• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一類矩陣的求秩法

    2019-03-20 12:30田心
    數(shù)學學習與研究 2019年2期
    關鍵詞:反證法矩陣

    田心

    【摘要】 本文推導出兩個公式:對任意的正整數(shù)p,均有 ∑ p+1 k=0 (-1)k(k+m)pCkp+1=0,m=1,2,…,p+2,∑ p k=0 (-1)k· (k+m)pCkp=(-1)pp!,m=1,2,…,p+1,利用這兩個公式對(p+2)階矩陣 A =(aij)aij=(i+j-1)p,i,j=1,2,…,p+2作初等變換,用反證法證明行向量的極大線性無關組的個數(shù)為(p+1),從而求出矩陣 A 的秩為(p+1).

    【關鍵詞】 矩陣;秩;反證法;極大線性無關組

    在“線性代數(shù)”的學習中,我們發(fā)現(xiàn),當p>2時,用簡單的初等變換變成行階梯形矩陣或求最大子式不為零的方法求一類p+2階矩陣 A =(aij)aij=(i+j-1)p,i,j=1,2,…,p+2的秩是困難的.這里,p是正整數(shù).我們將 A 具體地寫成

    A =? 1p 2p … (p+1)p (p+2)p2p 3p … (p+2)p (p+3)p ? ?(p+1)p (p+2)p … (2p+1)p (2p+2)p(p+2)p (p+3)p … (2p+2)p (2p+3)p? .

    怎樣通過研究 A 的元素的組成規(guī)律和特點推導出公式,簡化初等變換?怎樣求出 A 的行向量的極大線性無關組的個數(shù)?怎樣簡便地求出 A 的秩?這就是本文解決的主要問題.

    一、主要公式

    (一)公式1及其證明

    1. 引理1 ?設p是任意正整數(shù),當n>p時,

    ∑ n k=0 (-1)kkpCkn=0.

    證明 ?用數(shù)學歸納法:

    當p=1,n>1時,∑ n k=0 (-1)kkCkn=n∑ n k=1 (-1)kCk-1n-1= -n∑ n-1 j=0 (-1)jCjn-1=0.

    假設當p=2,n>2時,當p=3,n>3時,…,當p=m,n>m時,等式均成立,再證當p=m+1,n>m+1時,等式也成立.

    事實上,由歸納假設,注意運用二項式定理得

    ∑ n k=0 (-1)kkm+1Ckn=∑ n k=0 (-1)k[(k-1)+1]kmCkn

    =∑ n k=2 (-1)kk(k-1)km-1Ckn+∑ n k=0 (-1)kkmCkn

    =n(n-1)∑ n-2 j=0 (-1)j(j+2)m-1Cjn-2+0

    =n(n-1)∑ n-2 j=0 (-1)jjm-1Cjn-2=0.

    證畢.

    由引理1并利用二項式定理易得,當n>p,m為正整數(shù)時,∑ n k=0 (-1)k(k+m)pCkn=0.

    特別取n=p+1得公式1.

    2. 公式1 ?設p為正整數(shù),則

    ∑ p+1 k=0 (-1)k(k+m)pCkp+1=0,m=1,2,…,p+2.

    (二)公式2及其證明

    1. 引理2 ?對任意的正整數(shù)p,

    ∑ p k=0 (-1)kkpCkp=(-1)pp!.

    證明 ?用數(shù)學歸納法:

    當p=1時,等式顯然成立.

    假設p=m時等式成立,再證p=m+1時等式也成立.事實上,由引理1,注意利用歸納假設和二項式定理得

    ∑ m+1 k=0 (-1)kkm+1Ckm+1=∑ m+1 k=0 (-1)k[(k-1)+1]kmCkm+1

    =∑ m+1 k=0 (-1)kk(k-1)km-1Ckm+1+∑ m+1 k=0 (-1)kkmCkm+1

    =(m+1)m∑ m+1 k=2 (-1)kkm-1Ck-2m-1+0

    =(m+1)m∑ m-1 j=0 (-1)j(j+2)m-1Cjm-1

    =(m+1)m∑ m-1 j=0 (-1)jjm-1Cjm-1

    =(m+1)m(-1)m-1(m-1)!

    =(-1)m-1(m+1)!

    =(-1)m+1(m+1)!.

    證畢.

    由引理2并利用二項式定理,得公式2.

