梅雪冰,隋 倩,張紫薇,姚根吉,何夢(mèng)達(dá),陳智翀,呂樹光
?
不同特征污染源中指示性藥物和個(gè)人護(hù)理品識(shí)別與篩選
梅雪冰,隋 倩*,張紫薇,姚根吉,何夢(mèng)達(dá),陳智翀,呂樹光
(華東理工大學(xué)資源與環(huán)境工程學(xué)院,國(guó)家環(huán)境保護(hù)化工過(guò)程環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)與控制重點(diǎn)實(shí)驗(yàn)室,上海 200237)
通過(guò)分析我國(guó)地表水中藥物和個(gè)人護(hù)理品(PPCPs)主要污染源排放特征,識(shí)別和篩選出咖啡因、卡馬西平和磺胺嘧啶為我國(guó)地表水環(huán)境中的指示性PPCPs(i-PPCPs),分別指征城鎮(zhèn)生活污水、城鎮(zhèn)污水處理廠出水和養(yǎng)殖廢水三類特征污染排放源.同時(shí),基于篩選的i-PPCPs開展了初步應(yīng)用研究,結(jié)果表明,生活污水是北運(yùn)河和黃浦江流域地表水中PPCPs的主要來(lái)源.研究結(jié)果為構(gòu)建更綜合和有效的PPCPs的溯源體系,識(shí)別我國(guó)城市地表水環(huán)境中PPCPs的主要排放源提供了理論依據(jù).
藥物和個(gè)人護(hù)理品;指示性藥物和個(gè)人護(hù)理品;特征污染源;溯源
天然水環(huán)境中藥物和個(gè)人護(hù)理品(PPCPs)因具有危害生態(tài)環(huán)境和人體健康的風(fēng)險(xiǎn)而成為近年來(lái)關(guān)注的熱點(diǎn)問(wèn)題[1-3].研究表明,PPCPs主要通過(guò)生活污水、城鎮(zhèn)污水處理廠出水[4-5]、畜牧或水廠養(yǎng)殖業(yè)廢水[6-8]、醫(yī)院廢水[9-10]、制藥企業(yè)廢水[11]等排放進(jìn)入天然水環(huán)境.然而,對(duì)我國(guó)而言,各類污染源的排放特征如何,城市地表水中PPCPs的主要來(lái)源是什么尚無(wú)定論.污染來(lái)源不明確,使得無(wú)法對(duì)排放源進(jìn)行有效控制,導(dǎo)致PPCPs長(zhǎng)期持續(xù)地排放進(jìn)入城市地表水環(huán)境中.
通過(guò)監(jiān)測(cè)天然水體中的指示性PPCPs (i-PPCPs),判斷地表水或地下水受生活污水、養(yǎng)殖廢水的污染程度,是近年來(lái)識(shí)別PPCPs排放源的一種新興方法[12].隨著分析檢測(cè)技術(shù)的進(jìn)步,越來(lái)越多種類的PPCPs可以被檢出和定量,使得i-PPCPs的選擇范圍更廣;但另一方面,究竟選擇哪些物質(zhì)作為指示性物質(zhì),成為利用i-PPCPs開展溯源研究需要解決的首要問(wèn)題.例如,德國(guó)聯(lián)邦教育與研究部的基金項(xiàng)目RiskWa(新興化合物和病原體在水循環(huán)中的風(fēng)險(xiǎn)管理)將不同排放源中i-PPCPs的篩選與識(shí)別確立為一項(xiàng)重要任務(wù)[13-15].然而在我國(guó),有關(guān)i-PPCPs及其在PPCPs溯源方面應(yīng)用的研究還十分有限.本文研究了PPCPs主要污染源的排放特征,識(shí)別和篩選了每種污染源的典型i-PPCPs,并對(duì)所選擇i-PPCPs在我國(guó)地表水溯源研究中的適用性進(jìn)行了討論.
城市水環(huán)境中PPCPs的主要來(lái)源為生活污水、城鎮(zhèn)污水處理廠出水、畜牧或水產(chǎn)養(yǎng)殖業(yè)廢水、醫(yī)院廢水、制藥企業(yè)廢水等.一般而言,醫(yī)療廢水和制藥企業(yè)廢水納管進(jìn)入城鎮(zhèn)污水處理廠,不直接向城市水環(huán)境排放;且制藥企業(yè)廢水受產(chǎn)品和工藝流程的影響,所含PPCPs差異明顯,無(wú)法篩選出通用性良好的i-PPCPs.因此,在本研究中,不將醫(yī)療廢水和制藥企業(yè)廢水作為待識(shí)別的特征污染排放源.而城鎮(zhèn)生活污水、城鎮(zhèn)污水處理廠出水和養(yǎng)殖廢水含有種類繁多的PPCPs,可能直接進(jìn)入地表水環(huán)境,是城市地表水環(huán)境中典型的PPCPs特征污染排放源.因此,在本研究中,選定城鎮(zhèn)生活污水、城鎮(zhèn)污水處理廠出水和養(yǎng)殖廢水這三類排放源作為待追溯的城市地表水中PPCPs特征污染源.
