• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy Conditions and Conservation Laws in LRS Bianchi Type I Spacetimes via Noether Symmetries?

    2019-03-12 02:41:20SumairaSaleemAkhtarandTahirHussain
    Communications in Theoretical Physics 2019年3期

    Sumaira Saleem Akhtar and Tahir Hussain

    Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan

    (Received October 9, 2018; revised manuscript received November 2, 2018)

    Abstract In this paper, we have completely classified the locally rotationally symmetric (LRS)Bianchi type I spacetimes via Noether symmetries(NS).The usual Lagrangian corresponding to LRS Bianchi type I metric is used to find the set of determining equations.To achieve a complete classification, these determining equations are generally integrated to find the components of NS vector field and the metric coefficients.During this procedure, several cases arise which give different Noether algebras of dimension 5,...,9, 11, and 17.A comparison is established between the obtained NS and the Killing and homothetic vectors.Corresponding to all NS generators, the conservation laws are stated by using Noether’s theorem.The metrics which we have obtained as a result of our classification are shown to be anisotropic or perfect fluids which satisfy certain energy conditions.

    Key words: Bianchi type I model, Noether symmetry, conservation Laws, energy conditions

    1 Introduction

    The Einstein’s field equations(EFEs),Gab=kTab,are ten tensor equations in the Einstein’s theory of general relativity, which relate the spacetime curvature with the energy and momentum within spacetime.The termGabappearing in these equations expresses the curvature of spacetime and is known as the Einstein tensor.Moreover,ksignifies the gravitational constant andTabdenotes the stress-energy tensor,which gives the description of density and flux of energy and momentum in the spacetime.

    An exact solution of the EFEs is a Lorentz metricgab,which is obtained by solving these equations in closed form and is conformable to a physically realisticTab.The study of the exact solutions of these equations is proved to be one of the important activities in different branches of physics.They describe the structure of spacetime including the inertial motion of objects in the spacetime.Moreover,these solutions lead to the prediction of black holes and different models of evolution of universe.The problem which one faces in finding the exact solutions of these equations is their highly nonlinear nature.These equations cannot be solved without some simplifying assumption,such as symmetry restriction ongab.Using such restrictions,there are numerous cases where the EFEs are solved completely.[1]

    The most basic symmetry is expressed in terms of a Killing vector (KV)Xsatisfying the relationLXgab= 0,whereLdenotes the Lie derivative operator andgabis the metric tensor.The KVs are closely related to the conservation laws in a spacetime.For a detailed study of exact solutions of EFEs with the help of symmetry restrictions ongaband the corresponding conservation laws, we refer to Refs.[1–3].

    Some other conventional symmetries, which have been studied in the literature include homothetic vectors (LXgab= 2ψgab);ψbeing a constant, curvature collineations (LXRabcd=0), Ricci collineations (LXRab=0)and matter collineations (LXTab=0).Recently, these collineations have been investigated for some physically important spacetimes.[4?9]

    In 1918,Emmy Noether[10]proposed her work in terms of Noether theorem.As a result of this theorem, one can find the expression for conserved quantity for each continuous symmetry transformation that leaves the action invariant.NS are also called the variational symmetries and they are associated with mechanical systems possessing a Lagrangian.In particular, for a metric ds2=gabdxadxb,the associated Lagrangian is given byIn this expression, a dot denotes differentiation with respect to the geodesics parametersof the world line of a point particle moving in a spacetime.It is well known that every KV is an NS but there may exist some NS, which are not KVs.Thus the additional NS may yield some extra conservation laws.Homothetic vectors (HVs)are also closely related with NS.Corresponding to every homothetic vectorX,we have an NS,X+2ψs?s.Conversely,if the vector fieldX+2ψs?sis an NS, thenXis an HV provided thatXdoes not depend ons.[11]

    In literature, NS, their relation will Killing and homothetic vectors and the corresponding conservation laws have been studied by many researchers,for details we refer to Refs.[11–19].

    The termTabappearing in EFEs is crucial as it describes the physics of a spacetime.The exact solutions of these equations may not give physically interesting results unless the source ofTabis specified.For different sources,Tabhas some particular form.For example, for an anisotropic fluid,Tab=(ρ+p⊥)uaub+(p||?p⊥)nanb+p⊥gab;ρ,uaandnabeing energy density,four-velocity and spacelike unit vector respectively.The quantitiesp⊥andp||respectively represent the perpendicular and parallel pressures tona.Moreover,uaua=?1,nana= 1 anduana= 0.[20]Similarly, for a perfect fluid we have the same form ofTabwithp||=p⊥=p.

