynamic loading condition must be w ell documented.Compared w ith other metals and alloys,rate-dependent plastic deformation(creep),at ambient and elevated temperatures,of these novel materials is not yet well studied w hich seems a tangible lack of knowledge.This is required since the materials in service are often exposed to medium and elevated temperatures and/or static loads for long duration of time and this encourages creep failure on them.To this end,the information and the controlling mechanisms on time/temperature-dependent response of the material need to be developed to be able to predict the response of the Mg nanocomposites w here the materials are under creep conditions.This paper aims at providing an overview on(i)creep-resistant Mg alloys(as matrix)and their chemical compositions,and(ii)responses of the Mg nanocomposites at different creep conditions(time and temperature).The controlling mechanisms contributing to the strength and ductility of the Mg nanocomposites due to the presence of the nanoparticles have been reviewed brie f l y in the present article.In this paper both traditional(uniaxial)and depth-sensing indentation creep of Mg nanocomposites are review ed.Also,some fundamental questions and possible explanations have been raised on the creep characteristics of Mg nanocomposites and the contribution of microstructural features(i.e.grain boundaries,tw ins,precipitates,nanoparticles).This overview article provides a comprehensive summary to understand one of the failure modes(creep)at ambient and elevated temperature in the energy saving Mg nanocomposites that w ould be of interest for those in academia who explore novel nanocomposites.

    1.The concept of Mg nanocomposites

    When nanoscale(<100 nm)particles,as reinforcement constituents,are incorporated into a matrix of a metallic material,either a pure metal or an alloy,a metal matrix nanocomposite(MMN)is born.The key feature of the nanoparticles is that they possess great surface to volume ratio w hich noticeably alter their response compared w ith the bulk sized counterparts.The end product is a MMN that could be signi f i cantly stronger than the matrix material.

    If the matrix is pure Mg or a Mg alloy,the produced material w ill be called Mg nanocomposite.Compared w ith other types of metal matrix nanocomposites,in recent years,tremendous attentions have been devoted to Mg nanocomposite considering the fact that Mg is the lightest structural metal;it is the sixth most abundant element and constitutes about 2%of the Earth's crust,and it is the third most plentiful element dissolved in seaw ater.However,Mg is not a perfect material.As the lightest metallic material w ith great potential for various applications including transportation,defense and aerospace,Mg and its alloys suffer from low strength and ductility,low creep resistant,and low fatigue life.This is mainly due to the hexagonal close packed(hcp)crystalline structure of Mg w ith limited number of active slip systems at ambient temperature.

    Nanocomposites based on the Mg matrix could be a potential solution to the mentioned challenges,w hich have limited the application of Mg and Mg alloys for different critical components.Various types of nanoparticles could be employed toward the manufacturing of the Mg nanocomposites including oxides,carbides,nitrides,borides,and carbonaceous materials(i.e.carbon nanotubes and graphene nanoplatelets).The result of the addition of nanoparticles is a great improvement in properties including mechanical strength and toughness.In a Nature publication by Chen et al.[1]a Mg-4Zn-3Gd-1Ca Mg alloy reinforced w ith 2 w t%Zn O nanoparticles,diameters 90-200 nm,w as introduced that possesses compressive strengths matching/exceeding that of mild steel.

    The controlling mechanisms contributing to the strength of Mg nanocomposites due to the presence of the nanoparticles could be listed as follow s[2]:

    ·Effective load transfer from the matrix to the nanoparticles:The load transfer improvement factor,fLT,is w ritten as-P,w here Vp,and P are the volume fraction of the nanoparticles and porosity in the matrix.

    ·Hall-Petch strengthening due to grain re f i nement:The Hall-Petch strengthening can be w ritten asw here K is a constant,GMis the shear modulus,b is the burgers vector,Vpand dpare the volume fraction and size of the nanoparticles.

    ·Orowan strengthening due to the presence of nanoparticles:the improvement factor due to the Orow an strengthening,fOrowan,can be expressed a,w hereλis the inter-particle spacing,and YMis the yield strength of matrix.

    ·Generation of dislocations due to the thermal expansion mismatch betw een reinforcements and matrix:The improvement factor related to the dislocation density,fDD,in the matrix,can be expressed as fDD,w hereρin w hichρis the enhanced dislocation density due to the difference in the coef f i cients of thermal expansion betw een the reinforcement phase and the matrix(Δα),andΔT is the difference betw een the processing and test temperatures.

    In addition to the strength,ductility of Mg nanocomposites could be superior to the Mg matrix.The improvement could be due to[3-7]:

    ·grain re f i nement(grain boundaries'pinning effect due to the presence of nanoparticles)

    ·the activation of non-basal slip systems(i.e.<c+a>)

    ·texture modi f i cation(change in crystallographic orientation)

    ·reduction in the size and sharpness of second phase due to the presence of nanoparticles and therefore reducing the amount of localized stress buildup around the intermetallic particles

    ·change in the stress state from plane strain to plane stress near the crack tip due to even dispersion of the nanoparticles w ithin the matrix

    In particular,ceramic-based nanoparticles(i.e.Al2O3,Y2O3,SiC,SiO2)provide promising results in enhancing strength and ductility,simultaneously.

    Fig.1 show s bobble charts of yield strength versus ductility for pure Mg and various Mg nanocomposites produced w ith different manufacturing methods.

    The effectiveness of the nanoparticles is such that the amount of material added is normally only betw een 0.25 and 3.00 vol%w hich produces results comparable or even superior to that of metal matrix microcomposites reinforced w ith much larger amount of micron size constituents w ithout any w eight penalty.

    Rate-dependent plastic deformation,w hich occurs under stresses low er than the yield stress of materials at ambient and/or elevated temperatures(creep),stands for one of the major failures associated w ith the selection and use of engineering materials for various applications.For instance,poor creep resistance of pure Mg and some Mg alloys is considered as an important barrier for further expansion of these lightweight materials for hightemperature applications in different sectors and components.