    2. 公式2 ?設p為正整數(shù),則

    ∑ p k=0 (-1)k(k+m)pCkp=(-1)pp!,m=1,2,…,p+1.

    二、證明定理

    定理 ?設p是任意給定的正整數(shù),p+2階矩陣 A =(aij)aij=(i+j-1)p,i,j=1,2,…,p+2的秩為p+1.

    證明 ?我們先對矩陣 A 進行初等變換.從第一行到第p+2行分別乘C0p+1,-C1p+1,…,(-1)pCpp+1,(-1)p+1Cp+1p+1后,累加到第(p+2)行.對第一列到第(p+2)列也作同樣的變換,由公式1將 A 變?yōu)榫仃?/p>

    1p 2p … pp (p+1)p 02p 3p … (p+1)p (p+2)p 0pp (p+1)p … (2p-1)p (2p)p 0(p+1)p (p+2)p … (2p)p (2p+1)p 00 0 … 0 0 0? ,

    然后從第一行到第(p+1)行,分別乘C0p,-C1p,…,(-1)p-1Cp-1p,(-1)pCpp后累加到第(p+1)行.對第一列到第(p+1)列也作同樣的變換.若p是奇數(shù),在第(p+1)行(列)上再乘-1,由公式2和∑ p k=0 (-1)kCkp=0得矩陣

    1p 2p … pp p! 02p 3p … (p+1)p p! 0pp (p+1)p … (2p-1)p p! 0p! p! … p! 0 00 0 … 0 0 0 ??.

    最后,用 1 p! 乘第(p+1)行(列)得矩陣

    1p 2p … pp 1 02p 3p … (p+1)p 1 0???? pp (p+1)p … (2p-1)p 1 01 1 … 1 0 00 0 … 0 0 0? ?. (2.1)

    顯然, A 的(p+2)個行向量線性相關.茲證(p+1)個向量 α 1=(1p,2p,…,pp,1,0), α 2=[2p,3p,…,(p+1)p,1,0],…, α p=[pp,(p+1)p,…,(2p-1)p,1,0], α p+1=(1,1,…,1,1,0)的向量組線性無關.

    事實上,假設它們線性相關,即存在不全為零的(p+1)個數(shù)k1,k2,…,kp,kp+1使得

    k1 α 1+k2 α 2+…+kp α p+kp+1 α p+1=0,

    即 k11p+k22p+…+kppp+kp+1=0,k12p+k23p+…+kp(p+1)p+kp+1=0,…k1pp+k2(p+1)p+…+kp(2p-1)p+kp+1=0,k1+k2+…+kp+0=0.? (2.2)

    將上面各式累加得k1 ∑ p j=1 jp+1 +k2 ∑ p+1 j=2 jp+1 +…+ kp ∑ 2p-1 j=p jp+1 +pkp+1=0運用(2.2)式中的k1+k2+…+kp=0得

    k1∑ p j=1 jp+k2∑ p+1 j=2 jp+…+kp∑ 2p-1 j=p jp+pkp+1=0,

    即k11p+(k1+k2)2p+(k1+k2+k3)3p+…+(k1+ k2+…+kp-1)(p-1)p+(k1+k2+…+kp)pp+(k2+k3+…+ kp)(p+1)p+(k3+k4+…+kp)(p+2)p+…+(kp-1+kp)(2p-2)p+kp(2p-1)p+kp(2p-p)=0,

    注意到k1+k2+…+kp=0.

    原式可化為k1[1p-(p+1)p]+(k1+k2)[2p-(p+2)p] +(k1+k2+k3)[3p-(p+3)p]+…+(k1+k2+…+ kp-2)[(p-2)p-(2p-2)p]+(k1+k2+…+kp-1)[(p-1)p-(2p-1)p]+kp+1(2p-p)=0,

    整理得k11p+(k1+k2)2p+(k1+k2+k3)3p+…+(k1+k2+…+kp-2)(p-2)p+(k1+k2+…+kp-1)(p-1)p+2kp+1p=k1(p+1)p+(k1+k2)(p+2)p+(k1+k2+k3)(p+3)p+…+(k1+k2+…+kp-2)(2p-2)p+(k1+k2+…+kp-1)(2p-1)p+kp+1p,

    從而有 k1=0,k1+k2=0,k1+k2+k3=0,…k1+k2+…+kp-2=0,k1+k2+…+kp-1=0,kp+1=0.

