黃賽男,金澄艷,鮑建軍,王悅,陳煒昊,吳天弋,王利宏,呂曉陽, 高雯,王步忠,朱國強,戴國俊,孫偉,5
?
F17大腸桿菌在湖羊羔羊個體脾臟中LncRNA表達譜變化
黃賽男1,金澄艷1,鮑建軍2,王悅1,陳煒昊1,吳天弋1,王利宏1,呂曉陽1, 高雯1,王步忠3,朱國強4,戴國俊1,孫偉1,5
(1揚州大學(xué)動物科學(xué)與技術(shù)學(xué)院,江蘇揚州 225009;2南京新九州農(nóng)牧科技有限公司,南京 210000;3江蘇西來原生態(tài)農(nóng)業(yè)有限公司,江蘇泰州 225300;4揚州大學(xué)獸醫(yī)學(xué)院,江蘇揚州 225009;5揚州大學(xué)教育部農(nóng)業(yè)與農(nóng)產(chǎn)品安全國際合作聯(lián)合實驗室,江蘇揚州 225009)
【目的】通過篩選對大腸桿菌()F17菌毛非腹瀉型與腹瀉型的綿羊脾臟中差異表達的lncRNA,來探究lncRNA對綿羊抗腹瀉的作用。【方法】本研究通過對湖羊羔羊口服F17菌株獲得非腹瀉和腹瀉型個體,利用羔羊腸道細菌計數(shù)、病理組織切片驗證攻毒成功性;構(gòu)建非腹瀉組和腹瀉組羔羊脾臟的cDNA文庫,使用Illumina HiSeq 2500平臺進行配對測序;通過Gene Ontology(GO)和KEGG Pathway富集分析對差異表達轉(zhuǎn)錄本功能描述和細胞通路分析,利用FPKM法估計lncRNA和mRNA轉(zhuǎn)錄物的表達水平,并用高通量測序技術(shù)RNA-seq篩選出非腹瀉和腹瀉個體脾臟中的差異表達lncRNA;然后利用熒光定量PCR技術(shù)檢測了非腹瀉組和腹瀉組羔羊脾臟組織中DE lncRNA和DE mRNA的表達水平,來驗證篩選的DE lncRNA在非腹瀉組過程中發(fā)揮作用?!窘Y(jié)果】羔羊口服F17菌株后,出現(xiàn)非腹瀉和腹瀉兩種表型,腹瀉組羔羊腸道中的細菌數(shù)量顯著高于非腹瀉組(<0.05),同時腹瀉組羔羊空腸黏膜組織出現(xiàn)不同程度的損傷,色澤暗沉,小腸絨毛部分脫落。筆者利用RNA-seq在非腹瀉和腹瀉羔羊脾臟中篩選出34個差異表達的(DE)lncRNA,703個的DE mRNA,隨機選擇一共12個DE lncRNA和DE mRNA,用q-PCR驗證它們在非腹瀉型和腹瀉型羔羊體內(nèi)的相對表達水平,發(fā)現(xiàn)與RNA-seq結(jié)果一致。通過Gene Ontology(GO)和KEGG Pathway富集分析,將DE lncRNA與GO 數(shù)據(jù)庫進行比對的結(jié)果表明一共有34條lncRNA被注釋和分類到302個功能亞類中,綿羊蛋白質(zhì)結(jié)合(GO:0005515),細胞核(GO:0005634),poly(A)RNA結(jié)合(GO:0044822),細胞質(zhì)(GO:0005737),組織重塑(GO:0048771),內(nèi)肽酶活性的調(diào)節(jié)(GO:0052548)),6-磷酸果糖-2-激酶/果糖-2,6-雙磷酸酶復(fù)合物(GO:0043540),磷脂酰肌醇磷酸化(GO:0046854),果糖-2,6-二磷酸2-磷酸酶活性(GO:0004331),鈣依賴性磷脂酶C活性(GO:0050429)等10 個功能亞類的lncRNA較多,而其余的功能亞類的lncRNA分布較少。將DE lncRNA與KEGG 通路數(shù)據(jù)庫進行比對的結(jié)果表明,一共有34條lncRNA被注釋和歸類到149個KEGG 通路中,綿羊甲狀腺激素信號通路(路徑:ko04919),Spliceosome(路徑:ko03040),白細胞跨內(nèi)皮遷移(路徑:ko04670),神經(jīng)營養(yǎng)因子信號通路(路徑:ko04722),溶酶體(路徑:ko04142),MAPK信號通路 - 途徑(路徑: ko04011),鞘脂信號通路(路徑:ko04071),吞噬體(路徑:ko04145),氧化磷酸化(路徑:ko00190)等9 個KEGG 通路的lncRNA較多,而其余的KEGG 通路的lncRNA分布較少。 通過lncRNA-mRNA相互作用網(wǎng)絡(luò)分析,發(fā)現(xiàn)6個共表達基因:MYO1G、TIMM29、CARM1、ADGRB1、SEPT4、DESI2?!窘Y(jié)論】探究了對于腹瀉產(chǎn)生非腹瀉和腹瀉型羔羊脾臟中l(wèi)ncRNA的表達譜,發(fā)現(xiàn)了非腹瀉和腹瀉羔羊脾臟中差異表達的lncRNA,有助于找出羔羊如何抵抗腹瀉的發(fā)生機制,為羔羊抵抗腹瀉提供科學(xué)的依據(jù)。
大腸桿菌F17;lncRNA;湖羊羔羊
