韓延成,梁夢(mèng)媛,Said M Easa,唐 偉,初萍萍,高學(xué)平
?
平底懸鏈線形明渠水力最優(yōu)斷面求解
韓延成1,梁夢(mèng)媛1,Said M Easa2,唐 偉1,初萍萍1,高學(xué)平3
(1. 濟(jì)南大學(xué)水利與環(huán)境學(xué)院,濟(jì)南 250022;2. Department of Civil Engineering, Ryerson University, Toronto, M5B 2K3, Canada; 3. 天津大學(xué)水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072)
斷面設(shè)計(jì)是渠道設(shè)計(jì)的重要內(nèi)容之一,適宜的渠道斷面不僅能夠增加過(guò)流能力,提高輸水效率,減小輸水損失,還能降低建造成本。該文提出了一種具有平底和懸鏈線形側(cè)邊的明渠斷面。這種斷面將平底和懸鏈線側(cè)邊平滑連接,既具有平底斷面建造容易、靈活,管護(hù)方便,底部容易壓實(shí),側(cè)邊和平底可以用不同材料建造(以降低成本)等優(yōu)點(diǎn),也具有懸鏈線形斷面過(guò)流能力大、無(wú)應(yīng)力集中拐角、不宜滲漏、防凍脹能力強(qiáng),耐久性好等優(yōu)點(diǎn),可廣泛應(yīng)用于大、中、小型渠道及寒區(qū),具有良好的實(shí)用價(jià)值。推導(dǎo)了過(guò)流面積、濕周、水面寬度等水力斷面特性計(jì)算公式。提出了一個(gè)更簡(jiǎn)單的正常水深的迭代算法?;诶窭嗜粘俗臃?,推導(dǎo)出了平底懸鏈線形明渠的水力最優(yōu)斷面,結(jié)果表明其水力最優(yōu)斷面的底寬與水深比、水面寬與水深比、底寬與形狀系數(shù)比、水面寬度與形狀系數(shù)比、形狀系數(shù)與水深比均為常數(shù):寬深比等于0.405,形狀系數(shù)與水深比等于0.474,水面寬與水深的比值為2.112,底寬與形狀系數(shù)的比值為0.855。與現(xiàn)有平底斷面(梯形、平底拋物線形、平底半立方拋物線形)進(jìn)行了比較,結(jié)果表明,在過(guò)流面積或濕周一定的情況下,平底懸鏈線形斷面的過(guò)流能力最大,相反,在流量一定的情況下,平底懸鏈線形斷面的過(guò)流面積、濕周、水面寬度是最小的。與傳統(tǒng)的懸鏈線形渠道進(jìn)行了比較,增加平底后,在同等條件下,平底懸鏈線形渠道水力最優(yōu)斷面的過(guò)流能力不僅沒(méi)有降低,反而增加了,意味著其經(jīng)濟(jì)性也優(yōu)于傳統(tǒng)的懸鏈線斷面。研究為平底懸鏈線形渠道設(shè)計(jì)提供理論支撐。
形狀;水力學(xué);渠道;平底;懸鏈線形;水力最優(yōu)斷面
中國(guó)有300多萬(wàn)千米長(zhǎng)的渠道,每年有大量的渠道需要建設(shè)、改造。明渠斷面設(shè)計(jì)理論對(duì)提高輸水效率、減小輸水損失、提高灌區(qū)農(nóng)業(yè)發(fā)展、減小建造成本均有重要的意義[1-2]。過(guò)去,由于施工、襯砌、預(yù)制機(jī)具落后,渠道大多用簡(jiǎn)單梯形、矩形斷面[1],隨著機(jī)械化襯砌、預(yù)制技術(shù)的發(fā)展,越來(lái)越多的輸水工程采用曲線形或部分采用曲線形斷面[3-5],例如U形斷面、拋物線形斷面、弧形坡腳梯形斷面。
根據(jù)渠道底部形狀不同,傳統(tǒng)的明渠斷面可以分為2類:1)平底斷面,包括梯形、矩形斷面;2)曲線形斷面,包括半圓形、拋物線形、懸鏈線形、蛋形等斷面[1]。曲線形和平底斷面均有各自的優(yōu)缺點(diǎn)。學(xué)者們普遍認(rèn)為曲線形斷面有如下優(yōu)點(diǎn)[4-11]:1)曲線形斷面沒(méi)有拐角,沒(méi)有應(yīng)力集中點(diǎn),不易有應(yīng)力集中導(dǎo)致的裂縫,因此滲漏少;2)曲線形斷面從底部到頂部是逐漸擴(kuò)大的,因而具有更好的邊坡穩(wěn)定性(特別是非襯砌渠道);3)曲線形斷面具有更大的過(guò)流能力和更好的水力學(xué)特性;4)曲線形斷面的防凍脹、耐久性特性普遍優(yōu)于梯形斷面[12-15],因而和使用壽命更長(zhǎng)。正是曲線形斷面的這些特點(diǎn),使曲線形或復(fù)合曲線形斷面成為灌區(qū)使用最廣泛的渠道斷面形式之一。