    As potential structural materials for vehicles,aircraft and military armor,creep and fatigue response of Mg alloys(and therefore Mg matrix nanocomposites)require in-depth investigations in order to understand their rate-dependent characteristics.In recent years,research efforts on the strain rate dependence of the mechanical properties of Mg alloys have signi f i cantly increased[9-20].Conventional Mg alloys soften at about 120°C-150°C[21,22];that is,increase in temperature in Mg and its alloys results in quick loss of strength and limited creep resistance[23-26].Improving the elevated temperature mechanical properties(i.e.creep)has become a critical issue to enable applications of Mg alloys at higher temperatures.Therefore,the primary focus currently is to develop new generation of magnesium nanocomposites,capable of exhibiting good combination of thermal and mechanical properties.Hence,researchers attempt to manufacture Mg-matrix nanocomposites,employing different types and volume fraction of the nanoparticles,to obtain such lightw eight materials along w ith acceptable strength and ductility even at elevated temperatures[27-34].How ever,creep mechanisms for the Mg nanocomposite materials,as emerging high-strength lightw eight materials,have not been w ell documented w hich seems a tangible lack of science.This paper aims at providing an overview on creep-resistant Mg alloys and creep response of some Mg-nanocomposites that have been studied so far.Some fundamental questions that must be considered w hen studying creep response of Mg nanocomposites are as follow s:

    ·Would Mg and Mg alloys reinforced w ith the nanoparticles(i.e.ceramic particles)provide enhanced creep resistance compared w ith the matrix materials?

    ·What are the contributions of the nanoparticles and the matrix(i.e.Mg and/Mg alloy)precipitates on creep response of the nanocomposites?Would they change w ith temperature and strain rate?

    ·How do tw ins in the Mg matrix interact w ith the nanoparticles and the precipitates during creep testing at ambient and elevated temperatures?How these interactions vary w ith temperatures?

    ·What are the possible effect of nanoparticles'volume fraction(i.e.0.5 to 3.0 vol%)on the questions raised above?

    2.Creep resistant Mg alloys(matrix material)

    Among different Mg alloys,those based on Mg-Al,Mg-Sn-Ca,and Mg-Sc systems are the ones applicable for moderate to high temperature uses.For instance,addition of alloying elements such as Ca,Sr,Si,Sn and rare earth elements in the Mg-Al system could produce thermally stable intermetallic compounds(i.e.Mg2Si,Al11RE3,(Mg,Al)2Ca,Al2Ca,Mg-Al-Sr,Al-Ce-Mg-Ca and Mg14Nd2Y,etc.).These intermetallics directly affect the creep resistance of the alloy through strengthening the matrix(i.e.impede dislocation motion and/or grain boundary sliding).

    Table 1 show s a list of creep resistant Mg alloys for various nonambient temperatures.For producing creep-resistant Mg nanocomposites,these alloys could be considered as promising matrix materials[35].

    Fig.1.Bubble chart show ing yield strength versus ductility for various types of Mg nanocomposites made using disintegrated melt deposition(DMD),microwave sintering(MW)assisted pow der metallurgy(PM),and cast and hipped(Cast+HE)techniques[8].

    3.Uniaxial tensile(conventional)creep test of Mg nanocomp osites

    In a conventional creep test,steady-state creep rate can be w ritten as:

    w here A is a constant,σis the(uniaxial)stress,n is the stress exponent,T is the absolute temperature and Q is an activation energy.The stress exponent,n,can be obtained from a plot of ln˙ε against lnσ.The value of Q can be found from a plot of ln˙εagainst 1/T.

    A limited number of researchers have studied creep response of Mg composites(nano-and micro-)through conventional creep testing approach.Ferkel and Mordike[36]studied creep behavior of Mg reinforced w ith 3 vol%of SiCnanoparticlesproduced by pow der metallurgical technique.They used uniaxial tension testing w ith strain rate of 3.3×10-4s-1at 200 and 300°C.They prepared one set of samples just mixed(matrix pow der and nanoparticles)and a separate set of samples milled.They show ed that the nanocomposite material and the pure Mg sample have completely different creep responses.For instance,they showed that grain boundary sliding mechanism of creep is limited in the nanocomposite materials,compared w ith the pure Mg,due to the presence of the SiCnanoparticles decorating and pinning the matrix grain boundaries.

    The minimum creep ratesare plotted in Fig.2 and it can be seen that composite synthesized using milling show s the best creep resistance,even if the grain size is smaller compared to the others,w hich should enhance grain boundary sliding(GBS).The SiC particles are potentially responsible for hindering this phenomenon.Comparing the creep results w ith those of creep-resistant magnesium alloys(WE43,WE54 and QE22),it is evident that even a small amount of nano-SiCleads to similar or even better creep resistance.

    Table 1Creep resistant Mg alloys.

    Fig.2.Minimum creep rates of creep tests performed at 200°C,35 MPa and 45 MPa[36,37].

    Fig.3.log(dε/d t) versus logσplot of the steady-state creep rates recorded at different stresses in tests carried out at 200°C(circles)and 300°C(triangles)for the milled Mg-3vol%n-SiCcomposite[36].

    Fig.3 show s a pow er law representation recorded at different stresses in tests carried out at 200 and 300°Cfor the milled Mg-SiC composite.Note that the date points in particular for the creep test carried out at 300°Callow s only a rough estimation of n.From the plot the stress exponents w ere determined to be~10 and~3 for the experiments done at 200 and 300°C,respectively.

    Katsarou et al.[38]studied creep response of magnesium alloy Elektron 21(El21)reinforced w ith AlN nanoparticles(El21+1%w t AlN Mg nanocomposites)manufactured by ultrasound-assisted stirring.They did compression creep tests at 240°C at constant stresses betw een 70 and 200 MPa on lever-arm testing machine.Fig.4 show s a double logarithmic plot of minimum creep rate versus applied stress from tests performed at 240°C on the El21 alloy and the El21+AlN nanocomposite.A bilinear trend is observed;at low stresses up to 120 MPa the stress exponent n is 4.8 and 5.0 for Elektron 21 and Elektron 21+AlN,respectively.At higher stresses it is 6.6 and 8.3,respectively.The reinforced Elektron 21 show s a lower minimum creep rate compared to the unreinforced material at all applied stresses.The difference decreases w ith increasing stress.