一般而言,i-PPCPs應(yīng)當(dāng)能在應(yīng)用、來(lái)源、理化性質(zhì)或反應(yīng)特性上與所指示的特征污染源具有較強(qiáng)的相關(guān)性[16].具體而言,所篩選的i-PPCPs應(yīng)當(dāng)盡可能符合下列標(biāo)準(zhǔn):
(1) 對(duì)特征污染源的指示作用需具有較強(qiáng)的普適性,即:i-PPCPs由特征污染源連續(xù)排放進(jìn)入地表水水環(huán)境,不因采樣區(qū)域以及采樣模式的不同對(duì)溯源結(jié)果產(chǎn)生影響;
(2) 對(duì)特征污染源的指示作用需具有較強(qiáng)的特異性,即:i-PPCPs在不同的特征污染源中呈現(xiàn)較明顯的濃度差異;
(3) 在現(xiàn)有通用的實(shí)驗(yàn)方法下需具有較低的檢出限和較高的檢出頻率;
(4) 需具有高極性、低吸附性和低生物富集性.
收集了國(guó)內(nèi)外相關(guān)研究中提出或采用的i- PPCPs種類、總體濃度水平基礎(chǔ)數(shù)據(jù)及其所指示的排放源,作為本研究的重要基礎(chǔ)數(shù)據(jù)和信息.考慮到研究?jī)?nèi)容的完整性和前沿性,所選取文獻(xiàn)發(fā)表時(shí)間為2003~2018年.設(shè)置檢索式為(indicat*+ trace*+marker*)*(PPCPs+pharmaceutic*+antibiotic*),涉及的數(shù)據(jù)庫(kù)包括ISI Web of Knowledge、PubMed、Elsevier、Springer、Google學(xué)術(shù)搜索、中國(guó)知網(wǎng)、維普中文科技期刊數(shù)據(jù)庫(kù)、萬(wàn)方數(shù)據(jù)、EI中國(guó)等.
2003~2018年間國(guó)內(nèi)外相關(guān)研究采用或提出的i-PPCPs及其所指示的排放源如表1所示.
由表1可知,相較于其他特征污染源,大多數(shù)研究中i-PPCPs所指征的排放源為生活污水,包括污水處理廠的進(jìn)水和出水.
城鎮(zhèn)生活污水(污水處理廠進(jìn)水)中涉及到的i-PPCPs種類較多,共有52種;且受消費(fèi)方式的影響,不同國(guó)家的研究中選用的i-PPCPs差異也較明顯.例如,在瑞士,咖啡因在河流和湖泊中普遍存在,其濃度與生活污水中的人為負(fù)荷相關(guān),且在大多數(shù)城鎮(zhèn)污水處理廠中能被有效去除,因此被用作指征生活污水(城鎮(zhèn)污水處理廠進(jìn)水)的i-PPCPs[17];而在德國(guó),地表水中人工甜味劑安賽蜜與未經(jīng)處理過(guò)的生活污水有較強(qiáng)的相關(guān)性,被作為該研究區(qū)域理想的i-PPCPs[16].
表1 國(guó)內(nèi)外研究所采用或提出的i-PPCPs及其指示的排放源 Table 1 i-PPCPs and indicated sources adopted or proposed worldwide
續(xù)表1
年份國(guó)家或地區(qū)i-PPCPs指示的排放源文獻(xiàn) 2008美國(guó)阿莫西林、阿替洛爾、咖啡因、卡馬西平、頭孢氨芐、雌酮、17α-炔雌醇、17β-雌二醇、布洛芬、磺胺甲惡唑、甲氧芐啶、丙戊酸生活污水(出水)[25] 2009英國(guó)卡馬西平、咖啡因、對(duì)乙酰氨基酚、布洛芬制藥廠廢水[26] 2009中國(guó)臺(tái)灣對(duì)乙酰氨基酚、紅霉素、磺胺甲惡唑、吉非羅齊、非甾體抗炎藥醫(yī)院廢水、制藥廠廢水[27] 2010以色列卡馬西平生活污水[28] 2011以色列卡馬西平生活污水[29] 2011瑞典布洛芬、雙氯芬酸、萘普生、苯扎貝特、氯貝酸、美托洛爾未具體說(shuō)明[30] 2011德國(guó)卡馬西平生活污水[31] 2011挪威卡馬西平、阿托伐他汀、雙氯芬酸鈉、辛伐他汀、美托洛爾生活污水(出水)[32] 2011美國(guó)咖啡因、卡馬西平、避蚊胺、吉非羅齊、克羅米通、磺胺甲惡唑生活污水[33] 2011美國(guó)卡馬西平、氯貝酸、雙氯芬酸生活污水(出水)[34] 2012日本卡馬西平、克羅米通生活污水(進(jìn)水)[35] 2012美國(guó)卡馬西平、阿替洛爾、碘苯六醇、佳樂(lè)麝香生活污水[36] 2012加拿大咖啡因、卡馬西平生活污水[37] 2012德國(guó)安賽蜜未具體說(shuō)明[38] 2013法國(guó)醋氨酚、咖啡因、卡馬西平、安定工業(yè)廢水[39] 2013澳大利亞熒光溶解有機(jī)物、卡馬西平生活污水(出水)[40] 2013加拿大卡馬西平、環(huán)丙沙星、布洛芬、諾氟沙星、氧氟沙星、撲熱息痛、磺胺嘧啶生活污水[41] 2013美國(guó)阿替洛爾、卡馬西平生活污水(出水)[42] 2013加拿大咖啡因、卡馬西平、茶堿、對(duì)乙酰氨基酚生活污水(進(jìn)水)[43] 2014新加坡對(duì)乙酰氨基酚、卡馬西平、磺胺嘧啶生活污水(進(jìn)水)[44] 2014新加坡磺胺甲惡唑、對(duì)乙酰氨基酚未具體說(shuō)明[45] 