例如U形斷面底部采用了曲線形圓弧。雖然施工難度較梯形斷面增大了,但其防滲漏、抗凍張、耐久性及過(guò)流能力均好于梯形斷面,使其成為最廣泛應(yīng)用的斷面之一。拋物線形斷面是繼梯形和U形斷面之后發(fā)展的新斷面,具有水流條件好,渠道不易淤積、抗凍脹能力強(qiáng)和節(jié)省耕地的特點(diǎn), 并且隨著施工機(jī)具的發(fā)展,拋物線形渠道在施工制模中更容易計(jì)算和控制,因此在水利水電工程、農(nóng)田灌溉和排水及在南水北調(diào)工程中廣泛應(yīng)用[16-17]。河北省石津灌區(qū)、甘肅省洪水河灌區(qū)、寧夏引黃灌區(qū)都大量地使用了拋物線形斷面混凝土襯砌防滲渠道,效果很好[16]。另外,廣泛應(yīng)用的圓形斷面、馬蹄形、城門洞、卵形均為純曲線或部分曲線形斷面,也是不可或缺的輸水?dāng)嗝?。學(xué)者們?cè)絹?lái)越重視新型渠道的研究,提出了許多創(chuàng)新斷面。魏文禮等[18]提出了半立方拋物線形斷面,Han等[9-10]提出了立方拋物線形斷面和10/3次方拋物線形斷面。學(xué)者們對(duì)新型渠道斷面及曲線形斷面的水力學(xué)特性展開(kāi)了廣泛的研究。Loganathan等[8,11]對(duì)拋物線形斷面的設(shè)計(jì)及水力最優(yōu)斷面展開(kāi)了深入研究,張寬地等[19]對(duì)圓形斷面的水力特性進(jìn)行了研究,梁元博等[20]對(duì)城門洞形、馬蹄形斷面進(jìn)行了研究,文輝等[16,21-22]對(duì)拋物線形斷面進(jìn)行了研究。但曲線形斷面也有缺點(diǎn),例如建造的靈活性不如梯形斷面,底部不易壓實(shí)[3,6-7],不宜應(yīng)用于大型寬淺型渠道(受曲線函數(shù)的約束),另外由于曲線形斷面只有2個(gè)曲線側(cè)邊,缺少平底部分會(huì)使維護(hù)增加難度[3,6]。平底斷面(如梯形、矩形)具有底部施工工藝簡(jiǎn)單,底部容易壓實(shí),底寬可以變化,建造靈活等優(yōu)點(diǎn)[4,7-8],但其缺點(diǎn)是水力學(xué)特性不如曲線形斷面,過(guò)流能力小且有明顯的應(yīng)力集中點(diǎn)和拐角,易造成裂縫和滲漏,易遭凍脹破壞[7,23],耐久性不如無(wú)應(yīng)力集中點(diǎn)的曲線形斷面。
學(xué)者、工程師們?cè)趯?duì)曲線形斷面大量研究的基礎(chǔ)上,提出了各種新型復(fù)合斷面,包括U形斷面、弧形坡腳梯形、平底拋物線形斷面等。Abdulrahman[24]提出了一種梯形底、矩形側(cè)邊的復(fù)合斷面,Babaeyan-Koopaei[25]提出了一種拋物線形底三角形側(cè)邊的復(fù)合斷面,Vatankhah[26]提出一種通用的多邊形渠道。U斷面是將圓形底和梯形側(cè)邊結(jié)合的復(fù)合斷面,目前得到了廣泛的工程實(shí)際應(yīng)用。弧形坡腳梯形斷面是一種平底圓角的復(fù)合斷面[11,23]。相對(duì)于梯形斷面,雖然其過(guò)流能力提高有限,但能使平底、圓角、側(cè)邊平滑連接,既有梯形斷面的優(yōu)點(diǎn),又有曲線形斷面的優(yōu)點(diǎn),其防凍脹特性優(yōu)于梯形斷面,襯砌板不易產(chǎn)生凍脹破壞[23],具有良好的實(shí)用價(jià)值,是中國(guó)渠道防滲工程技術(shù)規(guī)范推薦使用的一種渠道形式[23]。另外,Das[7]提出了將平底和拋物線形側(cè)邊結(jié)合的平底拋物線渠道斷面,Han[6]提出了平底的半立方拋物線形渠道及水力最優(yōu)斷面。Easa[27](2009)[28]提出了兩段式平底拋物線形斷面,證明其較平底拋物線形斷面具有更優(yōu)的特性。Easa等[28-29]提出了平底的橢圓形渠道及最優(yōu)斷面。
懸鏈線形斷面是水力學(xué)中重要的斷面類型,具有優(yōu)良的水力學(xué)特性,最優(yōu)斷面的過(guò)流能力較拋物線形斷面過(guò)流能力還大[1,30],本文結(jié)合梯形斷面和懸鏈線形斷面各自的優(yōu)點(diǎn),提出一種具有平底和懸鏈線形側(cè)邊的斷面,理論上它既具有懸鏈線形斷面無(wú)應(yīng)力集中點(diǎn),不易有應(yīng)力集中導(dǎo)致的裂縫,滲漏少,穩(wěn)定性好、水力特性優(yōu)良、抗凍脹能力強(qiáng)等特征,也具有平底斷面設(shè)計(jì)、建造靈活,施工難度小、管理和維護(hù)容易,底部容易壓實(shí)等特性,具有良好的實(shí)用價(jià)值和應(yīng)用前景。本文研究了其水力斷面特性、正常水深及水力最優(yōu)斷面,以期為該斷面工程應(yīng)用提供理論支撐。
