• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy Conditions and Conservation Laws in LRS Bianchi Type I Spacetimes via Noether Symmetries?

    2019-03-12 02:41:20SumairaSaleemAkhtarandTahirHussain
    Communications in Theoretical Physics 2019年3期

    Sumaira Saleem Akhtar and Tahir Hussain

    Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan

    (Received October 9, 2018; revised manuscript received November 2, 2018)

    Abstract In this paper, we have completely classified the locally rotationally symmetric (LRS)Bianchi type I spacetimes via Noether symmetries(NS).The usual Lagrangian corresponding to LRS Bianchi type I metric is used to find the set of determining equations.To achieve a complete classification, these determining equations are generally integrated to find the components of NS vector field and the metric coefficients.During this procedure, several cases arise which give different Noether algebras of dimension 5,...,9, 11, and 17.A comparison is established between the obtained NS and the Killing and homothetic vectors.Corresponding to all NS generators, the conservation laws are stated by using Noether’s theorem.The metrics which we have obtained as a result of our classification are shown to be anisotropic or perfect fluids which satisfy certain energy conditions.

    Key words: Bianchi type I model, Noether symmetry, conservation Laws, energy conditions

    1 Introduction

    The Einstein’s field equations(EFEs),Gab=kTab,are ten tensor equations in the Einstein’s theory of general relativity, which relate the spacetime curvature with the energy and momentum within spacetime.The termGabappearing in these equations expresses the curvature of spacetime and is known as the Einstein tensor.Moreover,ksignifies the gravitational constant andTabdenotes the stress-energy tensor,which gives the description of density and flux of energy and momentum in the spacetime.

    An exact solution of the EFEs is a Lorentz metricgab,which is obtained by solving these equations in closed form and is conformable to a physically realisticTab.The study of the exact solutions of these equations is proved to be one of the important activities in different branches of physics.They describe the structure of spacetime including the inertial motion of objects in the spacetime.Moreover,these solutions lead to the prediction of black holes and different models of evolution of universe.The problem which one faces in finding the exact solutions of these equations is their highly nonlinear nature.These equations cannot be solved without some simplifying assumption,such as symmetry restriction ongab.Using such restrictions,there are numerous cases where the EFEs are solved completely.[1]

    The most basic symmetry is expressed in terms of a Killing vector (KV)Xsatisfying the relationLXgab= 0,whereLdenotes the Lie derivative operator andgabis the metric tensor.The KVs are closely related to the conservation laws in a spacetime.For a detailed study of exact solutions of EFEs with the help of symmetry restrictions ongaband the corresponding conservation laws, we refer to Refs.[1–3].

    Some other conventional symmetries, which have been studied in the literature include homothetic vectors (LXgab= 2ψgab);ψbeing a constant, curvature collineations (LXRabcd=0), Ricci collineations (LXRab=0)and matter collineations (LXTab=0).Recently, these collineations have been investigated for some physically important spacetimes.[4?9]

    In 1918,Emmy Noether[10]proposed her work in terms of Noether theorem.As a result of this theorem, one can find the expression for conserved quantity for each continuous symmetry transformation that leaves the action invariant.NS are also called the variational symmetries and they are associated with mechanical systems possessing a Lagrangian.In particular, for a metric ds2=gabdxadxb,the associated Lagrangian is given byIn this expression, a dot denotes differentiation with respect to the geodesics parametersof the world line of a point particle moving in a spacetime.It is well known that every KV is an NS but there may exist some NS, which are not KVs.Thus the additional NS may yield some extra conservation laws.Homothetic vectors (HVs)are also closely related with NS.Corresponding to every homothetic vectorX,we have an NS,X+2ψs?s.Conversely,if the vector fieldX+2ψs?sis an NS, thenXis an HV provided thatXdoes not depend ons.[11]

    In literature, NS, their relation will Killing and homothetic vectors and the corresponding conservation laws have been studied by many researchers,for details we refer to Refs.[11–19].

    The termTabappearing in EFEs is crucial as it describes the physics of a spacetime.The exact solutions of these equations may not give physically interesting results unless the source ofTabis specified.For different sources,Tabhas some particular form.For example, for an anisotropic fluid,Tab=(ρ+p⊥)uaub+(p||?p⊥)nanb+p⊥gab;ρ,uaandnabeing energy density,four-velocity and spacelike unit vector respectively.The quantitiesp⊥andp||respectively represent the perpendicular and parallel pressures tona.Moreover,uaua=?1,nana= 1 anduana= 0.[20]Similarly, for a perfect fluid we have the same form ofTabwithp||=p⊥=p.

    The positive energy condition is a relation satisfied by the componentT00of stress-energy tensor, which ensures that the energy density is non negative.The physical importance of this condition is evident from the fact that the empty vacuum may become unstable if both positive and negative energy regions are allowed.