【研究意義】羊大腸桿菌病是規(guī)模化羊場最為常見高發(fā)的細菌性疾病之一,傳統(tǒng)沿用的抗生素治療方案存在諸多缺陷。檢測影響綿羊大腸桿菌非腹瀉型相關(guān)基因的表達情況是分析綿羊抗病分子機制的基礎(chǔ),從而可以發(fā)現(xiàn)與抗大腸桿菌性狀相關(guān)的候選基因?!厩叭搜芯窟M展】1966年,Orskov等[1]首先報道了豬源大腸桿菌黏附性抗原K88,后證實黏附性抗原K88是一種依賴于質(zhì)粒表達的蛋白質(zhì)抗原[2],電子顯微鏡下觀察到其形態(tài)為暴露在菌體表面的絲狀物。目前已經(jīng)鑒定出多種動物源產(chǎn)腸毒素大腸桿菌(ETEC)菌毛,包括K88、K99、987P、F17和F41等都是動物源ETEC重要的黏附性毒力因子。lncRNA(Long non-coding RNA)是長度大于200個核苷酸的非編碼RNA。大量的研究表明,lncRNA 與人類各種腫瘤、心血管疾病和代謝疾病的發(fā)生具有密切的聯(lián)系和調(diào)控作用。值得注意的是,近年來越來越多的研究表明,lncRNA在抗病毒等天然免疫反應(yīng)中也具有重要的調(diào)控作用[3-7],相比于人的lncRNA,羊的lncRNA功能研究較滯后,而且大多集中在分析lncRNA對羊肌肉生長發(fā)育、睪丸發(fā)育、毛囊發(fā)育等性狀的調(diào)控作用[8-10]?!颈狙芯壳腥朦c】目前,關(guān)于綿羊抗病方面研究還不多,少量的研究主要集中在疾病防治方面[11-12],而綿羊抗病的分子遺傳學(xué)基礎(chǔ)研究鮮有報道?!緮M解決的關(guān)鍵問題】利用RNA-seq,對大腸桿菌F17菌毛非腹瀉型與腹瀉型綿羊個體脾臟中差異表達lncRNA進行篩選,并基于順式(cis)機制進行靶基因預(yù)測以及功能注釋分析,篩選出關(guān)鍵lncRNA。在此基礎(chǔ)上利用qPCR進行驗證。本研究從lncRNA層面上,加深了對綿羊非腹瀉組大腸桿菌F17菌毛的認識,同時有望確定綿羊非腹瀉型大腸桿菌F17菌毛的功能基因,解決中國地方羊品種對大腸桿菌病的抗病育種關(guān)鍵問題,為今后制訂抗大腸桿菌病遺傳選育策略奠定基礎(chǔ)和提供理論依據(jù)。
試驗用綿羊于2016年12月購自泰州市西來原生態(tài)農(nóng)業(yè)有限公司。隨機選擇生長發(fā)育良好、日齡體重相近的18只3日齡羔羊,并將羔羊全部隔離飼養(yǎng)。先用10%羔羊奶粉(表1)飼喂,以確保在試驗前適應(yīng)飲食需要。5日齡時飼喂12.5%羔羊奶粉和大腸桿菌F17菌液(4.6×108CFU/mL),同時保證自由飲水。每天記錄羔羊糞便形態(tài)(表2),在有一些羔羊持續(xù)腹瀉2 d后,將羔羊分為非腹瀉組和腹瀉組,并對羊進行安樂死。用4%多聚甲醛收集腸道組織。用RNAlater收集每只羔羊的肝臟、脾臟、十二指腸、空腸和回腸,并立即在液氮中冷凍以進行RNA提取。
表1 奶粉成分(每100克奶粉)
表2 糞便形式量[20]
用0.9%鹽水洗滌空腸組織,并在室溫下用4%多聚甲醛固定48 h,然后進行組織學(xué)分析。接下來,用蘇木精-伊紅染色7 μm切片,并在顯微鏡下觀察空腸上皮形態(tài)。
從每組中的3只綿羊脾臟提取總RNA,并使用NanoDrop 2000超微量分光光度計和Agilent 2100生物分析儀進行質(zhì)控。用Ribo-Zero TM試劑盒(Epicenter, Madison, WI, USA)除去核糖體RNA。將RNA片段化(平均長度約為200 bp),然后通過逆轉(zhuǎn)錄合成和純化cDNA。使用Qubit?dsDNA HS測定試劑盒進行PCR擴增和純化后,選擇使用NEBNext?Ultra?RNA文庫制備試劑盒進行文庫構(gòu)建。在上海歐易生物醫(yī)學(xué)科技有限公司使用Illumina HiSeq 2500平臺,對文庫進行末端配對測序(測序讀長為150 bp)。
過濾原始數(shù)據(jù)以消除低質(zhì)量讀長,使用映射到參照基因組(Ovis aries v4.0)的干凈讀長進行組裝。用CPC[13]、CNCI[14]、Pfam[15]、PLEK[16]四種編碼潛能分析方法,將來自未知轉(zhuǎn)錄物中推定的編碼RNA和非編碼RNA候選物進行分類。將最小長度和外顯子數(shù)設(shè)置為閾值,濾出推定的編碼RNA,長度超過200 nt的兩個外顯子的轉(zhuǎn)錄物被選為lncRNA候選物。使用cuffcompare歸類不同類型的lncRNA,主要包括intergenic lncRNA(字符為u),intronic lncRNA(字符為i), anti-sense lncRNA(字符為x),sense- overlapping lncRNA(字符為o)。
由于FPKM法[17]同時考慮了測序深度和轉(zhuǎn)錄本長度對fragments計數(shù)的影響,因此使用FPKM值(fragments Per kb per Million reads,是每百萬fragments中來自某一基因每千堿基長度的fragments數(shù)目)估計lncRNA和mRNA轉(zhuǎn)錄物的表達水平。使用DESeq[18]軟件檢測兩組之間DE基因的數(shù)量和FPKM值。在利用RNA-seq數(shù)據(jù)比較分析兩個樣品中同一個轉(zhuǎn)錄本是否存在差異表達的時候,選取兩個標準:一是FoldChange,就是兩樣品中同一個轉(zhuǎn)錄本表達水平的變化倍數(shù);二是p-value或FDR(padjust),F(xiàn)DR值的計算方法先要對每個轉(zhuǎn)錄本計算p-value,再用FDR錯誤控制法對p-value作多重假設(shè)檢驗校正。默認篩選差異的條件為<0.05且| log2(倍數(shù)變化)|>1。