傳統(tǒng)的懸鏈線形斷面是曲線形斷面(圖1a),形狀可表示為[1]
式中為形狀系數(shù);為橫坐標(biāo),m;為縱坐標(biāo),m;cosh為雙曲余弦函數(shù)。
注:為懸鏈線形側(cè)邊部分對(duì)應(yīng)水面寬度,m;為形狀系數(shù);為水深,m;為渠道底寬,m;為水面處的邊坡系數(shù);hc為平底懸鏈線形斷面的水面總寬度,m。下同。
Note:is width of water surface for side portion of catenary section, m;is shape factor;is water depth, m;is bottom width, m;is side slope factor at water surface;hcis total width of water surface of horizontal-bottomed catenary section, m. Same as below.
圖1 2種懸鏈線形斷面
Fig. 1 Two types of catenary sections
平底懸鏈線形斷面由1個(gè)平底和2條懸鏈線側(cè)邊組成,平底與側(cè)邊平滑連接,沒(méi)有拐點(diǎn),因而也沒(méi)有應(yīng)力集中點(diǎn)。如圖1b所示,方程可表示為
平底懸鏈線形斷面面積可用積分法得到
式中hc為水深對(duì)應(yīng)平底懸鏈線形斷面面積,m2;sinh為雙曲正弦函數(shù)。
濕周為平底和2個(gè)側(cè)邊長(zhǎng)度之和,用積分法可得到
式中hc為濕周,m。
1.2.1 正常水深計(jì)算公式
正常水深是明渠水力學(xué)的重要內(nèi)容,在渠道設(shè)計(jì)、運(yùn)行、水面線計(jì)算中廣泛應(yīng)用。正常水深與流量、糙率、底坡之間形成了復(fù)雜的非線性關(guān)系,大多數(shù)類型渠道斷面沒(méi)有顯式直接求解公式[31]。學(xué)者們對(duì)正常水深的顯式求解方法進(jìn)行了大量的研究[17,19,32],針對(duì)梯形、拋物線形、蛋形、馬蹄形等各種斷面提出了顯式求解方法。迭代法是最常用的方法,其優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,可以無(wú)限逼近理論解[31,33-35]。
正常水深的求解一般根據(jù)明渠均勻流計(jì)算中最常用的曼寧公式[1]表示如下
式中為流量,m3/s;為糙率;為渠底縱向比降。
將式(3)、式(6)和式(7)代入式(9),簡(jiǎn)化后可以得到流量和正常水深之間的關(guān)系為
可以看出,式(10)是一個(gè)高度非線性方程,不能顯式求解正常水深,不方便工程應(yīng)用,研究顯式算法是必要的。
1.2.2 牛頓顯式迭代顯式算法
1)牛頓顯式迭代顯式算法推導(dǎo)
根據(jù)式(10)和式(11),可以得到牛頓迭代顯式算法為
其中
從式(12)可以看出,推導(dǎo)出的牛頓迭代算式雖然可以用來(lái)手工計(jì)算,但表達(dá)式還是比較復(fù)雜。
1.2.3 簡(jiǎn)單顯式迭代算法
根據(jù)式(10),本文提出簡(jiǎn)單的顯式迭代算法如下
根據(jù)迭代原理[38],式(16)收斂的條件是
式中
1.3.1 底懸鏈線形斷面的水力最優(yōu)斷面模型
根據(jù)水力學(xué),水力最優(yōu)斷面為流量一定的情況下,過(guò)流斷面的面積最小的斷面[1,3,4,6],可表示為
目標(biāo)函數(shù)
約束條件
1.3.2 水力最優(yōu)斷面的推導(dǎo)
根據(jù)最優(yōu)化方法中的拉格朗日乘子法,式(22)和(23)可表示為(Rao,2009)
式中為拉格朗日乘子,為約束函數(shù)。由式(24)和式 (25),消掉可得到
同樣,由式(24)和式(26),消掉得到
根據(jù)式(23),對(duì)求關(guān)于、和的導(dǎo)數(shù),并代入式(27)和式(28)得到:
以上2式是求解平底懸鏈線形渠道水力最優(yōu)斷面的微分方程。下面根據(jù)式(29)和式(30)求解平底懸鏈線形渠道水力最優(yōu)斷面的具體參數(shù)。