    There are some other energy conditions including weak, strong, null and dominant energy conditions, which generalize the conditionT00≥0 to the whole tensorTab.The weak energy condition states thatTabvavb ≥0, for any timelike vectorvaat a point of the spacetime manifold.For an anisotropic source, all the energy conditions take the form:

    In particular, ifp||=p⊥, then these conditions reduce to the energy conditions for a perfect fluid.

    According to the Bianchi classification of all the 3-dimensional real Lie algebras, there are nine types of Bianchi spatially homogeneous but not necessarily isotropic spacetimes.As a subclass, these models contain the isotropic Friedmann-Robertson-Walker (FRW)universes.The Bianchi type models are of vital importance because the physical variables in these models are dependent on time only.Consequently, the EFEs and other governing equations reduce to ordinary differential equations.

    Among the Bianchi type models, the Bianchi type I spacetimes are those models for which the groupG3of translations of the 3-dimensional Euclidian space is Abelian.In the literature, Bianchi type I spacetimes have been thoroughly studied from the symmetry point of view.Paliathanasiset al.[21]presented the symmetry classification of the Klein-Gordon equation in Bianchi I spacetimes,which in turn related the Lie symmetries of this equation with the conformal Killing vectors (CKVs)of the underlying geometry.In the same analysis, it was also shown that the resulting Lie symmetries of the conformal algebra are also NS.Tsamparliset al.[22]studied the CKVs of Bianchi type I spacetimes and conjectured that there are only two conformally flat and two non conformally flat families of these spacetimes admitting CKVs.The same authors stated that for dynamical system whose equations of motion are of the formbeing an arbitrary function of its argument, the computation of Lie and NS reduce to the probelm of finding the special projective collieations.[23]These general results are then applied to the analytic computation of the Bianchi I metric.

    In this paper, we present a complete classification of LRS Bianchi type I spacetimes via NS and the corresponding conservation laws.The bounds for energy conditions are also calculated for all the obtained models.In next section, we derive the list of determining equations for NS.In Secs.3–9, we present different metrics, their Noether generators and corresponding conservation laws.For each of the obtained model in these sections, a brief discussion on the energy conditions is provided.A conclusion of the present work is appended at the end of the paper.

    2 Determining Equations

    The metric of the LRS Bianchi type I spacetimes is given by:[1]

    such thatA(t)≠0 andB(t)≠0.For this metric, the EFEs withk=1 give:

    Here a dot onAandBdenotes differentiation with respect tot.For an anisotropic fluid, these components become:

    while for a perfect fluid, we have the same values ofTabwithp||=p⊥=p.Following is the Lagrangian corresponding to the metric (2):

    An NS vector fieldXis a vector field of the formX=ξ(?/?s)+Xj(?/?aj), satisfying the following condition:

    whereX(1)=X+Xjs(?/?˙aj)is the first prolongation ofXandXjs=DXj ?˙ajDξwithD=(?/?s)+ ˙aj(?/?aj).Moreover,ξ,Xjand the Gauge functionFall depend onsandaj, whereaj=(t,x,y,z)are depending variables ofssuch that ˙aj=?aj/?s.

    Using the Noether’s theorem, the corresponding conservation law for each NS can be found with the help of the expression:

    We may simplify Eq.(6)by using the Lagrangian (5)to get the following set of determining equations:

    The componentsXaof the NS vector field, the Gauge functionFand the metric functionsAandBappearing in the above system can be found by decoupling and then integrating these equations systematically.In this way,we may get the exact form of LRS Bianchi type I metrics along with their NS.During this procedure, several cases arise which restrictAandBto satisfy certain conditions and give the exact form of LRS Bianchi type I metric admitting NS having dimension 5,...,9, 11, and 17.To avoid the repetition, we exclude to write the basic calculations and present the metrics along with their NS,conservation laws, Lie algebra and some physical implications in the upcoming sections.

    3 Minimal Set of NS

    The minimal set of NS admitted by LRS Bianchi Type I metric is found to be:

    whereX0is the symmetry corresponding to the Lagrangian andX1,...,X4are the minimum KVs of the metric (2).The above minimal set of NS is obtained under the following restrictions on metric functions.

    Table 1 Metrics admitting 5 NS

    Using Eq.(7), the conservation laws for the above set of minimal NS are obtained as:

    The corresponding Lie algebra for the generators given in Eq.(23)is:

    The metrics 5a–5c are anisotropic fluids for which:

    One may use these values in Eq.(1)to find the energy bounds for the metrics 5a-5c.For example, for the metric 5b, the energy conditions restrict the metric functionAas follows:

    4 Six NS

    IfA=α,whereαis a non zero constant andBsatisfies the conditions ¨B≠0 andB≠eβt,then the metric(2)becomes:

    For this metric, we obtain six NS, out of which five are same as given in Eq.(23)and the sixth one is a proper NS,X5= (s/2α2)?x, with the Gauge functionF=x.The corresponding invariant for this Noether generator is Υ5=s˙x?xand the Lie algebra of these six NS generators is given by:

    For the metric (28), being an anisotropic fluid, the physical terms are found to be:

    Here the dominant energy condition holds if/B+/B2≥0 and ¨B/B ≤0 and the remaining energy conditions are satisfied provided that ¨B/B ≤0.