    Han and Dunand[39]studied creep of magnesium strengthened w ith high volume fractions of micron-sized yttria dispersoids(dispersion-strengthened-cast magnesium,DSC-Mg).Their test material w as magnesium w ith 1μm grain size containing 30 vol%of 330 nm yttrium particles.Constant-load compression tests w ere performed in air at engineering stresses from 7 to 125 MPa and at temperatures from 573 to 723 K(T/Tm=0.62-0.79).Fig.5 show s the minimum strain rate˙εas a function of the true stressσ(calculated at the strain w here the minimum strain rate w as achieved),plotted in a double logarithmic manner according to the general pow er-law constitutive creep equation.

    Fig.4.Double logarithmic plot of minimum creep rate versus applied stress from tests performed at 240°Con the El21 alloy and the El21+AlN nanocomposite[38].

    Fig.5.Strain rate as a function of true stress for DSC-Mg at temperatures from 573 to 723 K[39].

    They observed that in the low-stress regime(σ<30 MPa),the apparent stress exponent is about 2 at all temperatures and the apparent activation energy is 48 k J·mol-1,about half the activation energy of grain boundary diffusion in pure magnesium.In the highstress regime(σ>34 MPa),the apparent stress exponent increases w ith increasing temperatures from 9 to 15 betw een 573 and 723 K.The apparent activation energy increases w ith increasing stress from 229 k J·mol-1at 40 MPa to 325 k J·mol-1at 80 MPa.

    Ganguly and Mondal studied the microstructure and impression creep behavior of an AZ91-2.0Ca-0.3 Sb alloy and its three nanocomposites i.e.,AZ91-2.0Ca-0.3 Sb-x SiC(x=0.5,1.0 and 2.0 w t%)[40].They conducted the impression creep tests in the stress and temperature range of 300-480 MPa and 448-523 K,respectively for a duration of 2 h.They observed better creep resistance in the nanocomposites than the unreinforced AZ91-2.0Ca-0.3 Sb alloy w ith the optimum creep resistance in the nanocomposite pertaining to 2.0 w t%SiCnanoparticles(Fig.6).They also reported the controlling creep mechanism for the alloy and nanocomposites as dislocation climb controlled by pipe diffusion.

    Fig.6.Typical impression creep curves for the alloy(AZ91-2.0Ca-0.3Sb)and the nanocomposites tested at 498 K and 435 MPa show ing the variation of impression depth vs.time(NC1:AZ91+2.0Ca+0.3 Sb+0.5SiCnp,NC2:AZ91+2.0Ca+0.3 Sb+1.0SiCnp,NC3:AZ91+2.0Ca+0.3 Sb+2.0SiCnp)[40].

    Garces et al.[41]studied uniaxial creep response of Mg-5 vol%Y2O3micro-composite(particle diameter of 600 nm).To determine the stress exponent,they performed the tensile tests at an initial strain rate of 10-4s-1in the 100-500°C temperature range.Considering the general pow er-law constitutive creep equation(Eq.(1)),Fig.7 show s double logarithmic plots of creep rate versus stress at various temperatures for the unreinforced Mg and the composite.The stress exponents w ere measured betw een 11 and 16.Garces et al.[41]attributed these large values to the presence of the yttria particles in the composite and the presence of oxide particle due to manufacturing method(pow der metallurgy).

    4.Dep th-sensing ind entation creep

    Conventional uniaxial creep assessments are destructive testsin nature w hich is a limitation of the process.In the uniaxial tensile creep test,also,tensile coupons must be made to run the experiment;here,large volume of material is required to machine the coupons w hich could be a costly and time consuming course.Besides,conventional bulk macro-scale mechanical testing,i.e.uniaxial tension testing,does not necessarily provide appropriate spatial resolution w hen characterizing localized microstructural features in heterogeneous microstructures like Mg nanocomposite materials.

    Areliable,convenient,and non-destructive characterization tool to assess rate dependent plastic deformation of materials,especially w hen limited volume of material is available,is depthsensing indentation testing.This technique seems a w ell-suited testing method to characterize local properties of the Mg nanocomposites as materials w ith conceivably heterogeneous microstructure.

    Fig.7.Steady state strain rate vs.stress for(a)unreinforced magnesium and(b)composites between 100 and 500°C[41].

    Back in 1960s,Mulhearn and Tabor[42]determined indentation creep rate from the change in impression size w ith respect to loading.They veri f i ed the creep characteristic values of lowmelting-point metals under the assumption that a pow er law relation holds valid betw een indentation creep rate and hardness.

    In contrast to conventional testing,instrumented indentation tests are commonly conducted over relatively short periods-often measured in minutes-w hereas conventional tests usually run for many hours(or w eeks).

    In a depth-sensing indentation creep testing technique,load-indenter displacement characteristics can be obtained as the indenter tip penetrates,held during dw ell time,and retracts from the sample w ith w orking range of forces(fewμN to several hundreds of m N)and displacements(few nm to tens ofμm).This f l exibility makes depth-sensing indentation method an extremely pow erful technique for testing mechanical properties of a w ide range of materials,from soft polymers to metals and ceramics.The loading cycle usually involveselastoplastic deformation.Asa result,there is recovery of elastic part during unloading,resulting in different values for maximum penetration depth(hmax)and f i nal residual depth(hf).This is schematically show n in Fig.8.Elastic modulus and hardness are tw o most common mechanical properties that are extracted from load-displacement curves.

    The employed equation in a depth-sensing indentation experiment can be w ritten as[43]:

    w here h is the indentation depth,(d h/d t)is the velocity of the indenter(during a“creep dw ell”period),is the indentation strain rate,P is the indenter load and Ap(h)is the projected contact area betw een indenter and specimen(as a function of h).Comparing this equation w ith Eq.(1),the follow ing assumptions are included into the approach[43]:

    (1)At any time,the stress f i eld underneath the indenter can be represented by a single“equivalent”value,(

    (2)At any time,the changing strain f i eld beneath the indenter can be represented by a single“indentation”creep strain rate,

    (3)Once the indenter velocity has become(approximately)constant,“Stage II”creep is fully established throughout all the parts of the sample affecting the indenter penetration(and primary creep can be ignored).

    There are some intrinsic differences in the deformation mechanics in the instrumented creep and the uniaxial creep:

    (i)the stress state beneath the indenter is relatively localized,and is much complicated than that in uniaxial tests.

    (ii)the loading rate during the indentation is 2-3 magnitudes faster than conventional creep tests,and the recovery process for the deformation can be retarded.