同樣,根據(jù)式(21),求hc關(guān)于、和的導(dǎo)數(shù)分別為
將式(31)代入式(29),式(32)代入式(30),簡(jiǎn)化后得到
聯(lián)接方程組(33),可以得到= ±3.602,= ±0.855。由于工程中、、均為大于0的值,因此平底懸鏈線形渠道水力最優(yōu)斷面2個(gè)最重要的參數(shù)為
根據(jù)式(34)和式(35)可以得到水面寬與形狀系數(shù)比為
根據(jù)式(3)和式(34),可以得到水力最優(yōu)斷面形狀系數(shù)和水深之間的關(guān)系為
由式(35)和式(37)可以得到水力最優(yōu)斷面的寬深比為
根據(jù)式(34)~式(37),可以得到與的比率和B與的比率分別為
1.3.3 水力最優(yōu)斷面的水力學(xué)計(jì)算公式
1)已知水深求流量
將式(34)~(38)代入式(6)、式(7),可以得到計(jì)算hc和hc的直接求解公式
將hc和hc代入式(9),可以得到流量的直接計(jì)算公式為
2)已知流量求水深
利用式(44)~(37),可以得到已知流量求、hc、hc和hc的表達(dá)式為
3)正常水深和臨界水深
顯然水力最優(yōu)斷面條件下正常水深就是式(44),是一個(gè)顯式公式。臨界水深是水力學(xué)的另一個(gè)重要參數(shù),在水面線,水躍等水力學(xué)計(jì)算中廣泛應(yīng)用。臨界水深的通用計(jì)算公式為
式中為動(dòng)能修正系數(shù);為重力加速度,m/s2。將式(40)和(41)代入式(49),解方程可以得到臨界水深h的顯式求解公式為
1)某地要建設(shè)一條渠道,已知糙率=0.014,渠底縱坡=1/20 000,流量=25.0 m3/s。要求按水力最優(yōu)斷面設(shè)計(jì)平底懸鏈線形渠道并求水面寬度、過(guò)水?dāng)嗝婷娣e和濕周。
注:為懸鏈線形側(cè)邊部分對(duì)應(yīng)水面寬度與形狀系數(shù)之比;為底寬與形狀系數(shù)之比。
Note:is ratio of water surface width of side portion for catenary section () to shape factor ();is ratio of bottom width () to shape factor ().
圖2 過(guò)水?dāng)嗝婷娣ehc和、之間的關(guān)系
Fig. 2 Relationship between flow areahcandand
梯形斷面、矩形斷面是應(yīng)用最廣泛的斷面類型。另外,由于其兼有平底和拋物線形斷面的優(yōu)點(diǎn),平底拋物線形斷面水力最優(yōu)斷面的過(guò)流能力較同樣條件下的梯形斷面大,得到大量的學(xué)者認(rèn)可和關(guān)注[3,7,28]。本文提出的平底懸鏈線形斷面過(guò)流能力是否能達(dá)到平底拋物線形斷面或接近呢?
2.2.1 與平底及梯形斷面水力特性比較
1)與平底拋物線形斷面比較
平底拋物線形斷面由平底和拋物線形側(cè)邊組成 (2007)[3,7],其形狀定義為[3]
與平底拋物線形斷面對(duì)比(表1)可以看出,在過(guò)水?dāng)嗝婷娣e或濕周相同的條件下,平底懸鏈線形斷面的過(guò)流能力大于平底拋物線形斷面。在流量相同的條件下,平地懸鏈線形斷面的過(guò)流斷面面積、濕周、水面寬度均小于平底拋物線形斷面,意味著其土方成本、襯砌成本、征地費(fèi)均減小平底拋物線形斷面。
平底半立方拋物線形斷面是一種具有平底和半立方拋物線側(cè)邊的組合斷面,Han[6]研究了其水力最優(yōu)斷面及其特性(結(jié)果如表1所示)。對(duì)比結(jié)果表明,在過(guò)水?dāng)嗝婷娣e或濕周相同的條件下,本文提出的平地懸鏈線形斷面的過(guò)流能力大于平底半立方拋物線形斷面。在流量相同的條件下,平地懸鏈線形斷面的過(guò)流斷面面積、濕周、水面寬度均小于平底半立方拋物線形斷面,是一種更經(jīng)濟(jì)的斷面。
表1 懸鏈線形渠道與現(xiàn)有渠道水力最優(yōu)斷面水力特性比較
在機(jī)械化襯砌和預(yù)制渠道越來(lái)越廣泛應(yīng)用的背景下,建造的土渠越來(lái)越少,曲線形渠道與梯形渠道的建造難度差別越來(lái)越小。濕周的減小可以減小襯砌費(fèi)用,水面寬度的減小可以減小征地費(fèi),過(guò)水?dāng)嗝娴臏p小可以減小土方費(fèi)用。更重要的是,本文提出的斷面,平底和側(cè)邊平滑連接,無(wú)應(yīng)力集中點(diǎn),可以減小由于應(yīng)力集中造成的裂縫[6-8],是一種非常實(shí)用的斷面。