    The positive energy condition is a relation satisfied by the componentT00of stress-energy tensor, which ensures that the energy density is non negative.The physical importance of this condition is evident from the fact that the empty vacuum may become unstable if both positive and negative energy regions are allowed.

    There are some other energy conditions including weak, strong, null and dominant energy conditions, which generalize the conditionT00≥0 to the whole tensorTab.The weak energy condition states thatTabvavb ≥0, for any timelike vectorvaat a point of the spacetime manifold.For an anisotropic source, all the energy conditions take the form:

    In particular, ifp||=p⊥, then these conditions reduce to the energy conditions for a perfect fluid.

    According to the Bianchi classification of all the 3-dimensional real Lie algebras, there are nine types of Bianchi spatially homogeneous but not necessarily isotropic spacetimes.As a subclass, these models contain the isotropic Friedmann-Robertson-Walker (FRW)universes.The Bianchi type models are of vital importance because the physical variables in these models are dependent on time only.Consequently, the EFEs and other governing equations reduce to ordinary differential equations.

    Among the Bianchi type models, the Bianchi type I spacetimes are those models for which the groupG3of translations of the 3-dimensional Euclidian space is Abelian.In the literature, Bianchi type I spacetimes have been thoroughly studied from the symmetry point of view.Paliathanasiset al.[21]presented the symmetry classification of the Klein-Gordon equation in Bianchi I spacetimes,which in turn related the Lie symmetries of this equation with the conformal Killing vectors (CKVs)of the underlying geometry.In the same analysis, it was also shown that the resulting Lie symmetries of the conformal algebra are also NS.Tsamparliset al.[22]studied the CKVs of Bianchi type I spacetimes and conjectured that there are only two conformally flat and two non conformally flat families of these spacetimes admitting CKVs.The same authors stated that for dynamical system whose equations of motion are of the formbeing an arbitrary function of its argument, the computation of Lie and NS reduce to the probelm of finding the special projective collieations.[23]These general results are then applied to the analytic computation of the Bianchi I metric.

    In this paper, we present a complete classification of LRS Bianchi type I spacetimes via NS and the corresponding conservation laws.The bounds for energy conditions are also calculated for all the obtained models.In next section, we derive the list of determining equations for NS.In Secs.3–9, we present different metrics, their Noether generators and corresponding conservation laws.For each of the obtained model in these sections, a brief discussion on the energy conditions is provided.A conclusion of the present work is appended at the end of the paper.

    2 Determining Equations

    The metric of the LRS Bianchi type I spacetimes is given by:[1]

    such thatA(t)≠0 andB(t)≠0.For this metric, the EFEs withk=1 give:

    Here a dot onAandBdenotes differentiation with respect tot.For an anisotropic fluid, these components become:

    while for a perfect fluid, we have the same values ofTabwithp||=p⊥=p.Following is the Lagrangian corresponding to the metric (2):

    An NS vector fieldXis a vector field of the formX=ξ(?/?s)+Xj(?/?aj), satisfying the following condition:

    whereX(1)=X+Xjs(?/?˙aj)is the first prolongation ofXandXjs=DXj ?˙ajDξwithD=(?/?s)+ ˙aj(?/?aj).Moreover,ξ,Xjand the Gauge functionFall depend onsandaj, whereaj=(t,x,y,z)are depending variables ofssuch that ˙aj=?aj/?s.

    Using the Noether’s theorem, the corresponding conservation law for each NS can be found with the help of the expression:

    We may simplify Eq.(6)by using the Lagrangian (5)to get the following set of determining equations:

    The componentsXaof the NS vector field, the Gauge functionFand the metric functionsAandBappearing in the above system can be found by decoupling and then integrating these equations systematically.In this way,we may get the exact form of LRS Bianchi type I metrics along with their NS.During this procedure, several cases arise which restrictAandBto satisfy certain conditions and give the exact form of LRS Bianchi type I metric admitting NS having dimension 5,...,9, 11, and 17.To avoid the repetition, we exclude to write the basic calculations and present the metrics along with their NS,conservation laws, Lie algebra and some physical implications in the upcoming sections.

    3 Minimal Set of NS

    The minimal set of NS admitted by LRS Bianchi Type I metric is found to be:

    whereX0is the symmetry corresponding to the Lagrangian andX1,...,X4are the minimum KVs of the metric (2).The above minimal set of NS is obtained under the following restrictions on metric functions.