2014美國(guó)對(duì)乙酰氨基酚、可待因、甲氧芐啶、咖啡因、哌醋甲酯、磺胺甲惡唑、苯海拉明、普萘洛爾、卡馬西平、紅霉素生活污水、養(yǎng)殖廢水[46] 2014加拿大卡馬西平、咖啡因、磺胺甲惡唑、布洛芬、吉非羅齊、萘普生生活污水[47] 2014巴西咖啡因、布洛芬、萘普生、雙氯芬酸、卡馬西平、阿替洛爾、丙泊酚、三氯生、雌酮、17β-雌二醇、17α-炔雌醇生活污水[48] 2014德國(guó)安賽蜜、普魯米酮、卡馬西平生活污水[16] 2016中國(guó)對(duì)乙酰氨基酚、咖啡因、對(duì)羥基苯甲酸酯生活污水、工業(yè)污水[49] 2016希臘安賽蜜、咖啡因、纈沙坦、纈沙坦酸生活污水[50] 2017南非卡馬西平、萘普生、雙氯芬酸、布洛芬、尼古丁未具體說(shuō)明[51] 2017中國(guó)對(duì)羥基苯甲酸、水楊酸、咖啡因、對(duì)乙酰氨基酚生活污水[12] 2018美國(guó)咖啡因、避蚊胺未具體說(shuō)明[52] 2018中國(guó)氟康唑、卡馬西平、避蚊胺、咖啡因生活污水[53]
與進(jìn)水相比,城鎮(zhèn)污水處理廠出水中所涉及的i-PPCPs種類大大減少,僅有19種.易生物降解的i-PPCPs如咖啡因、避蚊胺和甲氧芐啶等一般在城鎮(zhèn)污水處理系統(tǒng)中能被有效去除,因此出水濃度顯著低于進(jìn)水濃度;而卡馬西平、舒必利等去除率較低,出水濃度與進(jìn)水濃度差異不大[49],常被用作指征污水處理廠出水的i-PPCPs.與進(jìn)水i-PPCPs類似,不同國(guó)家選用的出水i-PPCPs差異也較為明顯,這與各國(guó)消費(fèi)習(xí)慣以及所選擇的處理工藝有關(guān).
相比而言,指征養(yǎng)殖廢水的i-PPCPs報(bào)道較少,僅中國(guó)臺(tái)灣[22]和美國(guó)[46]的相關(guān)研究有所提及.Lin等[22]在對(duì)臺(tái)灣水域中抗生素、激素和其他藥物的全面調(diào)查基礎(chǔ)上提出,磺胺類和四環(huán)素類抗生素是畜牧養(yǎng)殖和水產(chǎn)養(yǎng)殖廢水中最普遍的抗生素,可作為養(yǎng)殖廢水的指示物.其中,磺胺類藥物作為一種廣譜抗菌藥,在獸醫(yī)臨床和畜牧養(yǎng)殖業(yè)中應(yīng)用最為廣泛.據(jù)統(tǒng)計(jì),每年約有8000t磺胺類藥物被用作獸藥添加劑[54],而磺胺甲惡唑和磺胺嘧啶在磺胺類藥物中檢出濃度相對(duì)較高[55].
對(duì)表1中涉及到的i-PPCPs報(bào)道頻次(報(bào)道次數(shù)在所有文獻(xiàn)中的占比)進(jìn)行統(tǒng)計(jì),如圖1所示.卡馬西平和咖啡因的報(bào)道頻次最高,均超過(guò)50%,表明其通用性良好,是最常使用的i-PPCPs.一些i-PPCPs盡管報(bào)道頻次較高,但具有一定的區(qū)域特異性.例如,在日本,克羅米通的大量使用,導(dǎo)致其在城鎮(zhèn)污水廠出水和地表水中的濃度均高于傳統(tǒng)i-PPCPs,因而被用來(lái)指征該地區(qū)生活污水的排放源輸入[24],但它在普適性上存在缺陷,不一定適用于我國(guó)城市地表水中PPCPs的溯源.綜合考慮i-PPCPs的報(bào)道頻次(圖1)、在我國(guó)對(duì)應(yīng)排放源和地表水中的檢出濃度和頻率[56-58]等,將卡馬西平、咖啡因、磺胺甲惡唑、磺胺嘧啶、避蚊胺、甲氧芐啶這六種i-PPCPs作為本研究的待篩選i-PPCPs.
圖1 相關(guān)研究文獻(xiàn)中i-PPCPs的報(bào)道頻次 Fig.1 Reporting frequency of i-PPCPs in relevant research literatureCBZ-卡馬西平;CF-咖啡因;IBP-布洛芬;APAP-對(duì)乙酰氨基酚;SMX-磺胺甲惡唑;DCF-雙氯酚酸;NPX-萘普生;ATL-阿替洛爾;CTM-克羅米通;DEET-避蚊胺;SD-磺胺嘧啶;GF-吉非羅齊;TCS-三氯生;EE2-17α-炔雌醇;E2-17β-雌二醇;ACE-安賽蜜;E1-雌酮;HAD-對(duì)羥基苯甲酸;ERY-紅霉素;TP-甲氧芐啶;CA-氯貝酸;MTP-美托洛爾;NTC-尼古丁;SA-水楊酸;CFX-頭孢氨芐;VST-纈沙坦酸;OFX-氧氟沙星;AMX-阿莫西林;ATS-阿托伐他汀; TM-百里香酚;DXP-苯海拉明;BF-苯扎貝特;PPF-丙泊酚;VA-丙戊酸;TPL-茶堿;PTM-醋氨酚;DZP-地西泮;IHX-碘苯六醇;FPF-非諾洛芬;NAD-非甾體抗炎藥;FNZ-氟康唑;CFX-環(huán)丙沙星;GA-佳樂(lè)麝香;MA-甲芬那酸;MMP-可待因;CTN-可替寧;CLR-克拉霉素;NFX-諾氟沙星;MPD-哌醋甲酯;PNZ-普羅吩嗪;PPN-普萘洛爾;KP-酮洛芬;SVT-辛伐他汀;EM-乙胺酰胺;FDOM-熒光溶解有機(jī)物
對(duì)上述6種待篩選i-PPCPs在我國(guó)三個(gè)特征排放源中的濃度進(jìn)行整理,得到其在我國(guó)城鎮(zhèn)生活污水(污水處理廠進(jìn)水)、污水處理廠出水和養(yǎng)殖廢水三個(gè)污染源中的平均濃度,如圖2所示.