2.2.2 案例分析
2)按其他平底斷面設(shè)計(jì):用同樣的方法,利用表1中的公式,可以得到按梯形斷面、平底半立方拋物線形斷面、平底拋物線形斷面設(shè)計(jì)的水力最優(yōu)斷面結(jié)果如表2所示。對(duì)比結(jié)果表明,平底懸鏈線形斷面的過(guò)流面積、濕周和水面寬度均是最小的。
表2 不同斷面類型得到的水力最優(yōu)斷面結(jié)果
傳統(tǒng)懸鏈線形斷面具有良好的水力學(xué)特性[1,30]。雖然本文作者認(rèn)為平底懸鏈線形斷面相對(duì)于傳統(tǒng)懸鏈線形斷面,其最大的優(yōu)點(diǎn)是靈活性。但增加平底后,需要研究水力最優(yōu)斷面水力學(xué)特性是否降低。
由圖1可以看出,傳統(tǒng)的懸鏈線形斷面是平底懸鏈線形斷面的一種特殊形式。設(shè)=0,則式(2)為傳統(tǒng)的懸鏈線形斷面。同時(shí)將=0代入平底懸鏈線形斷面的斷面面積與濕周計(jì)算式(6)和式(7),可以得到傳統(tǒng)懸鏈線形斷面的面積和濕周計(jì)算公式為
與求解平底懸鏈線形最優(yōu)斷面的方法相似(式(41)~式(48)),可以得到懸鏈線形最優(yōu)斷面的過(guò)水?dāng)嗝婷娣e、濕周、水面寬度的顯式計(jì)算公式(如表2所示)。對(duì)比結(jié)果顯示,增加平底后水力最優(yōu)斷面水力特性并沒(méi)有降低。在過(guò)水?dāng)嗝婷娣e或濕周相同的條件下,平底懸鏈線形斷面的過(guò)流能力大于傳統(tǒng)懸鏈線形斷面;在流量相同的條件下,平底懸鏈線形斷面的過(guò)流斷面面積、濕周、水面寬度均小于傳統(tǒng)懸鏈線形斷面。意味著土方成本、襯砌成本、征地費(fèi)均減小了。從圖1、圖2對(duì)比可以看出,加平底后,建造更加靈活了(渠道寬度可以隨底寬靈活調(diào)節(jié))。另外,平底懸鏈線形斷面加平底后,由于施工機(jī)械可以進(jìn)入渠道施工,顯然施工難度降低了,測(cè)量人員可以站在底部放線,平底的精度更容易控制,底部也容易壓實(shí),可以避免一般曲線形斷面底部容易空洞的問(wèn)題[3,6],管護(hù)時(shí),人可以站在底部操作,機(jī)械可以在底部行走,管護(hù)也方便了[3,6]。更重要的是,正如著名的渠道設(shè)計(jì)專家Das指出的那樣,曲線形側(cè)邊加側(cè)邊后,就可以像梯形斷面一樣,側(cè)邊和底部采用不同的材料,以減小建造成本,或增加防滲效果[7]。因此平底懸鏈線形是一種非常實(shí)用的斷面。
2)平底懸鏈線形斷面與平底斷面相比,與現(xiàn)有的平底斷面(梯形、平底拋物線形、平底半立方拋物線形斷面)比較,在同等條件下(過(guò)流面積或濕周相同),平底懸鏈線形最優(yōu)斷面的過(guò)流能力最大。相反,在過(guò)流量一定的情況下,平底懸鏈線形最優(yōu)斷面具有最小的過(guò)流面積和濕周,這意味著,平底懸鏈線形斷面的在流量一定的情況下,需要更少的土方量,更小的襯砌量和更少的征地費(fèi),因而更經(jīng)濟(jì)。同時(shí)其具有平底斷面建造靈活(底部容易壓實(shí)、寬度可以隨底寬靈活調(diào)整,底部和側(cè)邊可以采用不同材料以減小成本或增加防滲效果等)、施工難度降低、管護(hù)方便等優(yōu)點(diǎn)。
3)與傳統(tǒng)的懸鏈線形斷面相比,與傳統(tǒng)的懸鏈線形渠道比較結(jié)果表明,增加平底后,在同等條件下,平底懸鏈線形渠道水力最優(yōu)斷面的過(guò)流能力增加了。相反,在過(guò)流量一定的情況下,平底懸鏈線形最優(yōu)斷面具有更小的過(guò)流面積和濕周、水面寬度,意味著,襯砌量、土方量和征地費(fèi)更小,經(jīng)濟(jì)性、實(shí)用性更高。同時(shí)其還具有傳統(tǒng)的懸鏈線形斷面無(wú)應(yīng)力集中拐點(diǎn)、過(guò)流能力大、滲漏量小、不宜破壞、抗凍脹能力強(qiáng)的特點(diǎn),因而其實(shí)用性更強(qiáng),應(yīng)用前景廣闊。
[1] Chow V T. Open Channel Hydraulics[M]. New York: McGraw-Hill, 1959.