    Table 1 Metrics admitting 5 NS

    Using Eq.(7), the conservation laws for the above set of minimal NS are obtained as:

    The corresponding Lie algebra for the generators given in Eq.(23)is:

    The metrics 5a–5c are anisotropic fluids for which:

    One may use these values in Eq.(1)to find the energy bounds for the metrics 5a-5c.For example, for the metric 5b, the energy conditions restrict the metric functionAas follows:

    4 Six NS

    IfA=α,whereαis a non zero constant andBsatisfies the conditions ¨B≠0 andB≠eβt,then the metric(2)becomes:

    For this metric, we obtain six NS, out of which five are same as given in Eq.(23)and the sixth one is a proper NS,X5= (s/2α2)?x, with the Gauge functionF=x.The corresponding invariant for this Noether generator is Υ5=s˙x?xand the Lie algebra of these six NS generators is given by:

    For the metric (28), being an anisotropic fluid, the physical terms are found to be:

    Here the dominant energy condition holds if/B+/B2≥0 and ¨B/B ≤0 and the remaining energy conditions are satisfied provided that ¨B/B ≤0.

    5 Seven NS

    In Table 2, we present some LRS Bianchi type I metrics each of which admits a 7-dimensional Lie algebra of NS.For each of these metrics, five NS are same as given in Eq.(23), while the extra two NS along with their conservation laws and Lie algebra are listed with each metric.

    Table 2 Metrics admitting 7 NS.

    For the metric 7a,X5is a KV andX6corresponds to a homothetic vector [(a1t+a2)/2a1]?twith the homothetic constant 1/2.In case 7b, bothX5andX6represent proper NS.Finally, bothX5andX6are KVs for the metrics 7c and 7d.

    The metric in case 7a is an anisotropic fluid with:

    The above expressions satisfy the dominant energy conditions ifc/b ≤1/2 and 3?4c/b ≥(b ?2c)2, while the weak energy conditions hold ifc/b ≤0.75 and 3?4c/b ≥?(b ?2c)2.Moreover, the strong energy conditions are satisfied whenc/b ≤1, 3?4c/b ≥ ?(b ?2c)2, and 2(1?c/b)≥?(b ?2c)2.

    Similarly, the metric in case 7b is an anisotropic fluid whose energy density and parallel pressure vanish andp⊥=?¨A/A.Here the dominant energy condition is clearly failed, while the remaining energy conditions are satisfied provided that ¨A/A<0.

    The energy momentum tensor components for the model 7c, being an anisotropic fluid, produces the following expressions:

    For the above values,the strong and dominant energy conditions are failed, while the weak energy conditions hold when 2βa/b ≤β2≤?βa/banda2/b2≤?βa/b.

    Finally, for the metric 7d we have:

    Here we have obtained a perfect fluid matter such that the dominant energy conditions hold if/B+/B2≥0 and/B2?/B ≥0,while strong and weak energy conditions respectively require/B ≤0 and/B2≥¨B/B.

    6 Eight NS

    In Table 3, we give all the LRS Bianchi type I metrics admitting eight NS,out of which five are same as given in Eq.(23).

    For metric 8a,X5andX6are proper NS, whileX7corresponds to an HV [(a1t+a2)/2a1]?t+x/2?x.In case of metric 8b,X5corresponds to an HV (B/2 ˙B)?t;X6is a proper NS whileX7is a KV.Finally for case 8c,X5is an NS corresponding to the HV(A/2 ˙A)?tandX6,X7are KVs.

    The metric 8a represents an anisotropic fluid with zero perpendicular pressure andρ=?p||=a21/(a1t+a2)2.All the energy conditions are satisfied here.Similarly,The metric 8b is also an anisotropic fluid for which we have:

    such that the strong and weak energy conditions hold if eithera ≥2c ≥0 ora ≤2c ≤0, while for dominant energy condition we must have (a ?2c)2≥|(a ?2c)(a ?6c)|and (a ?2c)2≥|2c(a ?2c)|.The physical terms for case 8c are given by:

    One may simplify the energy conditions using the above values, like the previous cases.

    Table 3 Metrics admitting 8 NS.

    7 Nine NS

    There are nine metrics each of which possesses 9-dimensional algebra of NS.All such metrics and the four additional NS different from those given in Eq.(23)for each of these metrics along with their conservation laws and Lie algebra are presented in Table 4.

    For the metric 9a,X5andX6represent KVs,X7is a proper NS whileX8is an NS corresponding to an HV(A/2a1)?t.In cases 9b–9f,X5andX6are KVs, whileX7andX8are proper NS.The metric given in case 9g admits three additional KVsX5,X6,andX7along with a proper Noether symmetryX8.For the metric 9h,X5is an NS which corresponds to an HV(A/2 ˙A)?t+(y/2)?y+(z/2)?z,X6is a KV whileX7andX8are proper NS.Finally, in case 9i, we have three additional KVsX6,X7,X8, and one NSX5corresponding to the HVA?t/2 ˙A.