得到差異表達轉(zhuǎn)錄本之后,對差異表達轉(zhuǎn)錄本進行GO富集分析,對其功能進行描述(結(jié)合GO注釋結(jié)果)。統(tǒng)計每個GO條目中所包括的差異轉(zhuǎn)錄本個數(shù),并用Fisher's exact test計算每個GO條目中差異轉(zhuǎn)錄本富集的顯著性(默認篩選差異的條件為<0.05)。KEGG[19]是有關(guān)通路的主要公共數(shù)據(jù)庫,利用KEGG數(shù)據(jù)庫對差異轉(zhuǎn)錄本進行通路分析(結(jié)合KEGG注釋結(jié)果),并用Fisher's exact test計算每個通路條目中差異轉(zhuǎn)錄本富集的顯著性(默認篩選差異的條件為<0.05),通路分析對試驗結(jié)果有提示作用,通過差異轉(zhuǎn)錄本的通路分析,可以找到富集差異轉(zhuǎn)錄本的通路條目,尋找不同樣品的差異轉(zhuǎn)錄本可能和哪些細胞通路的改變有關(guān)。
通過計算多個基因之間的Pearson相關(guān)系數(shù)和值預(yù)測DE lncRNA的靶基因。使用|corelation|≥0.7并且≤0.05來過濾轉(zhuǎn)錄物,選擇與黏附功能相關(guān)通路的DE lncRNA,并通過順式和反式作用預(yù)測所有DE lncRNA的靶基因。
為驗證篩選的DE lncRNA在非腹瀉組過程中發(fā)揮作用,用q-PCR檢測了非腹瀉組和腹瀉組羔羊脾臟組織中一共12種DE lncRNA和DE mRNA的表達水平,使用2-ΔΔCt方法將每個RNA的相對定量歸一化為GAPDH,lncRNA的引物見表3。
使用SPSS軟件(版本20.0)分析所有數(shù)據(jù),使用單因素方差分析(ANOVA)分析差異轉(zhuǎn)錄本的相對表達量,并使用Tukey檢驗進行多重比較。<0.05被認為具有統(tǒng)計學(xué)意義。每組包含3個樣品,每個試驗重復(fù)3次。
根據(jù)糞便形態(tài)[20],將試驗個體分為非腹瀉組(12、13、14p)與腹瀉組(15、16、17p)。在腹瀉組中,細菌計數(shù)在4.7×108至1.9×109之間,但在非腹瀉組中細菌計數(shù)下降到了5.1×106至9.0×107。與非腹瀉組相比,腹瀉組羔羊腸道細菌數(shù)量明顯較高(<0.05,表4,圖1),腹瀉組羔羊空腸黏膜組織出現(xiàn)不同程度的損傷,色澤暗沉,細胞死亡、裂解,黏膜下層留下較大間隙,腸絨毛部分脫落,腸道黏膜中豐富的毛細血管都被極大的破壞,難以在切片中找到相應(yīng)結(jié)構(gòu)(圖2)。
表3 GAPDH,DE lncRNA和mRNA的引物
表4 非腹瀉組與腹瀉羔羊腸道細菌數(shù)量對比
圖1 非腹瀉組與腹瀉羔羊腸道細菌數(shù)量對比
圖2 非腹瀉組和腹瀉組羔羊空腸組織學(xué)形態(tài)觀察
構(gòu)建非腹瀉組和腹瀉組羔羊脾臟的cDNA文庫,使用Illumina HiSeq 2500平臺進行測序,分別產(chǎn)生了354 943 820和370 616 990個原始讀長。文庫的GC含量分別為48.33%和49.67%。將清潔讀長中的有效讀長映射到ovis aries v4.0參考基因組,超過73.5%的讀長被映射到基因組。映射到參考序列多個位置的序列數(shù)目低于4.5%,超過70%的讀長被唯一映射到參考序列。大約35%的讀長映射到基因組的正、負鏈。此外,通過注釋分析映射到外顯子區(qū)域(約60%)的讀長數(shù)量高于基因間和內(nèi)含子區(qū)域。這些結(jié)果表明,匹配效率很高,大多數(shù)讀長映射到外顯子區(qū)域。
在繪制參考序列后,我們從42 460個匯編的轉(zhuǎn)錄物中鑒定出已知的1 988個lncRNA和38 843個mRNA。lncRNA長度主要分布于200—5 000 bp,平均長度為2 124 bp。此外,lncRNA主要為intergenic lncRNA(字符為u),intronic lncRNA(字符為i),包含2—3個外顯子(圖3)。
利用FPKM值估計lncRNA和mRNA轉(zhuǎn)錄物的表達水平,其中l(wèi)ncRNA轉(zhuǎn)錄本表達水平相對較低(圖4)。
在<0.05和| log2(倍數(shù)變化)|>1的條件下,篩選出14個上調(diào)和20個下調(diào)的DE lncRNA,370個上調(diào)和333個下調(diào)的DE mRNA(圖5)。
為了進一步驗證RNA-seq的可靠性,隨機選擇一共12個DE lncRNA和DE mRNA,用q-PCR驗證它們在非腹瀉組和腹瀉組羔羊體內(nèi)的相對表達水平,發(fā)現(xiàn)與RNA-seq結(jié)果一致(圖6),表明RNA-seq數(shù)據(jù)是可靠的。這些分析還表明,高通量測序具有檢測低表達水平(0<FPKM<1)基因的優(yōu)點。