    (iii)due to the stability of the indentation instruments,limited creep duration and temperatures can be carried out.It is w orth mentioning that some uncertainties show up in the instrumented indentation creep approach:

    ·Thermal drift during testing(especially at low strain rate tests)and long dw ell times.

    ·Indentation size effect(ISE)refers to a phenomenon w here the hardness changes as a function of probed volume or impression size.

    ·Inhomogeneous sample at small length scales w hich results in local variations in mechanical properties at that scale.

    ·Indenter blunting and surface artifacts(oxides,mechanical polishing deformation layer,texture,etc.). Measuring creep response of nanocomposites through depth sensing indentation testing approach has been used for different metal matrix nanocomposites.Khan et al.[45]used indentation approach to assess creep behavior in Al-5%Mg matrix composites reinforced w ith 10 and 20%B4C.They performed the measurements from room temperature up to 500°C and observed that the apparent activation energy for creep increases w ith increase in B4C content.

    Chatterjee et al.[46]studied the viscoelastic properties of nanocrystalline(nc)Ni and Ni-Tf nanocomposite w ith the help of nanoindentation creep.Fig.9 show s plots of d/d(0),ratio of the increase in depth(d)w ith increase in hold time(t)and the initial displacement at the beginning of the hold time d(0),versus hold time for nc-Ni,Ni-Tf nanocomposite,and Tf material.The time dependent deformation part in the nanocomposite is higher than that of nc-Ni w hich may be attributed to the presence of Tf particles.

    Fig.8.Schematic representation of depth-sensing indentation creep including loading/holding/unloading.Included in this Fig.is surface pro f i le underneath a self-similar pyramidal indenter throughout an indentation testing[44].

    Fig.9.Nanoindentation creep data for nc-Ni,and Ni-Tf nanocomposite[46].

    Haghshenas et al.[47]studied depth sensing indentation of magnesium/boron nitride nanocomposites at ambient(room)temperature.They employed magnesium/boron nitride(BN)nanocomposites containing 0.5,1.5 and 2.5 vol%of nano-BN particulates to assess rate-dependent plastic deformation using a dual stage indentation scheme including constant loading-rate followed by a constant-load holing.They observed that the addition of BN nanoparticle to the Mg matrix results in better creep resistance.This w as attributed to the role of the nanoparticles in hindering the movement of mobile dislocations.Using different indentation loading rates,they measured the values of stress exponent,n,in the range of 4-20 w hich suggests dislocation(pow er-law)creep as the controlling mechanism(Fig.10).

    Kumar and Chaudhari[48]studied indentation creep behavior of nano-alumina reinforced AS41 magnesium alloy matrix composites w ith 2 w t%and 5 w t%Al2O3.They carried out the creep tests under a vacuum of 10-7Pa and employed four different temperatures(448 K,473 K,498 K,and 523 K)and three different stresses(109.2 MPa,124.8 MPa,and 140.4 MPa)for 10,500 s.They reported enhanced creep resistance in the AS41/2 w t%alumina and AS41/5 w t%alumina nanocomposites and attributed this to even destitution of the nanoparticles throughout the matrix(intergranular and intragranular).To this end,Orow an strengthening from uniformly distributed Mg2Si precipitates as w ell as from nanoparticle reinforcements is the main contributing factor tow ard enhanced creep life of the produced AS41 nanocomposites.It is w orth mentioning that as there is no coherency betw een the crystal lattice of the alumina nanoparticles and the Mg matrix,dislocations cannot easily cut through them w hich increases the creep life of the Mg nanocomposite materials.

    Fig.11 show s the minimum creep rate at different stresses and different temperatures reported by Kumar and Chaudhari[48]

    Fig.10.The n-value versus load rate for different content of nano-BN particles[47].

    which include both composite and the alloy.As observed the creep resistance is higher for the nanocomposites as compared to as cast AS41 alloy.

    Fig.11.Comparison of creep rate for as cast AS41 alloy and nanocomposites under different stresses tested at(a)448 K,(b)473 K,(c)498 K,and(d)523 K[48].

    5.Sum mary

    A key feature in application of metal matrix nanocomposites in the automotive engineering is dimensional stability over a predicted lifetime at ambient and elevated temperatures.This becomes,in particular,critical under varying stresses over extended periods at elevated temperatures.Having said this,w hen considering Mg nanocomposites,as emerging high-strength energysaving materials,for moderate to high temperature applications,creep w hich is a measure of assessing the dimensional stability and one of the main mechanical failure modes must be considered thoroughly.Some Mg alloys show acceptable creep resistance at ambient and various elevated temperatures(Table 1);therefore,it is expected that particulate reinforced nanocomposites based on these Mg alloys,as the matrix,provide promising creep results.With this in mind,it seems an urgent need to study creep response and the controlling mechanisms as w ell as the contribution of different microstructural features of the Mg nanocompositeson the creep response(i.e.grain boundaries,tw ins,distribution and morphology of the nanoparticles,matrix/nanoparticle interface,volume fraction,and types of the nanoparticles).This paper provided a short overview on potential creep-resistant Mg alloys as the matrix as w ell as uniaxial(conventional)and indentation creep of some Mg nanocomposites.The paper,f i rst,provided a brief introduction on the concept of Mg nanocomposites;then,creepresistant Mg alloys as potential matrix materials for creep resistant Mg nanocomposites,w ere review ed.This was follow ed by a short literature review on uniaxial(conventional)creep of Mg nanocomposites.This paper then provided a brief summary on the concept of depth-sensing indentation creep.Finally,some published papers on indentation creep of different nanocomposites w ere reviewed.This article tried to provide a concise and comprehensive review to bridge betw een the Mg nanocomposites and the creep concept.

    Considering the literature review presented in this paper,it w ould be possible to address the questions raised in the paper w ith regard to the contribution of the nanoparticles tow ard creep behavior of the Mg nanocomposites.

    ·Role of the nanoparticles on the creep response of Mgnanocomposites

    As mentioned in this paper,the presence of nanoparticles w ould enhance the overall strength of the produced Mg-matrix nanocomposites(i.e.fLT,fDD,fOrowan,fHall-Petch)compared w ith the starting Mg(and/or Mg alloy)matrix.This in turn improve creep response of the Mg-nanocomposite compared w ith the matrix material.