[2] Jain A, Bhattacharjya R K, Sanaga S. Optimal design of composite channels using genetic algorithm[J]. Journal of Irrigation & Drainage Engineering, 2004, 130(4): 286-295.
[3] Han Yancheng, Gao Xueping, Xu Zhenghe. The best hydraulic section of horizontal-bottomed parabolic channel section[J]. 水動(dòng)力學(xué)研究與進(jìn)展B輯,2017,29(2): 305-313.
[4] 韓延成,徐征和,高學(xué)平,等. 二分之五次方拋物線形明渠設(shè)計(jì)及提高水力特性效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):131-136. Han Yancheng, Xu Zhenghe, Gao Xueping, et al. Design of two and a half parabola-shaped canal and its effect in improving hydraulic property[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 131-136. (in Chinese with English abstract)
[5] 羅金耀,王長(zhǎng)德,夏富洲,等. 大型輸水渠道系統(tǒng)優(yōu)化設(shè)計(jì)研究[J]. 水利學(xué)報(bào),1996(6):24-28. Luo Jinyao, Wang Changde, Xia Fuzhou, et al. Optimization design of large-scale water conveyance channel system[J]. Journal of Hydraulic Engineering, 1996(6): 24-28. (in Chinese with English abstract)
[6] Han Yancheng. Horizontal bottomed semi-cubic parabolic channel and best hydraulic section[J]. Flow Measurement & Instrumentation, 2015, 45: 56-61.
[7] Das A. Optimal design of channel having horizontal bottom and parabolic sides[J]. Journal of Irrigation & Drainage Engineering, 2007, 133(2): 192-197.
[8] Loganathan G V. Optimal design of parabolic canals[J]. Journal of Irrigation & Drainage Engineering, 1991, 117(5): 716-735.
[9] Han Yancheng, Easa S M. New and improved three and one-third parabolic channel and most efficient hydraulic section[J]. Canadian Journal of Civil Engineering, 2017, 44(5): 387–391.
[10] Han Yancheng, Easa S M. Superior cubic channel section and analytical solution of best hydraulic properties[J]. Flow Measurement & Instrumentation, 2016, 50: 169-177.
[11] Mironenko A P, Willardson L S, Jenab S A. Parabolic canal design and analysis[J]. Journal of Irrigation & Drainage Engineering, 1984, 110(2): 241-246.
[12] 鄭文錦,林琳. U形斷面抗凍脹能力優(yōu)越性分析[J]. 水利與建筑工程學(xué)報(bào),2006,4(1):51-53. Zheng Wenjin, Lin Lin. Advantages of U-shaped section for frost heaving resistance [J]. Journal of Water Resources and Architectural Engineering, 2006, 4(1): 51-53. (in Chinese with English abstract)
[13] 楊漢林. 實(shí)用弧形坡腳梯形斷面的設(shè)計(jì)[J]. 中國(guó)農(nóng)村水利水電,2000(12):28-31. Yang Hanlin. Design of practical curved slope trapezoidal section[J]. China Rural Water and Hydropower, 2000(12): 28-31. (in Chinese with English abstract)
[14] 王正中,李甲林,陳濤,等. 弧底梯形渠道砼襯砌凍脹破壞的力學(xué)模型研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(1):18-23. Wang Zhengzhong, Li Jialin, Chen Tao, et al. Mechanics models of frost-heaving damage of concrete lining trapezoidal canal with arc-bottom[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(1): 18-23. (in Chinese with English abstract)
[15] 宋清林. 拋物線形混凝土襯砌渠道凍脹破壞力學(xué)模型及數(shù)值模擬[D]. 楊凌:西北農(nóng)林科技大學(xué),2015. Song Qinglin. Mechanical Model and Numerical Simulation of Frost Heaving Failure of Parabolic Concrete Lining Channel [D]. Yangling: Northwest A&F University, 2015. (in Chinese with English abstract)
[16] 文輝,李風(fēng)玲. 數(shù)值積分法計(jì)算拋物線形渠道恒定漸變流水面線[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):82-86. Wen Hui, Li Fengling. Numerical integration method for calculating water surface profile of gradually varied steady flow in parabola shaped channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 82-86. (in Chinese with English abstract)
[17] 張新燕,呂宏興. 拋物線形斷面渠道正常水深的顯式計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):121-125. Zhang Xinyan, Lü Hongxing. Explicit solution for normal depth in parabolic-shape channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 121-125. (in Chinese with English abstract)