可以看出,對(duì)生活污水和養(yǎng)殖廢水而言,待篩選i-PPCPs的指示性特征非常顯著.生活污水中咖啡因濃度水平(5280ng/L)遠(yuǎn)高于其他i-PPCPs, 而在養(yǎng)殖廢水中,磺胺甲惡唑(2976ng/L)和磺胺嘧啶(8323ng/ L)濃度值較突出,使得它們更具有i-PPCPs的代表性.而城鎮(zhèn)污水處理廠出水中6種待篩選i-PPCPs的濃度差異不明顯.
比較各i-PPCPs在不同排放源中的濃度均值,可以發(fā)現(xiàn),咖啡因、磺胺甲惡唑等大多數(shù)i-PPCPs在三個(gè)特征排放源中的濃度平均值具有較大差異,說(shuō)明其具有作為i-PPCPs的特異性.然而,在我國(guó)三個(gè)特征排放源的已有報(bào)道中,避蚊胺的濃度均值比較接近,差別不明顯.
圖2 待篩選i-PPCPs在特征源中的平均濃度 Fig.2 Average concentration of i-PPCPs to be selected in characteristic sources縱坐標(biāo)為濃度值的對(duì)數(shù)取值;CF-咖啡因;TP-甲氧芐啶;DEET-避蚊胺;CBZ-卡馬西平;SMX-磺胺甲惡唑;SD-磺胺嘧啶
采用多獨(dú)立樣本非參數(shù)檢驗(yàn)中的Kruskal- Wallis檢驗(yàn)方法(顯著水平為0.05)對(duì)待篩選i-PPCPs在三個(gè)特征污染源中的濃度差異進(jìn)行顯著性分析,結(jié)果如表2所示.其中,由于咖啡因、甲氧芐啶、避蚊胺和卡馬西平在養(yǎng)殖廢水中的報(bào)道較少,不具備統(tǒng)計(jì)學(xué)意義上顯著性分析的條件[59],因此僅對(duì)其在生活污水(污水處理廠進(jìn)水)和污水處理廠出水中的濃度差異進(jìn)行顯著性分析.
表2 待篩選i-PPCPs在不同特征源中的差異顯著性分析結(jié)果 Table 2 Significant difference analysis of i-PPCPs in different characteristic sources
注: *>0.05,差異不顯著;0.01<<0.05,差異顯著;<0.01,差異極顯著.
由表可知,咖啡因和避蚊胺在污水處理廠進(jìn)水和出水中濃度數(shù)據(jù)差異的值均小于0.01,表明在統(tǒng)計(jì)學(xué)意義上進(jìn)水與出水中的濃度存在極顯著的差異.而前已述及,避蚊胺在三種特征源中濃度平均值較接近,且其值略高于咖啡因,因此,最終選擇咖啡因作為生活污水(污水處理廠進(jìn)水)的i-PPCPs.
甲氧芐啶與卡馬西平的值均大于0.05,說(shuō)明其在污水處理廠進(jìn)出水中差異不顯著,即在污水處理工藝中不能被有效地去除.而難降解PPCPs的穩(wěn)定存在正是污水處理廠出水穩(wěn)定輸入地表水的一個(gè)重要特征[49].兩者相比,卡馬西平的進(jìn)出水濃度差異較甲氧芐啶更不顯著.此外,卡馬西平通用性良好,是國(guó)內(nèi)外普遍采用的指示性PPCPs,因此選擇卡馬西平為我國(guó)城鎮(zhèn)污水處理廠出水的i-PPCPs.
養(yǎng)殖廢水基質(zhì)特殊,成分復(fù)雜,咖啡因、甲氧芐啶、避蚊胺和卡馬西平在養(yǎng)殖廢水中濃度較低,不適合作為養(yǎng)殖廢水的i-PPCPs;而磺胺嘧啶和磺胺甲惡唑這兩個(gè)候選物質(zhì)中,磺胺嘧啶的顯著性分析結(jié)果更優(yōu).
實(shí)際上,在我國(guó)為數(shù)不多有關(guān)i-PPCPs的研究中,咖啡因和卡馬西平已被一些研究者采納,作為生活污水和污水處理廠出水的指示性物質(zhì)[12,53].例如,Yang等[12]通過(guò)篩選一系列與廢水有關(guān)的有機(jī)物,選擇出適用于珠江三角洲地區(qū)的指示性物質(zhì),并指出,咖啡因在城鎮(zhèn)污水處理廠中易于生物降解,在研究區(qū)域受污染的地表水中廣泛存在,而在背景地表水樣品中未檢出,因此建議將咖啡因作為地表水中生活污水(城鎮(zhèn)污水處理廠進(jìn)水)來(lái)源的指示物質(zhì).針對(duì)我國(guó)東江流域開展的研究指出,卡馬西平因在污水處理廠和地表水環(huán)境中具有頑抗性,可以用作污水處理廠出水的i-PPCPs[53].