    According to Zhang and Chen[49]that the Orow an strengthening is main strengthening mechanism in composites containing nano-particles.This effect becomes more pronounced w hen increasing the volume fraction of evenly distributed nanoparticles w ith the matrix.Enhanced in the creep resistance due to the Orow an mechanism is in particular the case w hen assessing creep response of the Mg nanocomposite at room temperature w here dislocation creep,and not diffusional creep,is the controlling mechanism.

    It is w orth mentioning that,to achieve the optimum creep properties,it is recommended to employ creep-resistant Mg alloys(Table 1)as the matrix material.Embedding nanoparticles in these creep-resistant alloys even further improve the creep properties.The nanoparticles can greatly contribute tow ard creep resistance of the Mg nanocomposites at high temperature by pinning the grain boundaries and preventing the grain boundary sliding(GBS).It is w orth mentioning the GBSis one of the main mechanisms of creep failure in metals and alloys specially at high temperatures.To this end,Mg nanocomposites w ith nanoparticles decorated at grain boundaries could be considered a promising choice for hightemperature applications w hen resistance to creep is required.

    ·Contribution of precipitates in the matrix tow ard creep response

    This depends on the size,morphology and distribution of the precipitates in the matrix.In general,precipitates w ould contribute tow ard strengthening of the materials through precipitation hardening.How ever,if the size of the precipitates is bigger than the size of the matrix grains(i.e.in ultra-f i ne/nanocrystalline grained materials),their contribution toward creep resistance of the material become less important as f i ne-grained structure(Hall-Petch effect)w ill be dominant.That is,the greatest strengthening is achieved by f i ne precipitates.Those equilibrium low-melting temperature intermetallic phase precipitates could be thermally unstable in the matrix w hen expose to high temperature creep.In this case,the precipitates either coarsens or dissolves in the matrix at a high temperature.This is not the case in the externally added nanoparticles w hich are insoluble in the matrix and they resist dissolution and coarsening.This helps retain strength(and creep resistance)at higher temperatures.

    ·Role of tw ins on the Mg matrix on the creep response

    This depends how tw ins interact w ith the nanoparticles in the Mg nanocomposite matrix.Nanoparticles can affect the nucleation and grow th of the tw ins resulting in the increased number of narrow er(smaller)tw ins in the microstructure[50,51].Depending on the relative size of the tw ins and the size/distribution of the nanoparticles,the tw in grow th can be completely arrested(in the case of large precipitates)or the grow ing tw in can sw allow up(engulf)the precipitates(in the case of small precipitates)and this results in particle rotation and not necessarily particle shearing[48].To better understand these mechanism(w hich have not been very w ell documented yet),mathematical models and advanced microstructural characterization including transmission electron microscopy(TEM)and electron backscattered diffraction(EBSD)are required.

    In a paper published by Chen et al.[52],considering nucleation and grow th of tw in w ith and w ithout nanoparticles in the Mg matrix has been suggested.Assuming that tw ins nucleate from the grain boundaries,w hen a nanoparticle is present,the grow ing tw in w ould interact w ith the nanoparticle in such a w ay that its grow th is hindered.This in turn increase the strength because of pile-up and back stress effect.This creates favorable sites for the nucleation of another tw in and this process continues w ith continuing the straining.

    Besides,the tw in boundaries can be considered act as grain boundaries and therefore contribute tow ard re f i ning the grain structure and blocking the dislocation motion.This can effectively enhance the creep resistance of the alloy as w ell.

    ·Possible effects of nanoparticles'volume fraction(i.e.0.5 to 3.0 vol%)on the creep response of the Mg nanocomposites Increase in the volume fraction of the nanoparticles could increase the overall strength of the nanocomposites by contributing tow ard effective load transfer,Orowan strengthening and Hall-Petch mechanism.How ever,there is alw ays some limit on the volume fraction of the reinforcing particles in the matrix.That is,if the volume fraction of the nanoparticle exceeds form some certain amount,clustering/agglomeration of the nanoparticles may occur.This is because of very high surface-to-volume ratio of the nanoparticles and large Van-der Waals forces betw een the particles that attract them tow ard each other.If this happens,the clusters are now considered micron-size particles rather than nanoparticles.Therefore,they simply lose their ef f i ciency in impeding dislocation motion(Orowan effect)as w ell as effective pinning of grain boundaries.This in turn results in negative effect on the creep resistance of the material.Besides,w hen the nanoparticles are not w ell dispersed in the matrix,w hat happens is that some zones in the matrix w ould be free of nanoparticles w hile other zones are f i lled w ith clustered particles.This can also have adverse effect on the creep response of the material.That is w hy manufacturing processes of the Mg nanocomposites could be very challenging to ensure optimum(even)distribution of the nanoparticles in the matrix.

    Acknow ledgement

    First author w ould like to acknow ledge research grant provided by ND EPSCoR(#21727).