    又已知k1+k2+…+kp=0,

    ∴k1=k2=…=kp=kp+1=0,與假設矛盾,從而向量組 α 1, α 2,…, α p, α p+1線性無關.而(2.1)式中的(p+2)個行向量顯然線性相關,所以(2.1)式行向量的極大線性無關組的個數(shù)為(p+1),即(2.1)式的行秩為(p+1),亦即(2.1)式的秩為(p+1),從而A的秩為(p+1).

    在定理的證明過程中,我們還得到.

    推論1 ?設 A 的行向量分別為 β 1, β 2,…, β p+1, β p+2則C0p+1 β 1-C1p+1 β 2+…+(-1)pCpp+1 β p+1+(-1)p+1Cp+1p+1 β p+2=0,即 β 1, β 2,…, β p+1, β p+2中任一向量都可以由其他向量線性表示.

    推論2 ?| A |=0.

    三、結(jié) 語

    本文的求秩法是通過反證法求矩陣的行秩來完成的.這種求秩法有時也很方便,特別是在使用傳統(tǒng)的求秩方法覺得很麻煩時,就要考慮使用這種方法.

    猜你喜歡
    反證法矩陣
    反證法在平面幾何中的一些應用
    反證法與高次費馬大定理
    反證法應用于數(shù)列
    點擊反證法
    關于矩陣奇異值分解的注記
    初等行變換與初等列變換并用求逆矩陣
    矩陣
    矩陣
    矩陣
    非首一矩陣多項式的解
    亚洲三级黄色毛片| 黄色视频在线播放观看不卡| 水蜜桃什么品种好| 男人狂女人下面高潮的视频| 国产精品麻豆人妻色哟哟久久| 免费黄网站久久成人精品| 99热这里只有是精品50| 又黄又爽又刺激的免费视频.| 亚洲国产色片| 啦啦啦啦在线视频资源| 99热这里只有精品一区| 亚洲三级黄色毛片| 国产成人精品福利久久| 国产精品一区二区在线观看99| 麻豆成人av视频| 精品少妇黑人巨大在线播放| 国产探花极品一区二区| 成人免费观看视频高清| 一级毛片黄色毛片免费观看视频| 国产成人精品久久久久久| 18+在线观看网站| 欧美97在线视频| 午夜福利,免费看| 三级经典国产精品| 精品人妻熟女毛片av久久网站| 大香蕉久久网| 99视频精品全部免费 在线| 熟女电影av网| 交换朋友夫妻互换小说| 只有这里有精品99| 国内揄拍国产精品人妻在线| 国产亚洲91精品色在线| 亚洲国产精品一区三区| 久久影院123| 高清不卡的av网站| 高清欧美精品videossex| 国产精品一区www在线观看| 韩国高清视频一区二区三区| 99久久人妻综合| a级一级毛片免费在线观看| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 激情五月婷婷亚洲| 一区二区三区乱码不卡18| 亚洲欧美日韩另类电影网站| 亚洲第一av免费看| 午夜福利,免费看| 国产精品成人在线| 日韩强制内射视频| 国产一级毛片在线| 日韩,欧美,国产一区二区三区| 国产黄频视频在线观看| 久久韩国三级中文字幕| 亚洲人成网站在线播| 国产一区二区三区综合在线观看 | kizo精华| 最新的欧美精品一区二区| 成人影院久久| 狠狠精品人妻久久久久久综合| 久久久久久久久久成人| 日本wwww免费看| 国产免费一区二区三区四区乱码| 国产一区有黄有色的免费视频| 大陆偷拍与自拍| 菩萨蛮人人尽说江南好唐韦庄| 日日摸夜夜添夜夜爱| 天堂俺去俺来也www色官网| 熟女av电影| 欧美亚洲 丝袜 人妻 在线| 国产视频首页在线观看| 久久99热6这里只有精品| 在线播放无遮挡| 日产精品乱码卡一卡2卡三| 国产男女内射视频| 韩国高清视频一区二区三区| 亚洲无线观看免费| 亚洲精品,欧美精品| 免费大片18禁| 18禁动态无遮挡网站| av有码第一页| 一本色道久久久久久精品综合| 99久久精品国产国产毛片| 国产色爽女视频免费观看| 肉色欧美久久久久久久蜜桃| 