    The metric 9a represents a perfect fluid, while all the remaining cases give anisotropic fluids.For the metric 9a, we findp||=p⊥=?ρ/3=?a21/(a1t+a2)2, which satisfy all the energy conditions.For the models in cases 9b–9d, we getρ=p||= 0 andp⊥=?k2, which do not satisfy any energy condition except the positive energy condition,ρ ≥0.Similarly, for models 9e and 9f,we haveρ=p||= 0 andp⊥=k2.Here the dominant energy condition fails,while all the remaining energy conditions are trivially satisfied.For the model 9g,we obtainρ=?p⊥=β2andp||=?3β2, which do not satisfy any energy condition exceptρ ≥0.The metric given in 9h is an anisotropic fluid for whichρ=p||= 0 andp⊥= 2c(a ?2c)/(at+2b)2.The dominant energy condition is clearly failed,while the remaining energy conditions are satisfied provided thatc(a ?2c)≥0.The following physical terms for the metric 9i reveal that it represents a perfect fluid model:

    The corresponding weak energy conditions hold fora(a ?2c)≥0,whereas the strong energy conditions requirea ≥2c ≥0 ora ≤2c ≤0.Moreover, the dominant energy conditions are satisfied ifa(a ?2c)≥0, and(a ?2c)(a ?3c)≤0.

    Table 4 Metrics admitting 9 NS.

    8 Eleven NS

    Following is the only one metric which admits eleven NS:

    whereβ≠0.The set of eleven NS for the above metric contains the minimal set of NS and the extra six NS(KVs)are obtained as:

    The Lie algebra for the above set of generators is found to be:

    and the corresponding conservation laws are:

    For the metric (37), we haveρ= 3β2andp=p||=p⊥=?3β2.Thus it gives a perfect fluid.Here the strong energy condition is violated while the remaining energy conditions are satisfied.

    9 Maximal Set of NS

    It is well known that the the dimension of Noether algebra for flat Minkowski metric is 17.Following is an another metric admitting 17 NS.

    wherea1≠0 andβ≠0.Five NS of the above metric are same as given in Eq.(23), while the remaining twelve are given as follows:

    In the above set,X5is an NS and its corresponding HV is(A/2a1)?t+(y/2)?y+(z/2)?z.Moreover,X6,...,X10are proper NS andX11,...,X16are KVs.The Lie algebra for these generators is given by:

    In this case, the conservation laws are obtained as:

    For the metric (40), we haveTab= 0.Thus it represents a vacuum solution.

    10 Conclusion

    In this paper, we have studied the NS of LRS Bianchi type I spacetimes.For a complete classification, the Noether determining equations are generally solved,which in result categorized the mentioned spacetimes metric into seven different classes according to the dimension of Noether algebra.The possible dimension of Lie algebra of Noether symmetry turned out to be 5, 6, 7, 8, 9, 11,and 17.These NS are compared with Killing and homothetic vectors and it is shown that the possible dimension of Killing algebra for LRS Bianchi type I spacetime is 4,5, 6, 7 or 10.Besides this, the conservations laws are presented for all the Noether symmetry generators by using the well known Noether’s theorem.Finally, it is observed that most of the obtained metrics are anisotropic or perfect fluids satisfying different energy conditions.

    Acknowledgments

    We are thankful to the referees for their useful suggestions on the manuscript.