    97人妻天天添夜夜摸| 永久网站在线| 巨乳人妻的诱惑在线观看| 婷婷成人精品国产| 9热在线视频观看99| 欧美国产精品va在线观看不卡| 啦啦啦在线观看免费高清www| 国产黄色免费在线视频| 国产一区二区三区综合在线观看| 亚洲欧美精品综合一区二区三区 | 国产精品麻豆人妻色哟哟久久| 观看美女的网站| 欧美+日韩+精品| 97人妻天天添夜夜摸| 美女国产视频在线观看| 国产亚洲av片在线观看秒播厂| 欧美 亚洲 国产 日韩一| av网站在线播放免费| 亚洲av日韩在线播放| 国产乱人偷精品视频| 咕卡用的链子| 欧美精品一区二区免费开放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天美传媒精品一区二区| 免费观看av网站的网址| 亚洲国产日韩一区二区| 久久精品国产鲁丝片午夜精品| 最近2019中文字幕mv第一页| 国产1区2区3区精品| 成人漫画全彩无遮挡| 一级片'在线观看视频| 日韩精品有码人妻一区| 18在线观看网站| 在线看a的网站| 久久久亚洲精品成人影院| 久久久久久人人人人人| 亚洲三区欧美一区| 国产老妇伦熟女老妇高清| 热re99久久国产66热| 国产片内射在线| 欧美日韩亚洲国产一区二区在线观看 | 国产一区二区三区av在线| 久久久久久久久久人人人人人人| 亚洲国产精品一区二区三区在线| 国产精品无大码| 一本—道久久a久久精品蜜桃钙片| 国产精品一区二区在线不卡| 99九九在线精品视频| 国产精品欧美亚洲77777| 综合色丁香网| 人妻人人澡人人爽人人| a级毛片黄视频| 秋霞在线观看毛片| 女性被躁到高潮视频| 美女福利国产在线| 欧美国产精品一级二级三级| 视频区图区小说| 欧美亚洲 丝袜 人妻 在线| 寂寞人妻少妇视频99o| 美女高潮到喷水免费观看| 精品人妻在线不人妻| 一级黄片播放器| 免费在线观看视频国产中文字幕亚洲 | 国产精品久久久久久精品电影小说| 免费观看无遮挡的男女| 有码 亚洲区| 欧美精品人与动牲交sv欧美| 人体艺术视频欧美日本| 人人妻人人爽人人添夜夜欢视频| 精品国产一区二区三区四区第35| 欧美 日韩 精品 国产| 水蜜桃什么品种好| 春色校园在线视频观看| 啦啦啦中文免费视频观看日本| 国产成人91sexporn| 亚洲天堂av无毛| 1024视频免费在线观看| 久久99一区二区三区| 亚洲中文av在线| 人妻一区二区av| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 母亲3免费完整高清在线观看 | 亚洲一码二码三码区别大吗| 亚洲精品一二三| 亚洲国产看品久久| 91成人精品电影| 免费黄网站久久成人精品| 亚洲精品第二区| 不卡av一区二区三区| 久久 成人 亚洲| av一本久久久久| 中国三级夫妇交换| 人人妻人人澡人人看| 哪个播放器可以免费观看大片| 可以免费在线观看a视频的电影网站 | 99久久中文字幕三级久久日本| 一区在线观看完整版| 久久99蜜桃精品久久| 精品国产一区二区久久| 亚洲精品日韩在线中文字幕| 久久人妻熟女aⅴ| 久久国产精品大桥未久av| 黄色配什么色好看| 亚洲精品美女久久久久99蜜臀 | 国产精品一区二区在线不卡| av在线观看视频网站免费| 叶爱在线成人免费视频播放| 精品人妻在线不人妻| 国产在线一区二区三区精| 不卡av一区二区三区| 久久97久久精品| 免费av中文字幕在线| 国产一区二区 视频在线| 久久久精品国产亚洲av高清涩受| 交换朋友夫妻互换小说| 亚洲经典国产精华液单| 久久这里有精品视频免费| 久久久久久人人人人人| 人妻少妇偷人精品九色| 久久韩国三级中文字幕| 色哟哟·www| 亚洲av男天堂| freevideosex欧美| 99国产综合亚洲精品| 男女免费视频国产| 亚洲人成电影观看| 欧美日韩精品成人综合77777| 日韩一卡2卡3卡4卡2021年| 一区二区av电影网| 一级毛片 在线播放| 精品午夜福利在线看| www.精华液| 久久ye,这里只有精品| 久久久精品94久久精品| 美女xxoo啪啪120秒动态图| 精品一区在线观看国产| 亚洲av电影在线观看一区二区三区| 成人漫画全彩无遮挡| 久久99热这里只频精品6学生| 亚洲色图综合在线观看| 午夜91福利影院| 欧美人与性动交α欧美软件| 9热在线视频观看99| 一级黄片播放器| 亚洲国产欧美日韩在线播放| 晚上一个人看的免费电影| 男人舔女人的私密视频| av在线老鸭窝| 亚洲国产看品久久| 国产成人午夜福利电影在线观看| a级片在线免费高清观看视频| 人人妻人人爽人人添夜夜欢视频| 亚洲中文av在线| 亚洲av电影在线进入| 中文字幕人妻丝袜制服| 中文字幕人妻熟女乱码| 国产精品欧美亚洲77777| 亚洲欧美一区二区三区久久| 麻豆精品久久久久久蜜桃| 亚洲国产看品久久| 中文字幕人妻丝袜制服| 婷婷色综合大香蕉| 欧美少妇被猛烈插入视频| 在线观看免费高清a一片| 国产成人aa在线观看| 日韩中文字幕欧美一区二区 | 女人久久www免费人成看片| 成人亚洲精品一区在线观看| 国产精品av久久久久免费| av.在线天堂| a级毛片在线看网站| 街头女战士在线观看网站| 免费播放大片免费观看视频在线观看| 搡女人真爽免费视频火全软件| 亚洲国产av影院在线观看| 最近最新中文字幕免费大全7| 爱豆传媒免费全集在线观看| 七月丁香在线播放| 一区二区三区精品91| 欧美精品人与动牲交sv欧美| 99国产精品免费福利视频| 亚洲精品美女久久av网站| 女性生殖器流出的白浆| 精品国产一区二区三区久久久樱花| 大陆偷拍与自拍| 寂寞人妻少妇视频99o| 电影成人av| 丝袜人妻中文字幕| 欧美日韩精品成人综合77777| 性少妇av在线| xxx大片免费视频| 久久ye,这里只有精品| 久久热在线av| 亚洲成国产人片在线观看| 色哟哟·www| 黄色毛片三级朝国网站| 青春草国产在线视频| 天天影视国产精品| 久久鲁丝午夜福利片| 大陆偷拍与自拍| 天天躁夜夜躁狠狠久久av| 国产精品成人在线| 99热网站在线观看| 久久久精品94久久精品| 国产一区二区 视频在线| 亚洲成人手机| 超碰成人久久| 