圖3 lncRNA長度、類型、預(yù)測lncRNA的外顯子數(shù)目統(tǒng)計
圖4 lncRNA(左)和mRNA(右)轉(zhuǎn)錄本表達水平箱線圖
圖5 非腹瀉組和腹瀉組型羔羊之間差異表達的lncRNAs(左)和mRNAs(右)
圖6 DE lncRNA和mRNA在非腹瀉組和腹瀉組羔羊體內(nèi)的相對表達水平
在“l(fā)ncRNA名稱--功能預(yù)測Term”之間的對應(yīng)關(guān)系中(附件),分別選取預(yù)測可信度(按p-value排序)最高的Top 500個預(yù)測關(guān)系,對其中各個功能預(yù)測Term進行頻次計數(shù),統(tǒng)計功能注釋較多的GO(或通路)term,反映該試驗中得到的差異lncRNAs功能分布的整體情況(圖7)。
DE lncRNA與GO 數(shù)據(jù)庫進行比對的結(jié)果表明,一共有34條lncRNA被注釋和分類到302個功能亞類中。圖7顯示了DE lncRNA數(shù)量排名前30 位的功能亞類。結(jié)果顯示,綿羊蛋白質(zhì)結(jié)合(GO:0005515)、細胞核(GO:0005634)、poly(A)RNA結(jié)合(GO:0044822)、細胞質(zhì)(GO:0005737)、組織重塑(GO:0048771)、內(nèi)肽酶活性的調(diào)節(jié)(GO:0052548))、6-磷酸果糖-2-激酶/果糖-2,6-雙磷酸酶復(fù)合物(GO:0043540)、磷脂酰肌醇磷酸化(GO:0046854)、果糖-2,6-二磷酸2-磷酸酶活性(GO:0004331)、鈣依賴性磷脂酶C活性(GO:0050429)等10 個功能亞類的lncRNA較多,而其余的功能亞類的lncRNA分布較少。
DE lncRNA與KEGG 通路數(shù)據(jù)庫進行比對的結(jié)果表明,一共有34條lncRNA被注釋和歸類到149個KEGG 通路中。圖7顯示了DE lncRNA數(shù)量排名前30 位的KEGG 通路。結(jié)果顯示,綿羊甲狀腺激素信號通路(路徑:ko04919)、Spliceosome(路徑:ko03040)、白細胞跨內(nèi)皮遷移(路徑:ko04670)、神經(jīng)營養(yǎng)因子信號通路(路徑:ko04722)、溶酶體(路徑:ko04142)、MAPK信號通路-途徑(路徑:ko04011)、鞘脂信號通路(路徑:ko04071)、吞噬體(路徑:ko04145)、氧化磷酸化(路徑:ko00190)等9 個KEGG 通路的lncRNA較多,而其余的KEGG 通路的lncRNA分布較少。
對于感興趣的DE lncRNAs,筆者搜索其上下游100 kb范圍內(nèi)的所有編碼基因,并與該lncRNA有顯著共表達(皮爾森相關(guān)性計算)的基因取交集。這些在基因組上臨近且表達模式上存在共表達的基因很可能被該lncRNA所調(diào)控。因此,發(fā)現(xiàn)6個基因可能被該相關(guān)lncRNA所調(diào)控(表5)。
表5 差異lncRNAs的cis調(diào)控
由于轉(zhuǎn)錄組分析的快速發(fā)展,lncRNAs在過去幾年作為細胞發(fā)育中的新型調(diào)節(jié)劑受到廣泛關(guān)注[21]。目前已經(jīng)鑒定的lncRNAs主要與癌癥相關(guān),如前列腺癌[22]、胃癌[23]、肺癌[24]以及乳腺癌[25]等,以及與生殖功能相關(guān)的lncRNA[26-29]。然而,迄今為止,關(guān)于羔羊腹瀉的lncRNA,特別是綿羊的研究報道很少。湖羊是一種具有高繁殖力和對濕熱氣候適應(yīng)性較強的中國特有品種,可以全年在室內(nèi)飼養(yǎng)。在這項研究中,不僅提供了綿羊腹瀉過程中l(wèi)ncRNA的第一個概況,還研究了lncRNA在抗病過程中的可能作用。
長期以來,羔羊腹瀉對牧場造成了嚴重的經(jīng)濟損失。在研究中,發(fā)現(xiàn)lncRNA的表達水平低于mRNA,與綿羊睪丸組織一致[30],并且lncRNAs和mRNAs的平均長度比豬更長(分別為1 713和1 983 bp[27]。搜索其上下游100 kb范圍內(nèi)的所有編碼基因,并與該lncRNAs有顯著共表達(皮爾森相關(guān)性計算)的基因取交集,發(fā)現(xiàn)6個與lncRNA共表達的基因:MYO1G(肌球蛋白IG)、TIMM29(線粒體內(nèi)膜的轉(zhuǎn)位酶29)、CARM1(共激活因子相關(guān)的精氨酸甲基轉(zhuǎn)移酶1)、ADGRB1(黏附G蛋白偶聯(lián)受體B1)、SEPT4(septin 4)、DESI2(脫嘌呤的肽酶2)。