然而,目前我國(guó)尚無(wú)養(yǎng)殖廢水中i-PPCPs的研究報(bào)道.磺胺甲惡唑和磺胺嘧啶在我國(guó)養(yǎng)殖廢水中的濃度和檢出率都較高,具有對(duì)養(yǎng)殖廢水的指征作用.例如,研究發(fā)現(xiàn),北京[56]和湖北地區(qū)[60]養(yǎng)豬場(chǎng)廢水中磺胺甲惡唑和磺胺嘧啶的檢出濃度均可達(dá)到1000ng/L以上;浙江省某養(yǎng)殖場(chǎng)[61]磺胺嘧啶與磺胺甲惡唑檢出濃度更是達(dá)到5000ng/L.然而,如前所述,磺胺甲惡唑在三種特征源中的濃度差異并不顯著.這主要是由于除了獸用抗生素以外,磺胺甲惡唑也是一種人用抗菌劑[62-63],臨床應(yīng)用廣泛.因此,磺胺甲惡唑在城鎮(zhèn)生活污水中也具有較高的濃度.相比而言,磺胺嘧啶在我國(guó)養(yǎng)殖場(chǎng)中普遍使用[54-55],且在城鎮(zhèn)污水處理廠進(jìn)水和出水中的濃度水平顯著低于養(yǎng)殖廢水中的濃度水平(圖2);此外,養(yǎng)殖廢水中磺胺嘧啶的濃度還存在一定的季節(jié)性差異,夏季極顯著高于冬季,也是磺胺嘧啶作為i-PPCPs的一個(gè)指紋特性[64].因此,最終選擇磺胺嘧啶作為指征我國(guó)養(yǎng)殖廢水的i-PPCPs.
利用i-PPCPs的濃度可以初步判斷地表水中PPCPs的主要來(lái)源.以咖啡因?yàn)槔?Yang等[53]以咖啡作為廢水示蹤劑,指示了珠江流域中PPCPs的主要來(lái)源是生活污水,并定量計(jì)算了污染水體中生活污水的貢獻(xiàn)率.
然而,在實(shí)際應(yīng)用中,i-PPCPs的濃度易受到溫度、季節(jié)及降雨等因素的影響,從而增加了溯源結(jié)果的不確定性[65].尤其是使用單一i-PPCP來(lái)開展溯源研究時(shí),受外在因素影響的可能性大,溯源的不確定性更大[66].因此,可以選擇多個(gè)i-PPCPs,利用其相互關(guān)系,指示某一特征污染源,有助于數(shù)據(jù)采集、處理、評(píng)估和解釋[16], 提高溯源的準(zhǔn)確性.例如,Sun等[49]對(duì)我國(guó)九龍江流域內(nèi)PPCPs的溯源研究中,采用了計(jì)算城市污水處理系統(tǒng)中易降解PPCPs(如對(duì)乙酰氨基酚、咖啡因等)與難降解PPCPs(如卡馬西平、酮洛芬等)比值的方法指征污染排放源.
利用本研究篩選出的i-PPCPs卡馬西平和咖啡因,通過(guò)計(jì)算研究區(qū)域污水處理廠進(jìn)水、出水和地表水環(huán)境中i-PPCPs的比值,可以判斷地表水中PPCPs的主要排放源是生活污水(城鎮(zhèn)污水處理廠進(jìn)水)或城鎮(zhèn)污水處理廠出水.
分別選擇了北京北運(yùn)河[67]和上海黃浦江流域[68]為研究區(qū)域,以已有文獻(xiàn)報(bào)道的濃度,計(jì)算了咖啡因與卡馬西平的比值,如表3所示.計(jì)算結(jié)果表明,北京北運(yùn)河和上海黃浦江中咖啡因與卡馬西平的比值介于城鎮(zhèn)污水處理廠進(jìn)水與出水之間,表明城鎮(zhèn)污水廠進(jìn)水是研究地區(qū)地表水中PPCPs的主要來(lái)源,與文獻(xiàn)中通過(guò)主成分-多元線性回歸分析(PCA-MLR)方法得到的溯源結(jié)果一致.
表3 北京北運(yùn)河和上海黃浦江流域中咖啡因與卡馬西平的濃度和比值Table 3 Concentration and ratio of caffeine and carbamazepine in Beiyun River and Huangpu River
除了利用i-PPCPs的相互關(guān)系,對(duì)i-PPCPs進(jìn)行聚類分析、多元線性回歸以及函數(shù)矩陣等數(shù)學(xué)方法也可以用于溯源研究.上述溯源研究目前尚處于起步階段[67,71],因此,在識(shí)別和篩選出不同特征污染源中i-PPCPs的基礎(chǔ)上,采用濃度、檢出率等多指標(biāo)體系及跨學(xué)科分析方法,建立更為綜合、全面和有效的地表水環(huán)境中PPCPs的溯源方法,是未來(lái)溯源研究發(fā)展的方向之一,將有助于突破現(xiàn)有方法的局限性.
3.1 咖啡因和卡馬西平分別是適用于我國(guó)生活污水(城鎮(zhèn)污水處理廠進(jìn)水)和城鎮(zhèn)污水處理廠出水的i-PPCPs,與大多數(shù)國(guó)家的報(bào)道相一致.
3.2 根據(jù)我國(guó)養(yǎng)殖廢水中PPCPs的存在情況及其與其他排放源的差異分析,首次提出了磺胺嘧啶可作為我國(guó)養(yǎng)殖廢水的i-PPCPs.