[18] 魏文禮,楊國(guó)麗. 立方拋物線形渠道水力最優(yōu)斷面的計(jì)算[J]. 武漢大學(xué)學(xué)報(bào),2006,39(3):49-51. Wei Wenli, Yang Guoli. Calculation of optimal hydraulic cross-section for cubic parabola-shape channel [J]. Journal of Wuhan University, 2006, 39(3): 49-51. (in Chinese with English abstract)
[19] 張寬地,呂宏興,趙延風(fēng). 明流條件下圓形隧洞正常水深與臨界水深的直接計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(3):1-5. Zhang Kuandi, Lü Hongxing, Zhao Yanfeng. Direct calculation for normal depth and critical depth of circular section tunnel under free flow [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 1-5. (in Chinese with English abstract)
[20] 梁元博,馬吉明,謝省宗. 城門洞形及馬蹄形輸入隧洞內(nèi)的水躍[J]. 水利學(xué)報(bào),2000,31(7):20-24. Liang Yuanbo, Ma Jiming, Xie Shengzong. Hydraulic jumps in rectangular conduit with circular upper wall and horseshoe tunnel[J]. Journal of Hydraulic Engineering, 2000, 31(7): 20-24. (in Chinese with English abstract)
[21] 趙延風(fēng),宋松柏,孟秦倩. 拋物線形斷面渠道收縮水深的直接計(jì)算方法[J]. 水利水電技術(shù),2008,39(3):36-37. Zhao Yanfeng, Song Songbai, Meng Qinqian. A direct calculation method for water depth in parabolic-shaped channel with contracted section[J]. Water Resources and Hydropower Engineering, 2008, 39(3): 36-37. (in Chinese with English abstract)
[22] 張志昌,賈斌,李若冰,等. 拋物線形渠道的水力特性[J]. 水利水運(yùn)工程學(xué)報(bào),2015(1):61-67. Zhang Zhichang, Jia Bin, Li Ruobing, et al. Hydraulic characteristics of parabolic channels[J]. Journal of Water Resources and Hydropower Engineering, 2015(1): 61-67. (in Chinese with English abstract)
[23] 汪藝義. 弧形坡腳梯形渠道中弧形半徑的確定[J]. 水利規(guī)劃與設(shè)計(jì),2017(1):115-117. Wang Yiyi. Determination of radius radius in trapezoidal channel of curved slope[J]. Water Resources Planning and Design, 2017(1): 115-117. (in Chinese with English abstract)
[24] Abdulrahman A. Best hydraulic section of a composite channel[J]. Journal of Hydraulic Engineering, 2007, 133(6): 695-697.
[25] Babaeyan-Koopaei K, Valentine E M, Swailes D C J. Optimal design of parabolic-bottomed triangle canals[J]. Journal of Irrigation and Drainage Engineering, 2000, 126(6): 408-411.
[26] Vatankhah A R. Semi-regular polygon as the best hydraulic section in practice (Generalized solutions)[J]. Flow Measurement & Instrumentation, 2014, 38(8): 67-71.
[27] Easa S M. Improved channel cross section with two-segment parabolic sides and horizontal bottom[J]. Journal of Irrigation & Drainage Engineering, 2009, 135(3): 357-365.
[28] Easa S M. Versatile general elliptic open channel cross section[J]. Ksce Journal of Civil Engineering, 2016, 20(4): 1572-1581.
[29] Easa S M, Vatankhah A R. New open channel with elliptic sides and horizontal bottom[J]. Ksce Journal of Civil Engineering, 2014, 18(4): 1197-1204.
[30] 呂宏興,馮家濤. 明渠水力最佳斷面的比較[J]. 人民長(zhǎng)江,1994(11):42-45. Lü Hongxing, Feng Jiatao. Comparison of the best hydraulic sections in open channels[J]. People’s Yangtze River, 1994(11): 42-45. (in Chinese with English abstract)
[31] 韓延成,初萍萍,梁夢(mèng)媛,等. 冰蓋下梯形及拋物線形輸水明渠正常水深顯式迭代算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):101-106 Han Yancheng, Chu Pingping, Liang Mengyuan, et al. Explicit iterative algorithm of normal water depth for trapezoid and parabolic open channels under ice cover[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 101 -106. (in Chinese with English abstract)
[32] 張新燕,呂宏興,朱德蘭. U形渠道正常水深的直接水力計(jì)算公式[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(14):115-119. Zhang Xinyan, Lü Hongxing, Zhu Delan. Direct calculation formula for normal depth of U-shaped channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 115-119. (in Chinese with English abstract)
[33] Bijankhan M, Kouchakzadeh S. Egg-shaped cross section: Uniform flow direct solution and stability identification[J]. Flow Measurement & Instrumentation, 2011, 22(6): 511-516.