各种免费的搞黄视频| 亚洲av免费高清在线观看| 午夜影院在线不卡| 亚洲欧美一区二区三区黑人 | av视频免费观看在线观看| a级毛片在线看网站| 精品一区在线观看国产| 久久99热6这里只有精品| 国产探花极品一区二区| 久久久久久久久大av| 欧美国产精品一级二级三级 | 中文在线观看免费www的网站| 又爽又黄a免费视频| kizo精华| 精品久久久久久久久亚洲| 高清不卡的av网站| 欧美一级a爱片免费观看看| 三级国产精品欧美在线观看| 国产精品欧美亚洲77777| 久久精品夜色国产| 免费大片黄手机在线观看| 99热国产这里只有精品6| 午夜91福利影院| 一个人免费看片子| 亚洲一区二区三区欧美精品| 成人漫画全彩无遮挡| 丰满饥渴人妻一区二区三| 在线精品无人区一区二区三| 国产欧美日韩综合在线一区二区 | 97超碰精品成人国产| 国产精品偷伦视频观看了| 黄色怎么调成土黄色| 特大巨黑吊av在线直播| 99视频精品全部免费 在线| 中文精品一卡2卡3卡4更新| 成年人午夜在线观看视频| 日韩欧美一区视频在线观看 | 久久久久久久大尺度免费视频| www.av在线官网国产| 亚洲av成人精品一二三区| 日韩欧美精品免费久久| 日韩欧美一区视频在线观看 | 久久精品国产a三级三级三级| 色网站视频免费| 欧美精品国产亚洲| 国产精品久久久久久久久免| 欧美区成人在线视频| 高清av免费在线| 在线免费观看不下载黄p国产| 97超碰精品成人国产| 观看av在线不卡| 卡戴珊不雅视频在线播放| av黄色大香蕉| 亚洲一区二区三区欧美精品| 精品卡一卡二卡四卡免费| 极品少妇高潮喷水抽搐| 免费人妻精品一区二区三区视频| av在线播放精品| 亚洲av在线观看美女高潮| 肉色欧美久久久久久久蜜桃| 五月玫瑰六月丁香| 香蕉精品网在线| 免费av不卡在线播放| 日韩三级伦理在线观看| 丰满饥渴人妻一区二区三| 久久久久久久久久久免费av| 亚洲精品色激情综合| 亚洲国产精品成人久久小说| 亚洲性久久影院| av福利片在线| 亚洲国产精品成人久久小说| 欧美+日韩+精品| 搡女人真爽免费视频火全软件| 一本久久精品| 亚洲无线观看免费| 亚洲怡红院男人天堂| 亚洲四区av| 国产午夜精品一二区理论片| av免费观看日本| 18禁在线无遮挡免费观看视频| 国产高清三级在线| 国产成人精品无人区| 日韩av免费高清视频| 国产黄色视频一区二区在线观看| 亚洲av二区三区四区| 黑人高潮一二区| 三级国产精品片| 久久精品国产亚洲av涩爱| 九九久久精品国产亚洲av麻豆| 中文字幕精品免费在线观看视频 | 国产乱人偷精品视频| 亚洲久久久国产精品| 欧美精品一区二区大全| 国产精品一区二区在线不卡| 青春草国产在线视频| 女性生殖器流出的白浆| 男女国产视频网站| 秋霞在线观看毛片| 人体艺术视频欧美日本| 亚洲精品色激情综合| a 毛片基地| 伦精品一区二区三区| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 少妇高潮的动态图| 成人特级av手机在线观看| 精品99又大又爽又粗少妇毛片| 一级毛片黄色毛片免费观看视频| 色视频在线一区二区三区| av在线app专区| 久久免费观看电影| 日韩欧美精品免费久久| 亚洲,欧美,日韩| 一区二区av电影网| 国产在视频线精品| 久久久久国产精品人妻一区二区| 国产精品免费大片| 久久久久久久精品精品| 亚洲美女搞黄在线观看| 亚洲成人av在线免费| 18禁裸乳无遮挡动漫免费视频| 性色avwww在线观看| 黑人巨大精品欧美一区二区蜜桃 | 午夜激情久久久久久久| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 亚洲精品久久久久久婷婷小说| 在线观看美女被高潮喷水网站| 国产精品蜜桃在线观看| 少妇高潮的动态图| 久久精品国产自在天天线| 精品久久久精品久久久| 男女无遮挡免费网站观看| 