3.3 基于所篩選的i-PPCPs開展初步應(yīng)用研究,結(jié)果表明,生活污水是北運(yùn)河和黃浦江流域PPCPs的主要排放源,與通過(guò)主成分-多元線性回歸分析(PCA-MLR)所得結(jié)果一致.
[1] Yang Y, Ok Y S, Kim K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A rewiew [J]. Science of the Total Environment, 2017,596-597:303-320.
[2] 王 丹,隋 倩,呂樹光,等.黃浦江流域典型藥物和個(gè)人護(hù)理品的含量及分布特征 [J]. 中國(guó)環(huán)境科學(xué), 2014,34(7):1897-1904.Wang D, Sui Q, Lyu S G, et al. Concentrations and distribution of selected pharmaceuticals and personal care products in Huangpu River [J]. China Environmental Science, 2014,34(7):1897-1904.
[3] Xie Z, Lu G, Liu J, et al. Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China [J]. Chemosphere, 2015,138:140–147.
[4] Tamtam F, Mercier F, Le B B, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions [J]. Science of the Total Environment, 2008,393(1):84-95.
[5] Zhang T, Li B. Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants [J]. Critical Reviews in Environmental Science & Technology, 2011,41(11):951-998.
[6] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China [J]. Environmental Science & Technology, 2011,45(5): 1827-1833.
[7] Karpuzcu M E, Fairbairn D, Arnold W A, et al. Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis [J]. Environmental Science Processes & Impacts, 2014,16(10):2390-2399.
[8] 梁惜梅,施 震,黃小平.珠江口典型水產(chǎn)養(yǎng)殖區(qū)抗生素的污染特征 [J]. 生態(tài)環(huán)境學(xué)報(bào), 2013,22(2):304-310.Liang X M, Shi Z, Huang X P, et al. Occurrence of antibiotics in typical aquaculture of the Pearl River Estuary [J]. Ecology and Environmental Sciences, 2013,22(2):304-310.
[9] Yin J, Shao B, Zhang J, et al. A preliminary study on the occurrence of cytostatic drugs in hospital effluents in Beijing, China [J]. Bulletin of Environmental Contamination & Toxicology, 2010,84(1):39-45.
[10] Ferrando-Climent L, Rodriguez-Mozaz S, Barcelo D. Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment [J]. Environmental Pollution, 2014,193:216-233.
[11] Li D, Yang M, Hu J Y, et al. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and receiving river [J]. Environmental Toxicology and Chemistry, 2008, 27(1):80-86.
[12] Yang Y Y, Liu W R, Liu Y S, et al. Suitability of pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) as wastewater indicators in the Pearl River Delta, South China [J]. Science of the Total Environment, 2017,590:611-619.
[13] Grummt T, Kuckelkorn J, Bahlmann A, et al. Tox-Box: securing drops of life - an enhanced health-related approach for risk assessment of drinking water in Germany [J]. Environmental Sciences Europe, 2013, 25(1):1-8.
[14] Huckele S, Track T. Risk management of emerging compounds and pathogens in the water cycle (RiSKWa) [J]. Environmental Sciences Europe, 2013,25(1):1-4.
[15] Jekel M, Ruhl M S, Meinel F, et al. Anthropogenic organic micro-pollutants and pathogens in the urban water cycle: Assessment, barriers and risk communication (ASKURIS) [J]. Environmental Sciences Europe, 2013,25(1):1-8.
[16] Jekel M, Dott W, Bergmann A, et al. Selection of organic process and source indicator substances for the anthropogenically influenced water cycle [J]. Chemosphere, 2015,125:155-167.
[17] Buerge I J, Poiger T, Müller, M D, et al. Caffeine, an anthropogenic marker for wastewater comtamination of surface waters [J]. Environmental Science & Technology, 2003,37(4):691.
[18] Clara M, Strenn B, Kreuzinger N. Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behavior of Carbamazepine in wastewater treatment and during groundwater infiltration [J]. Water Research, 2004,38(4):947-954.
[19] Buerge I J, Poiger T, Müller, M D, et al. Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine [J]. Environmental Science & Technology, 2006,40(13):4096-4102.
[20] Fono L J, Kolodziej E P, Sedlak D L. Attenuation of wastewater- derived contaminants in an effluent-dominated river [J]. Environmental Science & Technology, 2006,40(23):7257-7262.
[21] Bradley P M, Barber L B, Kolpin D W, et al. Biotransformation of caffeine, cotinine, and nicotine in stream sediments: implications for use as wastewater indicators [J]. Environmental Toxicology and Chemistry, 2010,26(6):1116-1121.
[22] Lin A Y, Yu T H, Lin C F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan [J]. Chemosphere, 2009,74(1):131-141.
[23] Young T A, Heidler J, Matos-Pérez CR, et al. Ab initio and in situ comparison of caffeine, triclosan, and triclocarban as indicators of sewage-derived microbes in surface waters [J]. Environmental Science & Technology, 2008,42(9):3335.
[24] Nakada N, Kiri K, Shinohara H, et al. Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage [J]. Environmental Science & Technology, 2008,42(17):6347- 6353.
[25] Palmer P M, Wilson L R, O'Keefe P, et al. Sources of pharmaceutical pollution in the New York City Watershed [J]. Science of the Total Environment, 2008,394(1):90-102.
[26] Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. Illicit drugs and pharmaceuticals in the environment--forensic applications of environmental data, Part 2: Pharmaceuticals as chemical markers of faecal water contamination [J]. Environmental Pollution, 2009,157(6): 1778-1786.