[34] Li Yonghong, Gao Zhaoliang Explicit solution for normal depth of parabolic section of open channels[J]. Flow Measurement & Instrumentation, 2014, 38(2): 36-39.
[35] Zhang X Y, Wu L. Direct solutions for normal depths in curved irrigation canals[J]. Flow Measurement & Instrumentation, 2014, 36(4): 9-13.
Optimal hydraulic section of horizontal-bottom catenary channel
Han Yancheng1, Liang Mengyuan1, Said M Easa2, Tang Wei1, Chu Pingping1, Gao Xueping3
(1.250022,; 2.M5B 2K3,300072)
A suitable channel section cannot only increase flow capacity of channel, improve efficiency of water resources, and reduce water leakage loss, but also decrease construction cost. This paper proposed a channel section with a horizontal bottom and catenary sides (HBC). The HBC section, on one hand, provided a larger flow capacity, lesser-sharp angles of stress concentration, less leakage, better slope stability and frost heave resistance than trapezoids and rectangles sections. On the other hand, it had lots of advantages of horizontal bottom sections, such as simpler construction, easier leveling and compaction of the foundation, and lesser construction cost. The most important advantage of this section was that the horizontal bottom and sides could be built with different materials or thickness for decreasing the construction cost or other purposes. The shape function for HBC was defined. The formulas for the flow area, wetted perimeter, and water surface width were presented. A simpler iterative algorithm for calculation of the normal depth was developed. The iterative convergence by this algorithm was evidenced. Comparisons showed that this simpler iterative algorithm was better than classic Newton iterative algorithm. The optimal model of the best hydraulic section of HBC was built. The general differential equations for all the sections having horizontal bottomed and curve sides were derived. The best hydraulic section of HBC channel was obtained according to Lagrange multiplier method and its characteristics were presented including shape factor, ratio of horizontal bottom width to shape factor etc. The results showed that the following optimum parameters were constant for the best hydraulic HBC section: bottom width to water depth, water surface width to depth, bottom width to shape factor, water surface width to shape factor, shape factor to water depth equals. The ratio of water surface width for catenary part to shape factor equaled 3.602, the ratio of bottom width to shape factor equaled 0.855, the ratio of bottom width to water depth equaled 0.405, and the ratio of shape factor to water depth equaled 0.474, and the ratio of total water surface width to water depth equaled 2.112. Various explicit formulae to calculate the normal depth, critical depth, shape factor, flow area, wetted perimeter and water surface width of the HBC section were derived for the best hydraulic section for HBC channel. These formulas should make the design of the HBC section easier and promote its practical applications. The optimum parameters of the best hydraulic section for existing horizontal bottom (HB) sections, such as trapezoidal, rectangle, horizontal bottomed parabolic, and horizontal bottomed semi-cubic parabolic were derived. The comparison results showed that the HBC section had larger discharge than those of existing horizontal bottom (HB) sections under the same conditions. In addition, the flow area, wetted perimeter, and water surface of the HBC section were the smallest, which means that earthwork cost, lining cost and land expropriation cost are all decreased, which means HBC section is more economical. Comparison with classic catenary section showed that the discharge of the HBC was larger than that of the classic catenary section under the same conditions. The flow area, wetted perimeter and water surface of the HBC were smaller than these of the classic catenary section, which means the HBC section has better hydraulic characteristics. Its economy was also superior to the traditional catenary section. The results were verified by examples. The proposed section should enrich existing types of open channel sections. The research provides a new practical and flexible channel section for channel design and theoretical support for horizontal-bottom catenary channel design and applications.
shapes; hydraulics; channels; horizontal bottom; catenary; best hydraulic section
2018-07-31
2019-02-10
山東省自然科學(xué)基金(ZR2017LEE028);山東省“一事一議”(周飛艨)人才計(jì)劃項(xiàng)目;山東省重點(diǎn)研發(fā)計(jì)劃(2016GSF117038);國(guó)家“十二五”科技支撐計(jì)劃(2015BAB07B02-6)
韓延成,教授,博士,主要從事水力學(xué)及河流動(dòng)力學(xué)方面研究。Email:stu_hanyc@ujn.edu.cn
10.11975/j.issn.1002-6819.2019.06.011
TV 131.4
A
1002-6819(2019)-06-0090-10
韓延成,梁夢(mèng)媛,Said M Easa,唐 偉,初萍萍,高學(xué)平. 平底懸鏈線形明渠水力最優(yōu)斷面求解[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(6):90-99. doi:10.11975/j.issn.1002-6819.2019.06.011 http://www.tcsae.org
Han Yancheng, Liang Mengyuan, Said M Easa, Tang Wei, Chu Pingping, Optimal hydraulic section of horizontal-bottom catenary channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 90-99. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.011 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2019年6期