    5 Seven NS

    In Table 2, we present some LRS Bianchi type I metrics each of which admits a 7-dimensional Lie algebra of NS.For each of these metrics, five NS are same as given in Eq.(23), while the extra two NS along with their conservation laws and Lie algebra are listed with each metric.

    Table 2 Metrics admitting 7 NS.

    For the metric 7a,X5is a KV andX6corresponds to a homothetic vector [(a1t+a2)/2a1]?twith the homothetic constant 1/2.In case 7b, bothX5andX6represent proper NS.Finally, bothX5andX6are KVs for the metrics 7c and 7d.

    The metric in case 7a is an anisotropic fluid with:

    The above expressions satisfy the dominant energy conditions ifc/b ≤1/2 and 3?4c/b ≥(b ?2c)2, while the weak energy conditions hold ifc/b ≤0.75 and 3?4c/b ≥?(b ?2c)2.Moreover, the strong energy conditions are satisfied whenc/b ≤1, 3?4c/b ≥ ?(b ?2c)2, and 2(1?c/b)≥?(b ?2c)2.

    Similarly, the metric in case 7b is an anisotropic fluid whose energy density and parallel pressure vanish andp⊥=?¨A/A.Here the dominant energy condition is clearly failed, while the remaining energy conditions are satisfied provided that ¨A/A<0.

    The energy momentum tensor components for the model 7c, being an anisotropic fluid, produces the following expressions:

    For the above values,the strong and dominant energy conditions are failed, while the weak energy conditions hold when 2βa/b ≤β2≤?βa/banda2/b2≤?βa/b.

    Finally, for the metric 7d we have:

    Here we have obtained a perfect fluid matter such that the dominant energy conditions hold if/B+/B2≥0 and/B2?/B ≥0,while strong and weak energy conditions respectively require/B ≤0 and/B2≥¨B/B.

    6 Eight NS

    In Table 3, we give all the LRS Bianchi type I metrics admitting eight NS,out of which five are same as given in Eq.(23).

    For metric 8a,X5andX6are proper NS, whileX7corresponds to an HV [(a1t+a2)/2a1]?t+x/2?x.In case of metric 8b,X5corresponds to an HV (B/2 ˙B)?t;X6is a proper NS whileX7is a KV.Finally for case 8c,X5is an NS corresponding to the HV(A/2 ˙A)?tandX6,X7are KVs.

    The metric 8a represents an anisotropic fluid with zero perpendicular pressure andρ=?p||=a21/(a1t+a2)2.All the energy conditions are satisfied here.Similarly,The metric 8b is also an anisotropic fluid for which we have:

    such that the strong and weak energy conditions hold if eithera ≥2c ≥0 ora ≤2c ≤0, while for dominant energy condition we must have (a ?2c)2≥|(a ?2c)(a ?6c)|and (a ?2c)2≥|2c(a ?2c)|.The physical terms for case 8c are given by:

    One may simplify the energy conditions using the above values, like the previous cases.

    Table 3 Metrics admitting 8 NS.

    7 Nine NS

    There are nine metrics each of which possesses 9-dimensional algebra of NS.All such metrics and the four additional NS different from those given in Eq.(23)for each of these metrics along with their conservation laws and Lie algebra are presented in Table 4.

    For the metric 9a,X5andX6represent KVs,X7is a proper NS whileX8is an NS corresponding to an HV(A/2a1)?t.In cases 9b–9f,X5andX6are KVs, whileX7andX8are proper NS.The metric given in case 9g admits three additional KVsX5,X6,andX7along with a proper Noether symmetryX8.For the metric 9h,X5is an NS which corresponds to an HV(A/2 ˙A)?t+(y/2)?y+(z/2)?z,X6is a KV whileX7andX8are proper NS.Finally, in case 9i, we have three additional KVsX6,X7,X8, and one NSX5corresponding to the HVA?t/2 ˙A.