国产永久视频网站| 九色成人免费人妻av| 国产黄色视频一区二区在线观看| 秋霞伦理黄片| av网站免费在线观看视频| av又黄又爽大尺度在线免费看| 日本av手机在线免费观看| 少妇 在线观看| 国产色爽女视频免费观看| 国产男女超爽视频在线观看| 免费播放大片免费观看视频在线观看| 夫妻午夜视频| 亚洲精品成人av观看孕妇| h视频一区二区三区| 纵有疾风起免费观看全集完整版| 亚州av有码| 我要看黄色一级片免费的| 久久久久久久亚洲中文字幕| 肉色欧美久久久久久久蜜桃| 日韩大片免费观看网站| 国产免费视频播放在线视频| 久久精品国产亚洲av天美| 免费av不卡在线播放| 亚洲av.av天堂| 日韩免费高清中文字幕av| 成人美女网站在线观看视频| 国产成人精品久久久久久| 国产国拍精品亚洲av在线观看| 国产老妇伦熟女老妇高清| av专区在线播放| 欧美亚洲 丝袜 人妻 在线| 一级毛片久久久久久久久女| 国产淫片久久久久久久久| videos熟女内射| 亚洲欧美一区二区三区黑人 | 女人精品久久久久毛片| 一本一本综合久久| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美清纯卡通| 一级毛片aaaaaa免费看小| 国产永久视频网站| 久久久久人妻精品一区果冻| 99热这里只有是精品在线观看| 欧美+日韩+精品| 视频区图区小说| 夜夜骑夜夜射夜夜干| 80岁老熟妇乱子伦牲交| 亚洲精品,欧美精品| 国产成人免费无遮挡视频| 三上悠亚av全集在线观看 | 如何舔出高潮| 国产精品无大码| 精品久久久精品久久久| 欧美最新免费一区二区三区| 综合色丁香网| 国产成人一区二区在线| 国产精品一区二区在线不卡| 中文字幕久久专区| 亚洲av福利一区| 日本色播在线视频| 我要看黄色一级片免费的| av有码第一页| 免费观看无遮挡的男女| 亚洲久久久国产精品| 国国产精品蜜臀av免费| 在线观看免费视频网站a站| 桃花免费在线播放| 97在线人人人人妻| 精品久久久久久久久亚洲| 国产成人aa在线观看| 不卡视频在线观看欧美| 亚洲欧洲精品一区二区精品久久久 | 熟女人妻精品中文字幕| 超碰97精品在线观看| 国产欧美亚洲国产| 九九久久精品国产亚洲av麻豆| 亚洲高清免费不卡视频| 午夜影院在线不卡| 午夜日本视频在线| 免费观看性生交大片5| 乱人伦中国视频| 男女免费视频国产| 国产男女内射视频| 建设人人有责人人尽责人人享有的| 不卡视频在线观看欧美| 亚洲国产精品专区欧美| 五月天丁香电影| 亚洲欧美成人精品一区二区| 国产欧美日韩综合在线一区二区 | 国产高清三级在线| 国内少妇人妻偷人精品xxx网站| 91久久精品国产一区二区三区| 亚洲精品第二区| 久热这里只有精品99| 一区二区三区精品91| 校园人妻丝袜中文字幕| 自线自在国产av| 午夜福利在线观看免费完整高清在| 免费久久久久久久精品成人欧美视频 | 日韩一区二区三区影片| 人妻 亚洲 视频| 欧美日韩精品成人综合77777| 精品少妇内射三级| 亚洲第一av免费看| 欧美精品一区二区免费开放| 成人无遮挡网站| 国产精品国产av在线观看| av福利片在线| 国产成人aa在线观看| 久久久久久久久久久免费av| 777米奇影视久久| 大香蕉97超碰在线| 一个人免费看片子| 肉色欧美久久久久久久蜜桃| 久久久久视频综合| 欧美3d第一页| 日本免费在线观看一区| 激情五月婷婷亚洲| 久久久久久久大尺度免费视频| 黑丝袜美女国产一区| 午夜激情久久久久久久| 国产免费又黄又爽又色| av又黄又爽大尺度在线免费看| 午夜精品国产一区二区电影| 你懂的网址亚洲精品在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| 九九爱精品视频在线观看| 国产成人一区二区在线| 成人国产麻豆网| 亚洲国产精品成人久久小说| 伊人久久精品亚洲午夜| 