MYO1G在維持B細胞淋巴細胞的細胞剛度(cell stiffness)方面扮演了很重要的角色,MYO1G的缺失降低細胞剛度,影響細胞黏附,擴散,吞噬作用和B細胞淋巴細胞的內(nèi)吞過程[31]。關(guān)于TIMM29的研究報道比較少,最近研究報道TIMM29被鑒定為哺乳動物TIMM22蛋白復(fù)合物第一個特異性組分,同時其在TIMM23蛋白的組裝過程中扮演重要角色[32-33]。CARM1,是蛋白質(zhì)精氨酸甲基轉(zhuǎn)移酶家族(protein arginine methyltransferase,PRMTs)的成員之一,含 有高度保守結(jié)構(gòu)域的具有甲基轉(zhuǎn)移酶活性的酶。CARM1 敲除的小鼠出生時就死亡[34],這表明CARM1為產(chǎn)后生存所必須。后來研究還發(fā)現(xiàn),CARM1抑制能夠促進HIV-1活化[35]。ADGRB1屬于跨膜蛋白家族——黏附G蛋白偶聯(lián)受體(aGPCRs)的成員之一,aGPCR家族的定義特征是保守的GAIN結(jié)構(gòu)域,具有自體蛋白水解活性并且可以切割第一跨膜結(jié)構(gòu)域附近的受體,研究發(fā)現(xiàn)通過GAIN結(jié)構(gòu)域切割顯示的新的N末端莖可以直接激活作為束縛激動劑的ADGRB1[36]。Septins是一個具有GTP 酶活性的高度保守的細胞骨架蛋白家族,腫瘤抑制因子SEPT4是Septins 家族成員之一,其可誘導(dǎo)癌細胞凋亡[37]。研究發(fā)現(xiàn),SEPT4 基因突變的小鼠精子環(huán)及其鄰近的皮質(zhì)結(jié)構(gòu)紊亂,引起精子活力低下甚至不運動,最終導(dǎo)致不育癥的發(fā)生[38-39]。DESI2 基因是一種促凋亡基因,體外試驗表明DESI2基因過表達可誘導(dǎo)胰腺癌等腫瘤細胞凋亡,能有效抑制部分癌細胞增殖,其與IP10的組合基因治療能顯著抑制腫瘤生長,并有效延長了患腫瘤小鼠的存活時間[40-41]。
總共703個mRNA和34個已知的lncRNA在非腹瀉組和腹瀉組之間顯著差異表達,其中14個上調(diào)和20個下調(diào)DE lncRNA。另外,確定了兩組中共有1 942個新的lncRNA。搜索lncRNA上下游100 kb范圍內(nèi)的所有編碼基因,并與該lncRNA有顯著共表達(皮爾森相關(guān)性計算)的基因取交集,發(fā)現(xiàn)6個基因可能被該相關(guān)lncRNA所調(diào)控。為了進一步驗證RNA-Seq結(jié)果,采用q-PCR驗證12種已知的lncRNA和mRNA的表達水平,結(jié)果一致。
GO是一種廣泛用于研究基因功能關(guān)系的生物信息學(xué)工具。對34個DE lncRNA進行GO分析,在Top 500的預(yù)測關(guān)系對中,有16個DE lncRNA富集到蛋白結(jié)合(GO:0005515)條目。KEGG 通路分析表明,信號通路如Sphingolipid signaling 通路(path:ko04071)、Axon guidance(path:ko04360)、Glycosylphosphatidylinositol (GPI)- anchor biosynthesis(path:ko00563)可能是DE lncRNA共表達基因的重要KEGG途徑,相關(guān)的lncRNA可能潛在地參與菌毛黏附腸道黏膜的過程。然而,這些通路在抗病過程中的作用很大程度上仍然是未知的。
研究了對于腹瀉產(chǎn)生非腹瀉型和腹瀉型羔羊脾臟中l(wèi)ncRNA的表達譜,以進一步了解其在綿羊抗病發(fā)生過程中的調(diào)控作用。發(fā)現(xiàn)了非腹瀉組和腹瀉組羔羊脾臟組織中差異表達的lncRNA。有助于找出羔羊如何抵抗腹瀉的發(fā)生機制。此外,進一步研究這些lncRNA可以為羔羊抵抗腹瀉提供科學(xué)的依據(jù)。
[1] Orskov I, Orskov F. Episome-carried surface antigen K88 ofI. Transmission of the determinant of the K88 antigen and influence on the transfer of chromosomal markers.1966, 91(1): 69-75.
[2] Stirm S, Orskov I, Orskov F. K88, an episome-determined protein antigen of.,1966,209(5022): 507-508.
[3] Kim T, Jeon Y J, Cui R, Lee J H, Peng Y, Kim S H, Tili E, Alder H, Croce C M. Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis., 2015, 107(4). doi: 10.1093/jnci/dju505.
[4] Ouyang J, Zhu X M, Chen Y H, Wei H T, Chen Q H, Chi X J, Qi B M, Zhang L F, Zhao Y, Gao F, Wang G S, Chen J L. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription., 2014, 16(5): 616-626.
[5] Li Z, Rana T M. Decoding the noncoding: prospective of lncRNA-mediated innate immune regulation., 2014, 11(8): 979-985.