    The metric 9a represents a perfect fluid, while all the remaining cases give anisotropic fluids.For the metric 9a, we findp||=p⊥=?ρ/3=?a21/(a1t+a2)2, which satisfy all the energy conditions.For the models in cases 9b–9d, we getρ=p||= 0 andp⊥=?k2, which do not satisfy any energy condition except the positive energy condition,ρ ≥0.Similarly, for models 9e and 9f,we haveρ=p||= 0 andp⊥=k2.Here the dominant energy condition fails,while all the remaining energy conditions are trivially satisfied.For the model 9g,we obtainρ=?p⊥=β2andp||=?3β2, which do not satisfy any energy condition exceptρ ≥0.The metric given in 9h is an anisotropic fluid for whichρ=p||= 0 andp⊥= 2c(a ?2c)/(at+2b)2.The dominant energy condition is clearly failed,while the remaining energy conditions are satisfied provided thatc(a ?2c)≥0.The following physical terms for the metric 9i reveal that it represents a perfect fluid model:

    The corresponding weak energy conditions hold fora(a ?2c)≥0,whereas the strong energy conditions requirea ≥2c ≥0 ora ≤2c ≤0.Moreover, the dominant energy conditions are satisfied ifa(a ?2c)≥0, and(a ?2c)(a ?3c)≤0.

    Table 4 Metrics admitting 9 NS.

    8 Eleven NS

    Following is the only one metric which admits eleven NS:

    whereβ≠0.The set of eleven NS for the above metric contains the minimal set of NS and the extra six NS(KVs)are obtained as:

    The Lie algebra for the above set of generators is found to be:

    and the corresponding conservation laws are:

    For the metric (37), we haveρ= 3β2andp=p||=p⊥=?3β2.Thus it gives a perfect fluid.Here the strong energy condition is violated while the remaining energy conditions are satisfied.

    9 Maximal Set of NS

    It is well known that the the dimension of Noether algebra for flat Minkowski metric is 17.Following is an another metric admitting 17 NS.

    wherea1≠0 andβ≠0.Five NS of the above metric are same as given in Eq.(23), while the remaining twelve are given as follows:

    In the above set,X5is an NS and its corresponding HV is(A/2a1)?t+(y/2)?y+(z/2)?z.Moreover,X6,...,X10are proper NS andX11,...,X16are KVs.The Lie algebra for these generators is given by:

    In this case, the conservation laws are obtained as:

    For the metric (40), we haveTab= 0.Thus it represents a vacuum solution.

    10 Conclusion

    In this paper, we have studied the NS of LRS Bianchi type I spacetimes.For a complete classification, the Noether determining equations are generally solved,which in result categorized the mentioned spacetimes metric into seven different classes according to the dimension of Noether algebra.The possible dimension of Lie algebra of Noether symmetry turned out to be 5, 6, 7, 8, 9, 11,and 17.These NS are compared with Killing and homothetic vectors and it is shown that the possible dimension of Killing algebra for LRS Bianchi type I spacetime is 4,5, 6, 7 or 10.Besides this, the conservations laws are presented for all the Noether symmetry generators by using the well known Noether’s theorem.Finally, it is observed that most of the obtained metrics are anisotropic or perfect fluids satisfying different energy conditions.

    Acknowledgments

    We are thankful to the referees for their useful suggestions on the manuscript.