国产一区亚洲一区在线观看| 色视频www国产| 九草在线视频观看| 91精品国产国语对白视频| 伊人久久精品亚洲午夜| 久久ye,这里只有精品| 97在线人人人人妻| 午夜福利在线观看免费完整高清在| 国产一区亚洲一区在线观看| 亚洲国产色片| 欧美老熟妇乱子伦牲交| 草草在线视频免费看| 国内精品宾馆在线| 久久亚洲国产成人精品v| 99久久精品热视频| 久热久热在线精品观看| 免费播放大片免费观看视频在线观看| 亚洲人成网站在线播| 欧美bdsm另类| 日日啪夜夜爽| 少妇丰满av| 最近的中文字幕免费完整| 国产成人一区二区在线| 日韩不卡一区二区三区视频在线| 好男人视频免费观看在线| 中文字幕人妻熟人妻熟丝袜美| 日韩一本色道免费dvd| 久久97久久精品| 在线观看免费视频网站a站| 免费播放大片免费观看视频在线观看| 男人爽女人下面视频在线观看| 国产成人一区二区在线| 国产成人精品婷婷| 黑人巨大精品欧美一区二区蜜桃 | 如何舔出高潮| 夜夜看夜夜爽夜夜摸| 日韩大片免费观看网站| 最近手机中文字幕大全| 内射极品少妇av片p| 丰满人妻一区二区三区视频av| 51国产日韩欧美| 人体艺术视频欧美日本| 亚洲综合精品二区| 天天操日日干夜夜撸| 国产美女午夜福利| 黄片无遮挡物在线观看| 国产91av在线免费观看| 我的女老师完整版在线观看| 欧美成人精品欧美一级黄| 在线观看av片永久免费下载| 日日爽夜夜爽网站| 中文字幕人妻熟人妻熟丝袜美| 国产免费福利视频在线观看| 中国国产av一级| 久久久久久久亚洲中文字幕| 欧美精品一区二区免费开放| 五月天丁香电影| 成人亚洲精品一区在线观看| 噜噜噜噜噜久久久久久91| 免费少妇av软件| 国产精品免费大片| 人妻一区二区av| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看| 黄色怎么调成土黄色| 国产乱人偷精品视频| 国产伦精品一区二区三区四那| 成人黄色视频免费在线看| 亚洲国产欧美日韩在线播放 | www.色视频.com| 91精品国产九色| 亚洲一区二区三区欧美精品| 少妇猛男粗大的猛烈进出视频| 一个人免费看片子| 天堂中文最新版在线下载| 狂野欧美激情性xxxx在线观看| 国产日韩欧美亚洲二区| 国产 一区精品| 水蜜桃什么品种好| 中文字幕人妻丝袜制服| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频 | 好男人视频免费观看在线| 中文字幕人妻丝袜制服| 亚洲婷婷狠狠爱综合网| 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 久久久久久久精品精品| 欧美丝袜亚洲另类| .国产精品久久| 国产日韩一区二区三区精品不卡 | 一区二区三区乱码不卡18| 免费看光身美女| 国产成人免费观看mmmm| 久久久久久久久久久丰满| av又黄又爽大尺度在线免费看| av专区在线播放| 欧美性感艳星| 欧美一级a爱片免费观看看| 精品国产国语对白av| 97在线人人人人妻| 一区在线观看完整版| 精品一区二区三区视频在线| 成人免费观看视频高清| 成人影院久久| av专区在线播放| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 亚洲精品,欧美精品| 精品人妻熟女av久视频| 高清黄色对白视频在线免费看 | 日产精品乱码卡一卡2卡三| 亚洲av不卡在线观看| 26uuu在线亚洲综合色| 免费看日本二区| 亚洲精品,欧美精品| 99九九在线精品视频 | 99久久精品热视频| 啦啦啦啦在线视频资源| 这个男人来自地球电影免费观看 | 在线观看三级黄色| 久久久欧美国产精品| 日本av手机在线免费观看| 成人亚洲精品一区在线观看| 亚洲国产精品成人久久小说| 久久国产乱子免费精品| 欧美3d第一页| 街头女战士在线观看网站| a 毛片基地| 