[6] Turner M, Galloway A, Vigorito E. Noncoding RNA and its associated proteins as regulatory elements of the immune system., 2014, 15(6): 484-491.
[7] Heward J A, Lindsay M A. Long non-coding RNAs in the regulation of the immune response., 2014, 35(9): 408-419.
[8] Ren C, Deng M, Fan Y, Yang H, Zhang G, Feng X, Li F, Wang D, Wang F, Zhang Y. Genome-wide analysis reveals extensive changes in LncRNAs during skeletal muscle development in Hu Sheep., 2017, 8(8):283-313.
[9] Zhang Y, Yang H, Han L, Li F, Zhang T, Pang J, Feng X, Ren C, Mao S, Wang F. Long noncoding RNA expression profile changes associated with dietary energy in the sheep testis during sexual maturation., 2017, 7(1): 5180.
[10] Yue Y, Guo T, Yuan C, Liu J, Guo J, Feng R, Niu C, Sun X, Yang B. Integrated analysis of the roles of long noncoding RNA and coding RNA expression in sheep () skin during initiation of secondary hair follicle.. 2016, 11(6): e: 0156890.
[11] 徐興文. 羊大腸桿菌病防治. 中國畜禽種業(yè), 2017, 13(4):112-113.
XU X W. Prevention and treatment of sheep.2017, 13(4):112-113. (in Chinese)
[12] 張文靜. 羊大腸桿菌病的防控措施. 畜牧獸醫(yī)科技信息, 2017(6):76.
ZHANG W J. Prevention and control measures for sheep colibacillosis.2017(6): 76. (in Chinese)
[13] Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G.ess the protein-coding potential of transcripts using sequence features and support vector machine.2007, 36: 345-349.
[14] Sun L, Luo H T , Bu D C , Zhao G G , Yu K t, Zhang C h , Liu Y n , Chen R s, Zhao Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts., 2013 , 41 (17) :166.
[15] Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L, Tate J, Punta M. The Pfam protein families database., 2014, 42(Database issue):222-230.
[16] Li A, Zhang J, Zhou Z. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme., 2014, 15(1):311.
[17] TRAPNELL C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation., 2010, 28(5): 511-515.
[18] Anders S, Huber W. Differential expression analysis for sequence count data., 2010, 11: R106.
[19] Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment.. 2008, 36: 480-484.
[20] Lewis S J, Heaton K W. Stool form scale as a useful guide to intestinal transit time., 1997, 32(9): 920-924.