    亚洲一区中文字幕在线| 99re在线观看精品视频| 丝袜美足系列| 精品久久久久久久久久免费视频 | 亚洲avbb在线观看| 黑丝袜美女国产一区| 极品教师在线免费播放| 国产精品 国内视频| 国产精品偷伦视频观看了| 啪啪无遮挡十八禁网站| 一区在线观看完整版| 亚洲第一欧美日韩一区二区三区| 午夜精品久久久久久毛片777| 99国产精品一区二区蜜桃av | 老司机午夜福利在线观看视频| av福利片在线| 亚洲精品自拍成人| 人人妻人人澡人人爽人人夜夜| 又黄又爽又免费观看的视频| 中文字幕另类日韩欧美亚洲嫩草| 侵犯人妻中文字幕一二三四区| 三上悠亚av全集在线观看| 黄网站色视频无遮挡免费观看| 天天躁日日躁夜夜躁夜夜| 老熟妇乱子伦视频在线观看| 中文字幕制服av| 亚洲 国产 在线| 老熟妇仑乱视频hdxx| 精品国产乱子伦一区二区三区| 亚洲精品国产精品久久久不卡| 精品人妻1区二区| 国产精品乱码一区二三区的特点 | 校园春色视频在线观看| 国产精品.久久久| 国产免费av片在线观看野外av| 欧美不卡视频在线免费观看 | 久久久精品免费免费高清| 免费黄频网站在线观看国产| 久久亚洲精品不卡| 午夜精品国产一区二区电影| 岛国在线观看网站| 91av网站免费观看| a级片在线免费高清观看视频| ponron亚洲| 飞空精品影院首页| 999精品在线视频| 侵犯人妻中文字幕一二三四区| 亚洲欧洲精品一区二区精品久久久| 久久热在线av| 97人妻天天添夜夜摸| 国产深夜福利视频在线观看| 午夜福利视频在线观看免费| 精品人妻熟女毛片av久久网站| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| 又黄又爽又免费观看的视频| 黄色女人牲交| 成在线人永久免费视频| 91成年电影在线观看| 亚洲一码二码三码区别大吗| 久久香蕉激情| 午夜精品久久久久久毛片777| 午夜成年电影在线免费观看| 一区二区三区国产精品乱码| 身体一侧抽搐| 女人高潮潮喷娇喘18禁视频| 国产有黄有色有爽视频| 成年人黄色毛片网站| 青草久久国产| 中出人妻视频一区二区| 久久青草综合色| 亚洲在线自拍视频| av电影中文网址| 亚洲三区欧美一区| 精品视频人人做人人爽| a级毛片在线看网站| 三级毛片av免费| 男女高潮啪啪啪动态图| 色老头精品视频在线观看| 少妇粗大呻吟视频| 日韩精品免费视频一区二区三区| 亚洲男人天堂网一区| 又黄又粗又硬又大视频| 日本五十路高清| 99久久人妻综合| 19禁男女啪啪无遮挡网站| 欧美在线一区亚洲| 精品熟女少妇八av免费久了| 亚洲第一欧美日韩一区二区三区| 777久久人妻少妇嫩草av网站| 女性被躁到高潮视频| 久久精品人人爽人人爽视色| 9热在线视频观看99| 王馨瑶露胸无遮挡在线观看| 成人精品一区二区免费| 久久人妻av系列| 99国产综合亚洲精品| 日韩成人在线观看一区二区三区| 涩涩av久久男人的天堂| 亚洲成人国产一区在线观看| 精品免费久久久久久久清纯 | 午夜91福利影院| 精品少妇一区二区三区视频日本电影| 在线播放国产精品三级| 熟女少妇亚洲综合色aaa.| 中文字幕av电影在线播放| 在线国产一区二区在线| 黄色毛片三级朝国网站| 一级毛片高清免费大全| 成年人午夜在线观看视频| 国产淫语在线视频| 男女下面插进去视频免费观看| 免费在线观看亚洲国产| 少妇猛男粗大的猛烈进出视频| 黑人巨大精品欧美一区二区蜜桃| 19禁男女啪啪无遮挡网站| 超色免费av| 久久精品国产99精品国产亚洲性色 | 黄片播放在线免费| 欧美精品av麻豆av| 91在线观看av| 99国产精品一区二区三区| 在线观看免费视频网站a站| 国产一区二区三区在线臀色熟女 | 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| 久久婷婷成人综合色麻豆| 日韩欧美一区视频在线观看| 亚洲久久久国产精品| 最近最新免费中文字幕在线| 欧美中文综合在线视频| 国产免费男女视频| 天天躁夜夜躁狠狠躁躁| 久久久久精品人妻al黑| 在线观看午夜福利视频| 亚洲成a人片在线一区二区| 欧美激情久久久久久爽电影 | 久久人妻av系列| 岛国在线观看网站| 久久精品熟女亚洲av麻豆精品| 国产精品九九99| 亚洲av第一区精品v没综合| x7x7x7水蜜桃| 99热网站在线观看| aaaaa片日本免费| 久久久国产成人精品二区 | 免费不卡黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 无遮挡黄片免费观看| 99国产精品一区二区三区| 欧美国产精品va在线观看不卡| 搡老乐熟女国产| 精品国产国语对白av| 