国产精品国产三级国产专区5o| 女人被躁到高潮嗷嗷叫费观| 波多野结衣av一区二区av| 久久这里有精品视频免费| 精品人妻熟女毛片av久久网站| 国产av码专区亚洲av| 麻豆av在线久日| 成人黄色视频免费在线看| 国产精品香港三级国产av潘金莲 | 最黄视频免费看| 各种免费的搞黄视频| 国产片内射在线| 国产av国产精品国产| 在现免费观看毛片| 国产精品国产三级国产专区5o| 日韩制服丝袜自拍偷拍| 美女午夜性视频免费| 欧美+日韩+精品| 中文字幕人妻丝袜制服| 久久99精品国语久久久| 一区二区av电影网| 午夜久久久在线观看| 91在线精品国自产拍蜜月| 欧美 亚洲 国产 日韩一| 天堂俺去俺来也www色官网| 97在线人人人人妻| 久久久欧美国产精品| 亚洲成色77777| 麻豆av在线久日| 精品一区二区三区四区五区乱码 | 免费女性裸体啪啪无遮挡网站| 日产精品乱码卡一卡2卡三| 精品久久久久久电影网| 在线观看美女被高潮喷水网站| 黄色怎么调成土黄色| 精品国产国语对白av| 国产老妇伦熟女老妇高清| 麻豆乱淫一区二区| 最近的中文字幕免费完整| 蜜桃国产av成人99| 国产乱人偷精品视频| 成年女人在线观看亚洲视频| 亚洲,欧美精品.| 人人妻人人爽人人添夜夜欢视频| 亚洲中文av在线| 99国产综合亚洲精品| 美女大奶头黄色视频| 国产 一区精品| 亚洲av成人精品一二三区| 各种免费的搞黄视频| 伦理电影免费视频| 免费观看性生交大片5| 精品国产国语对白av| 欧美日韩精品网址| 久久久久久免费高清国产稀缺| 老熟女久久久| 精品国产一区二区三区四区第35| 亚洲精华国产精华液的使用体验| 成年人免费黄色播放视频| 制服丝袜香蕉在线| 搡女人真爽免费视频火全软件| 亚洲情色 制服丝袜| 少妇 在线观看| 亚洲欧美色中文字幕在线| 成人亚洲精品一区在线观看| 只有这里有精品99| 午夜久久久在线观看| 夜夜骑夜夜射夜夜干| 久久久久久人妻| 亚洲男人天堂网一区| 欧美精品人与动牲交sv欧美| 国产成人免费观看mmmm| 国产av国产精品国产| 高清在线视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 国产精品国产三级专区第一集| 国产男人的电影天堂91| 亚洲国产欧美网| 亚洲国产欧美日韩在线播放| 亚洲精华国产精华液的使用体验| 99精国产麻豆久久婷婷| 男人操女人黄网站| 亚洲欧洲日产国产| 不卡av一区二区三区| 新久久久久国产一级毛片| www.av在线官网国产| 久久精品亚洲av国产电影网| 夫妻午夜视频| 女性被躁到高潮视频| 国产亚洲av片在线观看秒播厂| 精品人妻在线不人妻| 大话2 男鬼变身卡| 美女国产视频在线观看| 日日摸夜夜添夜夜爱| 亚洲av综合色区一区| 国产午夜精品一二区理论片| 波野结衣二区三区在线| 91aial.com中文字幕在线观看| 校园人妻丝袜中文字幕| 国产精品蜜桃在线观看| 精品国产一区二区三区久久久樱花| 亚洲精品乱久久久久久| 九色亚洲精品在线播放| 久久av网站| 久久精品国产自在天天线| 国语对白做爰xxxⅹ性视频网站| 亚洲国产看品久久| 久久免费观看电影| 一级毛片 在线播放| av卡一久久| 狠狠精品人妻久久久久久综合| 99国产精品免费福利视频| 国产精品国产三级专区第一集| 欧美中文综合在线视频| 国产老妇伦熟女老妇高清| 天天躁狠狠躁夜夜躁狠狠躁| 看十八女毛片水多多多| 18在线观看网站| 黑人猛操日本美女一级片| av女优亚洲男人天堂| 久久国产精品男人的天堂亚洲| 久久国产精品大桥未久av| 精品国产露脸久久av麻豆| 超色免费av| 国产高清国产精品国产三级| 国产黄色视频一区二区在线观看| 一级爰片在线观看| 狠狠婷婷综合久久久久久88av| 日本vs欧美在线观看视频| 大片免费播放器 马上看| 亚洲美女搞黄在线观看| 九草在线视频观看| 波多野结衣一区麻豆| 综合色丁香网| 亚洲成人一二三区av| 欧美黄色片欧美黄色片| 亚洲人成电影观看| 中国国产av一级| 建设人人有责人人尽责人人享有的| 久热这里只有精品99| a级毛片在线看网站| 国产精品欧美亚洲77777| 水蜜桃什么品种好| 人妻 亚洲 视频| 一级片免费观看大全| 国产亚洲午夜精品一区二区久久| 9热在线视频观看99| 秋霞伦理黄片| 亚洲激情五月婷婷啪啪| 国产片内射在线| 人妻系列 视频| 国产毛片在线视频| 亚洲色图 男人天堂 中文字幕| 人人妻人人添人人爽欧美一区卜| 久久久久久免费高清国产稀缺| 国产成人精品在线电影| 最新的欧美精品一区二区| 国产亚洲欧美精品永久| 春色校园在线视频观看| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 丝袜人妻中文字幕| 日本猛色少妇xxxxx猛交久久| 99久久精品国产国产毛片| 午夜精品国产一区二区电影| kizo精华| 男女啪啪激烈高潮av片| 熟女少妇亚洲综合色aaa.| 欧美 亚洲 国产 日韩一| 熟妇人妻不卡中文字幕| 大香蕉久久网| 亚洲色图 男人天堂 中文字幕| 青青草视频在线视频观看| 99久久人妻综合| 亚洲第一区二区三区不卡| 欧美中文综合在线视频| 少妇熟女欧美另类| 十八禁网站网址无遮挡| 精品国产一区二区久久| 少妇猛男粗大的猛烈进出视频| 熟妇人妻不卡中文字幕| 熟女电影av网| 熟女少妇亚洲综合色aaa.| 97精品久久久久久久久久精品| 欧美黄色片欧美黄色片| 国产熟女午夜一区二区三区| 天堂8中文在线网| 天天躁夜夜躁狠狠躁躁| 国产精品.