[21] Veneziano D, Nigita G, Ferro A. Computational approaches for the analysis of ncRNA through deep sequencing Te1chniques., 2015, 3(77):77.
[22] Martignano F, Rossi L, Maugeri A, Gallà V, Conteduca V, De Giorgi U, Casadio V, Schepisi G. Urinary RNA-based biomarkers for prostate cancer detection., 2017, 473:96-105.
[23] Hao Y P, Qiu J H, Zhang D B, Yu C G. Long non-coding RNA DANCR, a prognostic indicator, promotes cell growth and tumorigenicity in gastric cancer., 2017, 39(6): 1010428317699798.
[24] Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S. Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA., 2017, 7(1): 9392.
[25] Li M, Li X, Zhuang Y, Flemington E K, Zhen L, Shan B. Induction of a novel isoform of the lncRNA HOTAIR in Claudin-low breast cancer cells attached to extracellular matrix., 2017, 11(12): 1698-1710.
[26] Yoneda R, Satoh Y, Yoshida I, Kawamura S, Kotani T, Atsushi. A genomic region transcribed into a long noncoding RNA interacts with the Prss42/Tessp-2 promoter in spermatocytes during mouse spermatogenesis, and its flanking sequences can function as enhancers., 2016, 83(6): 541-557.
[27] Ran M, Chen B, Li Z, Wu M, Liu X, He C, Zhang S, Li Z. Systematic identification of long non-coding RNAs in immature and mature porcine testes., 2016, 94(4):77.
[28] Cabili M N, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn J L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses., 2011, 25(18):1915.
[29] Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown J B, Lipovich L, Gonzalez J M, Thomas M, Davis C A, Shiekhattar R, Gingeras T R, Hubbard T J, Notredame C, Harrow J, Guigó R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression., 2012,22:1775-1789.
[30] GLSS B S, DINGER M E. The specificity of long moncoding RNA expression, 2015, 1859(1): 16-22.
[31] López-Ortega O, Ovalle-García E, Ortega-Blake I, Antillón A, Chávez-Munguía B, Pati?o-López G, Fragoso- Soriano R, Santos-Argumedo L. Myo1g is an active player in maintaining cell stiffness in B-lymphocytes., 2016, 73(5):258-268.
[32] Callegari S, Richter F, Chojnacka K, Jans DC, Lorenzi , Pacheu-Grau D, Jakobs S, Lenz C, Urlaub H, Dudek J, Chacinska A, Rehling P. TIM29 is a subunit of the human carrier translocase required for protein transport., 2016, 590(23):4147-4158.
[33] Kang Y, Baker M J, Liem M, Louber J, McKenzie M, Atukorala I, Ang C S, Keerthikumar S, Mathivanan S, Stojanovski D.Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability.,5, (2016-08-14), 2016, 5: e17463.
[34] Yadav N, Lee J, Kim J, Shen J, Hu MC, Aldaz CM, Bedford M T. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice., 2003, 100(11): 6464-6468.
[35] Zhang Z, Nikolai B C, Gates L A, Jung S Y, Siwak E B, He B, Rice A P, O'Malley B W, Feng Q. Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency., 2017, 45(16): 9348-9360.
[36] Kishore A, Purcell R H, Nassiri-Toosi Z, Hall R A. Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRG1) and BAI1 (ADGRB1)., 2015, 291(7):3385.
[37] Jeon T W, Yang H, Lee CG,Oh ST , Seo D , Baik I H , Lee E H , Yun I , Park KR , Lee Y H. Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma., 2016, 32(6):1-9.
[38] Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Itohara S, Nishimune Y, Noda M, Kinoshita M. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa., 2005, 8(3): 343-352.
[39] Kissel H, Georgescu M M, Larisch S, Manova K, Hunnicutt G R, Steller H. The Sept4 septin locus is required for sperm terminal differentiation in mice., 2005, 8(3) : 353-364.
[40] Shen C C, Cui X Y, He Y, Kang Y H, Yi C, Yang J L, Gou L T. High phosphorylation status of AKT/mTOR signal in DESI2- reduced pancreatic ductal adenocarcinoma., 2015, 21(2):267-272.
[41] Lin C, Yan H, Yang J, Li L, Tang M, Zhao X, Nie C, Luo N, Wei Y, Yuan Z. Combination of DESI2 and IP10 gene therapy significantly improves therapeutic efficacy against murine carcinoma., 2017, 8(34):56281-56295.