一边摸一边做爽爽视频免费| 久久久国产欧美日韩av| 曰老女人黄片| 夜夜躁狠狠躁天天躁| 天天躁日日躁夜夜躁夜夜| 国产视频一区二区在线看| 午夜福利一区二区在线看| 亚洲精品美女久久久久99蜜臀| 无人区码免费观看不卡| 在线观看免费高清a一片| 国产精品久久久久久精品古装| 久久精品熟女亚洲av麻豆精品| 国产色视频综合| svipshipincom国产片| 不卡一级毛片| 欧美日本中文国产一区发布| 成年人黄色毛片网站| 亚洲午夜理论影院| 亚洲欧美日韩另类电影网站| 纯流量卡能插随身wifi吗| 精品乱码久久久久久99久播| 91国产中文字幕| 在线播放国产精品三级| 热re99久久精品国产66热6| 亚洲av成人不卡在线观看播放网| 老熟女久久久| 久久精品人人爽人人爽视色| 在线av久久热| 人人澡人人妻人| 黑人巨大精品欧美一区二区蜜桃| 香蕉丝袜av| 国产精品美女特级片免费视频播放器 | 色婷婷久久久亚洲欧美| 久久狼人影院| cao死你这个sao货| 91麻豆av在线| 亚洲精品成人av观看孕妇| 精品视频人人做人人爽| 免费人成视频x8x8入口观看| 午夜91福利影院| 黑人巨大精品欧美一区二区蜜桃| 大陆偷拍与自拍| 99久久国产精品久久久| 真人做人爱边吃奶动态| 巨乳人妻的诱惑在线观看| 少妇裸体淫交视频免费看高清 | 91精品国产国语对白视频| 身体一侧抽搐| 久久久久精品人妻al黑| 母亲3免费完整高清在线观看| 大码成人一级视频| a级毛片黄视频| av中文乱码字幕在线| 亚洲精品自拍成人| 国产精品一区二区免费欧美| 国产精品综合久久久久久久免费 | √禁漫天堂资源中文www| 国产精品电影一区二区三区 | 欧美日韩亚洲综合一区二区三区_| 色婷婷av一区二区三区视频| 老司机亚洲免费影院| 国产真人三级小视频在线观看| 国产精品成人在线| 色综合婷婷激情| 十八禁高潮呻吟视频| 男女下面插进去视频免费观看| 日韩欧美在线二视频 | 久久久久久久精品吃奶| 两性夫妻黄色片| 十分钟在线观看高清视频www| 色综合欧美亚洲国产小说| 91老司机精品| 亚洲精品国产色婷婷电影| 好看av亚洲va欧美ⅴa在| 久久精品国产99精品国产亚洲性色 | 狂野欧美激情性xxxx| 国产精品秋霞免费鲁丝片| 国产成人av教育| 久久久久国产一级毛片高清牌| 极品人妻少妇av视频| tocl精华| 国产精品美女特级片免费视频播放器 | 亚洲第一av免费看| 超碰97精品在线观看| 免费日韩欧美在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 99久久人妻综合| 婷婷精品国产亚洲av在线 | 一本大道久久a久久精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美最黄视频在线播放免费 | 亚洲国产欧美日韩在线播放| 侵犯人妻中文字幕一二三四区| 久久久久久免费高清国产稀缺| 脱女人内裤的视频| 99香蕉大伊视频| 青草久久国产| 别揉我奶头~嗯~啊~动态视频| 一区在线观看完整版| 日本vs欧美在线观看视频| 色婷婷av一区二区三区视频| 久久久久国产一级毛片高清牌| 午夜久久久在线观看| 久久久精品国产亚洲av高清涩受| 国产麻豆69| 大香蕉久久成人网| 亚洲免费av在线视频| 国产国语露脸激情在线看| 欧美在线一区亚洲| 久久99一区二区三区| 男女免费视频国产| 国产熟女午夜一区二区三区| 久久久国产成人精品二区 | 99久久国产精品久久久| 午夜精品久久久久久毛片777| 精品无人区乱码1区二区| 夫妻午夜视频| 精品国产乱子伦一区二区三区| 夜夜躁狠狠躁天天躁| 国产精品国产高清国产av | 一区福利在线观看| 日韩欧美一区二区三区在线观看 | 丰满人妻熟妇乱又伦精品不卡| 如日韩欧美国产精品一区二区三区| 99香蕉大伊视频| 精品福利永久在线观看| 最近最新免费中文字幕在线| 欧美色视频一区免费| 午夜成年电影在线免费观看| 正在播放国产对白刺激| 亚洲一区高清亚洲精品| 黄色丝袜av网址大全| 久久久久久久久免费视频了| 夜夜躁狠狠躁天天躁| 黄色a级毛片大全视频| 亚洲人成伊人成综合网2020| 亚洲第一欧美日韩一区二区三区| av片东京热男人的天堂| av天堂久久9| 色综合婷婷激情| 色播在线永久视频| 国产视频一区二区在线看| 老熟妇仑乱视频hdxx| 伊人久久大香线蕉亚洲五| 热99久久久久精品小说推荐| 国产一区二区激情短视频| 久久精品91无色码中文字幕| 欧美日韩福利视频一区二区| 国产精华一区二区三区| 欧美精品一区二区免费开放| 亚洲欧美激情综合另类| 久久热在线av| 午夜日韩欧美国产| 香蕉久久夜色| 成年版毛片免费区| 