久久久| 国产精品亚洲av一区麻豆 | 成人影院久久| 黄色 视频免费看| 色94色欧美一区二区| 中文字幕色久视频| 在线亚洲精品国产二区图片欧美| 国产av精品麻豆| 国产男女内射视频| 一二三四在线观看免费中文在| 亚洲男人天堂网一区| 精品国产乱码久久久久久小说| 9191精品国产免费久久| 国产xxxxx性猛交| 日产精品乱码卡一卡2卡三| 亚洲 欧美一区二区三区| 国产日韩欧美亚洲二区| 欧美精品一区二区大全| 亚洲av电影在线观看一区二区三区| 国产精品蜜桃在线观看| 国产有黄有色有爽视频| 色哟哟·www| 亚洲精品中文字幕在线视频| 亚洲一码二码三码区别大吗| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频在线观看免费| 最黄视频免费看| 国产精品嫩草影院av在线观看| 人妻一区二区av| 久久久久视频综合| 女的被弄到高潮叫床怎么办| 亚洲精品视频女| 夜夜骑夜夜射夜夜干| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 久久精品国产亚洲av高清一级| 久久久精品94久久精品| 欧美日韩亚洲高清精品| 叶爱在线成人免费视频播放| 夫妻午夜视频| 女的被弄到高潮叫床怎么办| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久| 丰满饥渴人妻一区二区三| 成人毛片60女人毛片免费| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃| 天堂中文最新版在线下载| 国产精品 国内视频| 在线观看免费日韩欧美大片| 99久久综合免费| 久久这里有精品视频免费| 成人黄色视频免费在线看| 亚洲精品国产av成人精品| 国产精品国产av在线观看| 最新中文字幕久久久久| www日本在线高清视频| 国产淫语在线视频| 波多野结衣一区麻豆| 久久国内精品自在自线图片| 亚洲第一青青草原| 一级毛片 在线播放| 一边摸一边做爽爽视频免费| 亚洲成色77777| 激情五月婷婷亚洲| 韩国精品一区二区三区| 国产精品 国内视频| 午夜福利视频精品| 日韩一区二区视频免费看| 亚洲美女视频黄频| 在线免费观看不下载黄p国产| 久久精品人人爽人人爽视色| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| 国产女主播在线喷水免费视频网站| 日本爱情动作片www.在线观看| 久久国产精品男人的天堂亚洲| 国产精品一国产av| 一本久久精品| 国产精品二区激情视频| 99久久中文字幕三级久久日本| 日韩一区二区三区影片| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 久久久国产欧美日韩av| 国产精品一国产av| 亚洲一区中文字幕在线| 国产精品.久久久| 有码 亚洲区| 乱人伦中国视频| 免费人妻精品一区二区三区视频| 日韩免费高清中文字幕av| 在线精品无人区一区二区三| 精品午夜福利在线看| 中文字幕制服av| 一级,二级,三级黄色视频| 丰满少妇做爰视频| 高清视频免费观看一区二区| 国产一区亚洲一区在线观看| 晚上一个人看的免费电影| 青草久久国产| 春色校园在线视频观看| 国产伦理片在线播放av一区| 亚洲国产av影院在线观看| 日韩 亚洲 欧美在线| videosex国产| 男女国产视频网站| 亚洲av在线观看美女高潮| 亚洲激情五月婷婷啪啪| 亚洲国产欧美网| 日韩在线高清观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 一二三四在线观看免费中文在| 国产免费现黄频在线看| 男女高潮啪啪啪动态图| 伊人久久国产一区二区| 亚洲人成电影观看| 高清欧美精品videossex| 欧美人与善性xxx| 久久久久国产一级毛片高清牌| 美女视频免费永久观看网站| 你懂的网址亚洲精品在线观看| 成人漫画全彩无遮挡| 亚洲国产毛片av蜜桃av| 国产熟女午夜一区二区三区| 久久久久精品性色| 伦理电影大哥的女人| 丰满乱子伦码专区| 亚洲伊人色综图| 欧美精品一区二区免费开放| av免费在线看不卡| 亚洲成人一二三区av| 亚洲av欧美aⅴ国产| 国产免费一区二区三区四区乱码| 大香蕉久久网| 啦啦啦在线观看免费高清www| 欧美精品人与动牲交sv欧美| 黄片播放在线免费| 午夜福利一区二区在线看| 日韩中文字幕视频在线看片| 韩国精品一区二区三区| 香蕉国产在线看| 日韩 亚洲 欧美在线| 你懂的网址亚洲精品在线观看| 一二三四中文在线观看免费高清| 午夜福利,免费看| 国产亚洲欧美精品永久| 男女午夜视频在线观看| 哪个播放器可以免费观看大片| 少妇熟女欧美另类| 老鸭窝网址在线观看| 欧美 亚洲 国产 日韩一| 亚洲人成77777在线视频| 久久精品久久精品一区二区三区| a级片在线免费高清观看视频| 国产精品免费大片| 亚洲欧美色中文字幕在线| 日韩制服骚丝袜av| 在线亚洲精品国产二区图片欧美| 两性夫妻黄色片| 国产精品国产三级国产专区5o| 边亲边吃奶的免费视频| 丝袜脚勾引网站| av网站免费在线观看视频| 一级黄片播放器| 亚洲人成电影观看| 老司机影院成人| 丝袜美腿诱惑在线| 国产1区2区3区精品| 精品酒店卫生间| 色播在线永久视频| 肉色欧美久久久久久久蜜桃| 精品久久久精品久久久| 制服丝袜香蕉在线| 性色avwww在线观看| 国产免费福利视频在线观看| 在线 av 中文字幕| 天天躁夜夜躁狠狠久久av| 秋霞在线观看毛片| 青草久久国产| 亚洲精品中文字幕在线视频| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 91国产中文字幕| 久久久久久免费高清国产稀缺| 最新的欧美精品一区二区| 99热全是精品| 亚洲精品,欧美精品| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 久久精品久久久久久久性| 久久精品亚洲av国产电影网| 久久久精品区二区三区| 欧美精品一区二区免费开放| 妹子高潮喷水视频| 国产精品一国产av| 国产一级毛片在线| av免费观看日本| 亚洲,一卡二卡三卡| 亚洲国产日韩一区二区| 中文字幕av电影在线播放| 五月开心婷婷网| 色播在线永久视频| 人体艺术视频欧美日本| 春色校园在线视频观看| 男女免费视频国产| 国产 精品1| 日韩av不卡免费在线播放| 97人妻天天添夜夜摸| 亚洲av国产av综合av卡| 韩国高清视频一区二区三区| 欧美日韩视频精品一区| 在线亚洲精品国产二区图片欧美| 男人操女人黄网站| 狠狠精品人妻久久久久久综合| 国产极品粉嫩免费观看在线| 久久人人97超碰香蕉20202| 性少妇av在线| 国产成人精品一,二区|