Changes of LncRNA Expression Profile in Spleen of Diarrhea and Non-diarrhea Individuals in F17 of Hu Sheep Lamb
HUANG SaiNan1, JIN ChengYan1, BAO JianJun2,WANG Yue1, CHEN WeiHao1, WU TianYi1, WANG LiHong1, Lü XiaoYang1, GAO Wen1, WANG BuZhong3, ZHU GuoQiang4, DAI GuoJun1, SUN Wei1,5
(1College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu;2Nanjing New Kyushu Agriculture and Animal Husbandry Technology Co., Ltd., Nanjing 210000;3Jiangsu Source Ecological Agriculture Co., Ltd., Taizhou 225300, Jiangsu;4College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu;5Joint Laboratory of International Cooperation in Agriculture and Agricultural Products Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu)
【Objective】The objective of this study was to investigate the effect of lncRNA on anti-diarrhea in sheep by screening lncRNA differentially expressed inF17 fimbriae non-diarrhea and diarrhea sheep spleen. 【Method】 In this study, individuals with non-diarrhea and diarrhea were obtained by oral administration ofF17 strain to Lake Lamb. The success of the challenge was verified by using intestinal counts and pathological sections of the lambs. A cDNA library of spleen from lambs in non-diarrhea group and diarrhea group was constructed and sequenced by using Illumina HiSeq 2500 platform. Functional description and cell pathway analysis of differentially expressed transcripts were performed by Gene Ontology (GO) and KEGG Pathway enrichment analysis by using FPKM method. The expression levels of lncRNA and mRNA transcripts were screened by high-throughput sequencing technology RNA-seq for differential expression of lncRNA in spleens of non-diarrhea and diarrhea individuals; then, Quantitative PCR was used to detect spleen tissues in non-diarrhea and diarrhea lambs. The expression levels of differentially expressed (DE) lncRNA and DE mRNA were used to verify the role of screened DE lncRNA in the non-diarrhea group. 【Result】 After oral administration ofF17 strain, there were two phenotypes of non-diarrhea and diarrhea. The number of bacteria in the intestine of the diarrhea group was significantly higher than that in the non-diarrhea group (<0.05), and the jejunal mucosa of the diarrhea group appeared different degrees of damage, dull color, part of the small intestine villi off. We used RNA-seq to screen 34 DE lncRNAs and 703 DE mRNAs in non-diarrhea and diarrhea lamb spleens. A total of 12 DE lncRNA and DE mRNA were randomly selected and verified by q-PCR. Relative expression levels in the diarrhea and non-diarrhea lambs were found to be consistent with RNA-seq results. The comparison between DE lncRNA and GO database by GO and KEGG pathway enrichment analysis indicated that a total of 34 lncRNAs were annotated and classified into 302 functional subclasses. There were more than one functional subclass of lncRNA, such as sheep protein binding (GO: 0005515), nuclear (GO: 0005634), poly (A) RNA binding (GO: 0044822), cytoplasm (GO: 0005737), tissue remodeling (GO: 0048771), regulation of endopeptidase activity (GO: 0052548) ), 6-phosphate fructose-2-kinase/fructose-2,6-bisphosphatase complex (GO: 0043540), phosphatidylinositol phosphorylation (GO: 0848654), fructose-2, 6.2-phosphite 2-phosphatase activity (GO: 0004331) and calcium-dependent phospholipase C activity (GO: 0050429), while the remaining functional subclasses had less lncRNA distribution. The alignment of DE lncRNA with the KEGG pathway database indicated that a total of 34 lncRNAs were annotated and classified into 149 KEGG pathways, the sheep thyroid hormone signaling pathway (path: ko04919), Spliceosome (path: ko03040), white blood cell cross Endothelial migration (path: ko04670), neurotrophin signaling pathway (path: ko04722), lysosome (path: ko04142), MAPK signaling pathway-pathway (path: ko04011), sphingolipid signaling pathway (path: ko04071), phagocytosis the body (path: ko04145), oxidative phosphorylation (path: ko00190) and other 9 KEGG pathways had more lncRNAs, while the remaining KEGG pathways had less lncRNA distribution. Through lncRNA-mRNA interaction network analysis, we found six co-expressed genes: MYO1G, TIMM29, CARM1, ADGRB1, SEPT4, and DESI2. 【Conclusion】 This study explored the expression profile of lncRNA in the spleen of non-diarrhea and diarrhea lambs for diarrhea. It was found that lncRNA differentially expressed in the spleen of non-diarrhea and diarrhea lambs, which helped to find out how lambs resist diarrhea and provided a scientific basis for lambs to resist diarrhea.
F17; lncRNA; Lake lamb
10.3864/j.issn.0578-1752.2019.07.015
2018-09-18;
2018-12-03
國家自然科學(xué)基金(31872333)、科技部家養(yǎng)動物平臺項目、江蘇省重點研發(fā)計劃(現(xiàn)代農(nóng)業(yè))項目(BE2018354)、江蘇省農(nóng)業(yè)重大新品種創(chuàng)制項目(PZCZ201739)、江蘇省農(nóng)業(yè)科技自主創(chuàng)新項目(CX(18)2003)、江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目、江蘇省高校自然科學(xué)研究重大項目(17KJA230001)、江蘇省六大高峰人才項目和揚州大學(xué)研究生創(chuàng)新工程項目(XKYCX17_060、SJCX18_0804)
黃賽男,E-mail:1481258911@qq.com。金澄艷,E-mail:1342315339@qq.com。黃賽男和金澄艷為同等貢獻作者。通信作者孫偉,E-mail:dkxmsunwei@163.com
(責(zé)任編輯 林鑒非)