国产视频一区二区在线看| 91成人精品电影| 国产一卡二卡三卡精品| 视频区欧美日本亚洲| 天天操日日干夜夜撸| a级毛片在线看网站| 国产亚洲欧美精品永久| 亚洲国产欧美网| 超碰97精品在线观看| 国产成人系列免费观看| 亚洲男人天堂网一区| 在线看a的网站| 久久久国产成人免费| 午夜久久久在线观看| 欧美乱色亚洲激情| 久久国产精品影院| 91成人精品电影| 99热只有精品国产| 午夜亚洲福利在线播放| 久久中文字幕人妻熟女| 国产欧美日韩一区二区精品| 777米奇影视久久| 一级片'在线观看视频| 18禁裸乳无遮挡动漫免费视频| 我的亚洲天堂| 久热爱精品视频在线9| 亚洲av美国av| 日本vs欧美在线观看视频| 极品人妻少妇av视频| 欧美乱码精品一区二区三区| 亚洲成人免费av在线播放| 在线看a的网站| √禁漫天堂资源中文www| 亚洲欧美日韩另类电影网站| 亚洲熟妇中文字幕五十中出 | 亚洲国产精品一区二区三区在线| 法律面前人人平等表现在哪些方面| 亚洲精品一卡2卡三卡4卡5卡| 国产免费av片在线观看野外av| 最近最新免费中文字幕在线| av网站在线播放免费| 正在播放国产对白刺激| 真人做人爱边吃奶动态| 国产亚洲精品久久久久久毛片 | 最近最新中文字幕大全电影3 | 成年人免费黄色播放视频| 亚洲七黄色美女视频| 亚洲av第一区精品v没综合| 99香蕉大伊视频| 精品第一国产精品| 欧美日韩瑟瑟在线播放| 无遮挡黄片免费观看| 最近最新中文字幕大全免费视频| 女人被狂操c到高潮| 亚洲国产欧美网| 老熟妇仑乱视频hdxx| 日韩欧美一区视频在线观看| 后天国语完整版免费观看| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三| 欧美日韩一级在线毛片| 午夜激情av网站| 国产一卡二卡三卡精品| 日韩大码丰满熟妇| 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 久久久久久亚洲精品国产蜜桃av| 国产男靠女视频免费网站| 嫁个100分男人电影在线观看| 不卡av一区二区三区| 在线免费观看的www视频| 成人手机av| xxx96com| 丝瓜视频免费看黄片| 少妇被粗大的猛进出69影院| 中文字幕高清在线视频| 欧美性长视频在线观看| 亚洲片人在线观看| 欧美精品人与动牲交sv欧美| 波多野结衣一区麻豆| 黑人欧美特级aaaaaa片| 精品国产超薄肉色丝袜足j| 丰满的人妻完整版| 久久精品成人免费网站| 久久ye,这里只有精品| www日本在线高清视频| 欧美+亚洲+日韩+国产| 日韩欧美一区视频在线观看| 亚洲av熟女| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美大码av| 亚洲精品成人av观看孕妇| av欧美777| 亚洲av日韩精品久久久久久密| 欧美人与性动交α欧美精品济南到| 国产精品欧美亚洲77777| 亚洲欧美激情在线| 亚洲伊人色综图| 国产亚洲欧美在线一区二区| 视频区图区小说| 激情在线观看视频在线高清 | 欧美不卡视频在线免费观看 | 99精国产麻豆久久婷婷| 日韩制服丝袜自拍偷拍| 久久久水蜜桃国产精品网| 80岁老熟妇乱子伦牲交| 欧美日韩中文字幕国产精品一区二区三区 | 19禁男女啪啪无遮挡网站| 国产精品偷伦视频观看了| 中出人妻视频一区二区| 女人被狂操c到高潮| 欧美精品一区二区免费开放| 大片电影免费在线观看免费| 国产成人精品久久二区二区免费| 亚洲全国av大片| 国产欧美亚洲国产| 露出奶头的视频| 18禁美女被吸乳视频| 国产精品久久久久久人妻精品电影| 午夜精品久久久久久毛片777| 亚洲人成伊人成综合网2020| 高潮久久久久久久久久久不卡| 国产精品乱码一区二三区的特点 | av片东京热男人的天堂| 久久草成人影院| 精品国产国语对白av| 天天躁夜夜躁狠狠躁躁| 成年人免费黄色播放视频| av片东京热男人的天堂| 97人妻天天添夜夜摸| 日韩 欧美 亚洲 中文字幕| 黄频高清免费视频| 亚洲第一欧美日韩一区二区三区| 国产精品免费大片| 满18在线观看网站| 大片电影免费在线观看免费| 久久精品国产综合久久久| 国产亚洲欧美98| 大片电影免费在线观看免费| 无限看片的www在线观看| 99久久人妻综合| avwww免费| 日本黄色日本黄色录像| 免费观看a级毛片全部| 亚洲欧洲精品一区二区精品久久久| 久久久精品区二区三区| 黄片小视频在线播放| 亚洲性夜色夜夜综合| 免费在线观看亚洲国产| 亚洲国产精品合色在线| 一级a爱片免费观看的视频| 亚洲av美国av| 亚洲成a人片在线一区二区| 超碰成人久久| 国产精品免费视频内射| 