黑丝袜美女国产一区| 综合色丁香网| 亚洲丝袜综合中文字幕| 国产亚洲欧美精品永久| 中文字幕久久专区| 狂野欧美激情性xxxx在线观看| 国产伦理片在线播放av一区| 欧美日韩国产mv在线观看视频| 日本黄大片高清| 免费黄色在线免费观看| 国产一区二区在线观看日韩| 国产免费又黄又爽又色| 黄色怎么调成土黄色| 熟女电影av网| a级毛色黄片| 午夜av观看不卡| 麻豆乱淫一区二区| 22中文网久久字幕| 精品人妻偷拍中文字幕| 18禁在线播放成人免费| 久久久精品免费免费高清| 亚洲av.av天堂| 欧美成人精品欧美一级黄| 精品久久久久久久久亚洲| 中文字幕免费在线视频6| 成人黄色视频免费在线看| 狂野欧美激情性bbbbbb| 国产高清不卡午夜福利| 国产高清不卡午夜福利| 黑人猛操日本美女一级片| 黄色欧美视频在线观看| 亚洲欧美成人综合另类久久久| 国产免费视频播放在线视频| 亚洲精品一二三| 中国国产av一级| 亚洲精华国产精华液的使用体验| 免费久久久久久久精品成人欧美视频 | xxx大片免费视频| 亚洲av成人精品一区久久| 日韩中文字幕视频在线看片| 国产成人精品一,二区| 菩萨蛮人人尽说江南好唐韦庄| 国产91av在线免费观看| 国产午夜精品久久久久久一区二区三区| 少妇裸体淫交视频免费看高清| 晚上一个人看的免费电影| 国产永久视频网站| 国产精品国产三级国产专区5o| 亚洲av成人精品一二三区| 精品99又大又爽又粗少妇毛片| 中国三级夫妇交换| 精品久久久噜噜| 最近中文字幕高清免费大全6| 国产熟女欧美一区二区| 啦啦啦啦在线视频资源| 国产精品人妻久久久影院| 久久亚洲国产成人精品v| 性色avwww在线观看| 一区二区三区精品91| 日日啪夜夜爽| 在线观看三级黄色| 中文字幕久久专区| 亚洲精品国产成人久久av| 乱码一卡2卡4卡精品| 久久久久久久久大av| 亚洲欧美中文字幕日韩二区| .国产精品久久| 夜夜骑夜夜射夜夜干| 只有这里有精品99| 久久久久久久亚洲中文字幕| 啦啦啦中文免费视频观看日本| 你懂的网址亚洲精品在线观看| 色视频www国产| 日韩三级伦理在线观看| 日韩,欧美,国产一区二区三区| 在现免费观看毛片| 国产欧美日韩综合在线一区二区 | 人人妻人人澡人人看| 少妇的逼水好多| 99久久综合免费| 亚洲精品视频女| 18禁动态无遮挡网站| 亚洲欧洲国产日韩| 中文字幕人妻熟人妻熟丝袜美| www.色视频.com| 91成人精品电影| 中国三级夫妇交换| 久久久久久久久久久丰满| 黑人高潮一二区| 人妻制服诱惑在线中文字幕| av女优亚洲男人天堂| 国产 一区精品| 一级毛片aaaaaa免费看小| 欧美日韩视频高清一区二区三区二| 午夜福利在线观看免费完整高清在| 嘟嘟电影网在线观看| www.av在线官网国产| 色视频www国产| 高清欧美精品videossex| 秋霞在线观看毛片| 肉色欧美久久久久久久蜜桃| 搡老乐熟女国产| 秋霞伦理黄片| 国产欧美另类精品又又久久亚洲欧美| 国精品久久久久久国模美| 亚洲电影在线观看av| 性色av一级| 国产欧美另类精品又又久久亚洲欧美| 欧美老熟妇乱子伦牲交| 午夜91福利影院| 这个男人来自地球电影免费观看 | 国产成人aa在线观看| 国产一区二区三区av在线| 久久久a久久爽久久v久久| 一级毛片久久久久久久久女| 插阴视频在线观看视频| 国产精品.久久久| 91久久精品国产一区二区三区| 99久久精品热视频| 亚洲综合精品二区| 亚洲成色77777| 久久 成人 亚洲| 国产免费又黄又爽又色| 国产一区二区在线观看日韩| 国产黄色视频一区二区在线观看| 免费大片黄手机在线观看| 久久人人爽人人爽人人片va| 涩涩av久久男人的天堂| 日本与韩国留学比较| 一区二区三区四区激情视频| 久久久国产欧美日韩av| 日韩人妻高清精品专区| 久久国产亚洲av麻豆专区| 久久毛片免费看一区二区三区| 3wmmmm亚洲av在线观看|