[27] Lin A Y, Tsai Y T. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities [J]. Science of the Total Environment, 2009, 407(12):3793-3802.
[28] Gasser G, Rona M, Voloshenko A, et al. Quantitative evaluation of tracers for quantification of wastewater contamination of potable water sources [J]. Environmental Science & Technology, 2010,44(10):3919- 3925.
[29] Gasser G, Rona M, Voloshenko A, et al. Evaluation of micropollutant tracers. II. Carbamazepine tracer for wastewater contamination from a nearby water recharge system and from non-specific sources [J]. Desalination, 2011,273(2):398-404.
[30] Kunkel U, Radke M. Reactive tracer test to evaluate the fate of pharmaceuticals in rivers [J]. Environmental Science & Technology, 2011,45(15):6296.
[31] Scheurer M, Storck F R, Graf C, et al. Correlation of six anthropogenic markers in wastewater, surface water, bank filtrate, and soil aquifer treatment [J]. Journal of Environmental Monitoring, 2011, 13(4):966-973.
[32] Langford K, Thomas K V. Input of selected human pharmaceutical metabolites into the Norwegian aquatic environment [J]. Journal of Environmental Monitoring Jem, 2011,13(2):416-421.
[33] Oppenheimer J, Eaton A, Badruzzaman M, et al. Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions [J]. Water Research, 2011,45(13):4019-4027.
[34] Dickenson E R, Snyder S A, Sedlak D L, et al. Indicator compounds for assessment of wastewater effluent contributions to flow and water quality [J]. Water Research, 2011,45(3):1199-1212.
[35] Kuroda K, Murakami M, Oguma K, et al. Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers [J]. Environmental Science & Technology, 2012,46(3):1455-1464.
[36] Oppenheimer J A, Badruzzaman M, Jacangelo J G. Differentiating sources of anthropogenic loading to impaired water bodies utilizing ratios of sucralose and other microconstituents [J]. Water Research, 2012,46(18):5904-5916.
[37] Daneshvar A, Aboulfadl K, Viglino L. Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region [J]. Chemosphere, 2012,88(1):131- 139.
[38] Wolf L, Zwiener C, Zemann M. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks [J]. Science of the Total Environment, 2012,430(14):8-19.
[39] Vystavna Y, Coustumer P L, Huneau F. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters [J]. Environmental Monitoring & Assessment, 2013,185(4):3581-3601.
[40] Williams M, Kumar A, Ort C, et al. The use of multiple tracers for tracking wastewater discharges in freshwater systems [J]. Environmental Monitoring & Assessment, 2013,185(11):9321.
[41] Van Stempvoort D R, Roy J W, Grabuski J, et al. An artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in groundwater [J]. Science of the Total Environment, 2013,461-462(7):348-359.
[42] Badruzzaman M, Oppenheimer J A, Jacangelo J G. Impact of environmental conditions on the suitability of microconstituents as markers for determining nutrient loading from reclaimed water [J]. Water Research, 2013,47(16):6198-6210.
[43] Madoux-Humery A S, Dorner S, Sauvé S, et al. Temporal variability of combined sewer overflow contaminants: evaluation of wastewater micropollutants as tracers of fecal contamination [J]. Water Research, 2013,47(13):4370-4382.
[44] Tran N H, Li J, Hu J, et al. Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater [J]. Environmental Science & Pollution Research, 2014,21(6):4727-4740.
[45] Pal A, He Y, Jekel M, et al. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle [J]. Environment International, 2014,71:46-62.
[46] Du B, Price A E, Scott W C, et al. Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent [J]. Science of the Total Environemnt, 2014,466-467(1):976-984.
[47] Liu Y, Blowes D W, Groza L, et al. Acesulfame-K and pharmaceuticals as co-tracers of municipal wastewater in a receiving river [J]. Environmental Science Processes & Impacts, 2014,16(12): 2789-2795.
[48] De Sousa D N, Mozeto A A, Carneiro R L, et al. Electrical conductivity and emerging contaminant as markers of surface freshwater contamination by wastewater [J]. Science of the Total Environment, 2014,484(1):19-26.
[49] Sun Q, Li Y, Li M, et al. PPCPs in Jiulong River estuary (China): Spatiotemporal distributions, fate, and their use as chemical markers of wastewater [J]. Chemosphere, 2016,150:596-604.
[50] N?dler K, Tsakiri M, Aloupi M, et al. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment [J]. Environmental Pollution, 2016,211(6):282- 290.
[51] Archer E, Petrie B, Kasprzyk-Hordern B, et al. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters [J]. Chemosphere, 2017,174: 437-446.
[52] Weissinger R H, Blackwell B R, Keteles K, et al. Bioactive contaminants of emerging concern in National Park waters of the northern Colorado Plateau, USA [J]. Science of the Total Environment, 2018,636:910-918.
[53] Yang Y Y, Zhao J L, Liu Y S, et al. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination [J]. Science of the Total Environment, 2017,616-617: 816-823.
[54] Ben W W, Qiang Z M, Adams C, et al. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry [J]. Journal of Chromatography A, 2008,12(21):173-180.
[55] 韓靜磊,賀德春,王志良,等.規(guī)?;B(yǎng)殖場(chǎng)廢水中抗生素種類及殘留特征研究 [J]. 廣州化學(xué), 2012,37(1):27-31.Han J L, He C L, Wang Z L, et al. Research of variety and residual characteristics of antibiotics of wastewater in industrial raising farm [J]. Guangzhou Chemistry, 2012,37(1):27-31.