嫩草影视91久久| 国产精品自产拍在线观看55亚洲 | 女性生殖器流出的白浆| 国产精品美女特级片免费视频播放器 | 欧美黑人精品巨大| 视频区欧美日本亚洲| 又大又爽又粗| 欧洲精品卡2卡3卡4卡5卡区| 久久人人爽av亚洲精品天堂| 一边摸一边抽搐一进一出视频| 搡老岳熟女国产| 亚洲精品粉嫩美女一区| 亚洲人成伊人成综合网2020| 精品一区二区三区av网在线观看| 99精品在免费线老司机午夜| 身体一侧抽搐| 亚洲中文av在线| 午夜免费鲁丝| www.999成人在线观看| 久久精品国产清高在天天线| 18禁裸乳无遮挡免费网站照片 | 亚洲av日韩在线播放| 9191精品国产免费久久| 妹子高潮喷水视频| 男女之事视频高清在线观看| 淫妇啪啪啪对白视频| 1024香蕉在线观看| 伦理电影免费视频| 久久香蕉精品热| 亚洲av第一区精品v没综合| 黑人操中国人逼视频| 久久天堂一区二区三区四区| 免费在线观看亚洲国产| 一进一出抽搐gif免费好疼 | 1024香蕉在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产在线精品亚洲第一网站| av线在线观看网站| 麻豆国产av国片精品| 超碰97精品在线观看| 男女免费视频国产| 精品卡一卡二卡四卡免费| 久久国产精品大桥未久av| 777米奇影视久久| 一a级毛片在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 老熟女久久久| 久久久久久亚洲精品国产蜜桃av| 丝袜在线中文字幕| 99riav亚洲国产免费| 亚洲午夜精品一区,二区,三区| 久久久久久久精品吃奶| 岛国在线观看网站| 久久香蕉国产精品| 人人妻人人添人人爽欧美一区卜| 国产91精品成人一区二区三区| 欧美精品av麻豆av| 国产淫语在线视频| 欧美在线一区亚洲| 777久久人妻少妇嫩草av网站| 香蕉丝袜av| 亚洲精品av麻豆狂野| 黄片小视频在线播放| 夜夜躁狠狠躁天天躁| 亚洲,欧美精品.| 一级作爱视频免费观看| 中文字幕制服av| 黄色片一级片一级黄色片| 成人国产一区最新在线观看| 久久精品亚洲av国产电影网| 亚洲专区字幕在线| 久久国产精品大桥未久av| 欧美日韩国产mv在线观看视频| 天天添夜夜摸| 99国产精品99久久久久| 99国产综合亚洲精品| 免费观看精品视频网站| 高清视频免费观看一区二区| 淫妇啪啪啪对白视频| www.999成人在线观看| 最新美女视频免费是黄的| 国产精品二区激情视频| 亚洲精品国产色婷婷电影| 国产精品免费一区二区三区在线 | av不卡在线播放| 久久中文字幕人妻熟女| 757午夜福利合集在线观看| 亚洲国产精品一区二区三区在线| 超碰成人久久| 高清黄色对白视频在线免费看| 亚洲午夜精品一区,二区,三区| 亚洲一码二码三码区别大吗| 一本大道久久a久久精品| 午夜福利乱码中文字幕| 亚洲国产中文字幕在线视频| 一区二区日韩欧美中文字幕| 91麻豆av在线| 啦啦啦免费观看视频1| 亚洲精品国产一区二区精华液| 亚洲视频免费观看视频| 精品第一国产精品| 欧美黑人欧美精品刺激| 亚洲精品av麻豆狂野| 午夜福利在线免费观看网站| 亚洲av片天天在线观看| 中文字幕人妻丝袜制服| 日日夜夜操网爽| 亚洲av日韩精品久久久久久密| 美女福利国产在线| 黑丝袜美女国产一区| 精品国产国语对白av| 亚洲av熟女| 亚洲午夜理论影院| 精品国产乱码久久久久久男人| 热99国产精品久久久久久7| 在线看a的网站| 中文字幕精品免费在线观看视频| 人成视频在线观看免费观看| 欧美不卡视频在线免费观看 | svipshipincom国产片| 午夜福利欧美成人| 国产高清videossex| 欧美老熟妇乱子伦牲交| 一级毛片女人18水好多| 岛国毛片在线播放| 精品国产国语对白av| 一夜夜www| 激情在线观看视频在线高清 | 老熟妇乱子伦视频在线观看| 欧美日韩成人在线一区二区| 999精品在线视频| 99久久精品国产亚洲精品| 国产在线观看jvid| 人妻久久中文字幕网| 午夜免费观看网址| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女 | 侵犯人妻中文字幕一二三四区| 欧美人与性动交α欧美精品济南到| 精品电影一区二区在线| 日韩一卡2卡3卡4卡2021年| 久久久国产欧美日韩av| 国产男女内射视频| 亚洲第一青青草原| 国产精品一区二区在线不卡| 国产不卡av网站在线观看| 淫妇啪啪啪对白视频| 大陆偷拍与自拍| 又黄又爽又免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av | 久久香蕉精品热|