[56] Bu Q W, Wang B, Huang J, et al. Pharmaceuticals and personal care products in the aquatic environment in China: A review [J]. Journal of Hazardous Materials, 2013,262(22):189-211.
[57] Zhao W T, Guo Y, Lu S G, et al. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China [J]. Frontiers of Environmental Science & Engineering, 2016,10(6):2.
[58] Sui Q, Wang B, Zhao W T, et al. Identification of priority pharmaceuticals in the water environment of China [J]. Chemosphere, 2012,89(3):280-286.
[59] Wolff E, Schwabe W K, Concei??o S V, et al. Using mathematical methods for designing optimal mixtures for building bricks prepared by solid industrial waste [J]. Clean Technologies & Environmental Policy, 2016,19(2):1-11.
[60] Tong L, Li P, Wang Y, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere, 2009,74(8):1090-1097.
[61] 姜 蕾,陳書怡,楊 蓉,等.長(zhǎng)江三角洲地區(qū)典型廢水中抗生素的初步分析 [J]. 環(huán)境化學(xué), 2008,27(3):371-374.Jiang L, Chen S Y, Yang R, et al. Occurrence of antibiotics in the aquatic environment of the Changjiang Delta, China [J]. Environmental Chemistry, 2008,27(3):371-374.
[62] 李 征,張秀杰,張 鶴,等.高效液相色譜法測(cè)定磺胺甲噁唑片中磺胺甲噁唑的含量 [J]. 中國(guó)醫(yī)藥導(dǎo)報(bào), 2011,8(7):55-60. Li Z, Zhang X J, Zhang H, et al. Content determination of sulfamethoxazole in sulfamethoxazole tablets by HPLC [J]. China Medical Herald, 2011,8(7):55-60.
[63] 國(guó)家藥典委員會(huì).中華人民共和國(guó)藥典(第二部) [M]. 北京:化學(xué)工業(yè)出版社, 2005:附錄160.Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China: Second Edition [M]. Beijing:China Medical Science Press, 2005,Appendix,160.
[64] 靳紅梅,黃紅英,管永祥,等.規(guī)?;i場(chǎng)廢水處理過(guò)程中四環(huán)素類和磺胺類抗生素的降解特征 [J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2016,32(6): 978-985.Jin H M, Huang H Y, Guang Y X, et al. Characteristics of degradation tetracyclines and sulfonamids during wastewater treating processes in an intensive swine farm [J]. Journal of Ecology and Rural Environment, 2016,32(6):978-985.
[65] Fairbairn D J, Karpuzcu M E, Arnold W A, et al. Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed [J]. Science of the Total Environment, 2016,551-552(3):605-613.
[66] N?dler K, Tsakiri M, Aloupi, M, et al. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment [J]. Environmental Pollution, 2016,211(6):282- 290.
[67] Dai G H, Wang B, Huang J, et al. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China [J]. Chemosphere, 2015,119:1033- 1039.
[68] Mei X B, Sui Q, Lyu S G, et al. Pharmaceuticals and personal care products in the urban river across the megacity Shanghai: Occurrence, source apportionment and a snapshot of in?uence of rainfall [J]. Journal of Hazardous Materials, 2018,359:429-436.
[69] Sui Q, Huang J, Deng S B, et al. Rapid determination of pharmaceuticals from multiple therapeutic classes in wastewater by solid-phase ex- traction and ultra-performance liquid chromatography tandem mass spectrometry [J]. Chinese Science Bulletin, 2009,54: 4633-4643.
[70] Sui Q, Wang D, Zhao W T, et al. Pharmaceuticals and consumer products in four wastewater treatment plants in urban and suburb areas of Shanghai [J]. Environmental Science and Pollution Research, 2015,22(8):6086-6094.
[71] Jiang J J, Lee C L, Fang, M D, et al. Source apportionment and risk assessment of emerging contaminants: An approach of pharmaco- signature in water systems [J]. Plos One, 2015,10(5):1-21.
Identification of indicator pharmaceutical and personal care products (PPCPs) in different emission sources.
MEI Xue-bing, SUI Qian*, ZHANG Zi-wei, YAO Gen-ji, HE Meng-da, CHEN Zhi-chong, Lü Shu-guang
(State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China)., 2019,39(3):1173~1180
In the present study, caffeine, carbamazepine and sulfadiazine were identified as indicator PPCPs (i-PPCPs) in the surface water environment of China, which indicated the typical emission sources of domestic wastewater, effluent of municipal wastewater treatment plants and livestock wastewater, respectively. Then, the identified i-PPCPs were used for a preliminary source apportionment of PPCPs in the urban water environments. The results indicated that domestic wastewater was the main source of PPCPs in the surface water of Beiyun River in Beijing and Huangpu River in Shanghai. The findings provide a theoretical basis for building a more comprehensive and effective source apportionment system of PPCPs and identifying the main sources of PPCPs in urban surface water environment in China.
PPCPs;indicator PPCPs;characteristic pollution source;source apportionment
X522
A
1000-6923(2019)03-1173-08
梅雪冰(1994-),女,江蘇南通人,華東理工大學(xué)碩士研究生,主要從事水環(huán)境中藥物和個(gè)人護(hù)理品的調(diào)查和溯源研究.發(fā)表論文2篇.
2018-08-20
國(guó)家自然科學(xué)基金資助項(xiàng)目(21577033,21777042);水體污染控制與治理科技重大專項(xiàng)(2017ZX07202006)
* 責(zé)任作者, 副教授, suiqian@ecust.edu.cn