    国产精品,欧美在线| 国产精品人妻久久久影院| 免费黄网站久久成人精品| 日韩欧美精品免费久久| 亚洲性夜色夜夜综合| 欧美人与善性xxx| 女同久久另类99精品国产91| 国产亚洲欧美98| 性色avwww在线观看| 中文字幕熟女人妻在线| 热99re8久久精品国产| 亚洲最大成人av| 国内精品久久久久精免费| 最新在线观看一区二区三区| 久久久久久国产a免费观看| 欧美又色又爽又黄视频| 全区人妻精品视频| 亚洲性久久影院| 国产精品人妻久久久影院| 精品99又大又爽又粗少妇毛片| 亚洲av成人av| 99久久久亚洲精品蜜臀av| 免费看美女性在线毛片视频| 搞女人的毛片| 免费看av在线观看网站| 久久久久九九精品影院| 欧美性感艳星| 色吧在线观看| 三级男女做爰猛烈吃奶摸视频| 人妻久久中文字幕网| 偷拍熟女少妇极品色| 三级男女做爰猛烈吃奶摸视频| 日韩在线高清观看一区二区三区| 亚洲一区高清亚洲精品| 亚洲婷婷狠狠爱综合网| 97在线视频观看| 少妇丰满av| 日韩精品中文字幕看吧| 校园春色视频在线观看| 99在线视频只有这里精品首页| 精品午夜福利在线看| 亚洲精品一区av在线观看| 欧美日韩国产亚洲二区| 九九热线精品视视频播放| 日本成人三级电影网站| 国产成人a区在线观看| 亚洲美女视频黄频| 亚洲欧美日韩高清专用| 卡戴珊不雅视频在线播放| 久久精品综合一区二区三区| 插逼视频在线观看| 国产人妻一区二区三区在| 可以在线观看的亚洲视频| 两个人视频免费观看高清| a级毛片a级免费在线| av免费在线看不卡| 少妇被粗大猛烈的视频| 白带黄色成豆腐渣| 国产精品,欧美在线| 一级黄色大片毛片| 国产高清不卡午夜福利| 成人高潮视频无遮挡免费网站| 内射极品少妇av片p| 欧美极品一区二区三区四区| 久久综合国产亚洲精品| 国产欧美日韩精品亚洲av| 国产精品综合久久久久久久免费| 女人被狂操c到高潮| 精品久久久久久久末码| 日本-黄色视频高清免费观看| 内射极品少妇av片p| 亚洲av五月六月丁香网| 亚洲中文字幕日韩| 三级经典国产精品| av黄色大香蕉| 美女免费视频网站| 国产伦在线观看视频一区| 欧美绝顶高潮抽搐喷水| 亚洲熟妇熟女久久| 国产男靠女视频免费网站| 九九在线视频观看精品| 日日摸夜夜添夜夜添小说| 午夜久久久久精精品| 特大巨黑吊av在线直播| 欧美一区二区国产精品久久精品| 国产精品亚洲一级av第二区| 午夜日韩欧美国产| 少妇熟女欧美另类| 午夜福利在线观看吧| 国产国拍精品亚洲av在线观看| 在线观看一区二区三区| 日产精品乱码卡一卡2卡三| 在线观看66精品国产| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 国产真实乱freesex| 在线观看午夜福利视频| 欧美日韩乱码在线| 哪里可以看免费的av片| 久久精品国产清高在天天线| 亚洲中文日韩欧美视频| 日本黄色片子视频| 别揉我奶头~嗯~啊~动态视频| 久久九九热精品免费| 国产不卡一卡二| 人妻制服诱惑在线中文字幕| 在线免费观看不下载黄p国产| 午夜精品在线福利| 男插女下体视频免费在线播放| 久久久久久国产a免费观看| 最新中文字幕久久久久| 欧美区成人在线视频| 日韩成人伦理影院| 亚洲丝袜综合中文字幕| 成人欧美大片| 男人和女人高潮做爰伦理| 日本a在线网址| 床上黄色一级片| 精品熟女少妇av免费看| 国产午夜精品论理片| 在线播放国产精品三级| 亚洲欧美中文字幕日韩二区| 韩国av在线不卡| 色av中文字幕| 欧美最黄视频在线播放免费| 国产91av在线免费观看| 亚洲熟妇熟女久久| 久久久久久伊人网av| 久久婷婷人人爽人人干人人爱| 香蕉av资源在线| 久久久欧美国产精品| 精品人妻一区二区三区麻豆 | 久久99热这里只有精品18| 国产一区二区在线观看日韩| 免费看a级黄色片| 亚洲精品日韩在线中文字幕 | 身体一侧抽搐| 午夜免费男女啪啪视频观看 | 亚洲精品日韩av片在线观看| 成人三级黄色视频| av在线蜜桃| 国产极品精品免费视频能看的| 亚洲人成网站在线播放欧美日韩| 三级经典国产精品| 亚洲无线观看免费| 欧美一级a爱片免费观看看| 内地一区二区视频在线| 内地一区二区视频在线| 国产精品永久免费网站| 久久精品国产鲁丝片午夜精品| 老司机午夜福利在线观看视频| 啦啦啦啦在线视频资源| 国产中年淑女户外野战色| 秋霞在线观看毛片| 一级黄片播放器| 非洲黑人性xxxx精品又粗又长| 秋霞在线观看毛片| 国产精品一二三区在线看| 在线免费观看不下载黄p国产| 99热6这里只有精品| 色吧在线观看| 天堂动漫精品| 色哟哟·www| 精品免费久久久久久久清纯| 舔av片在线| 成人特级av手机在线观看| 麻豆国产97在线/欧美| АⅤ资源中文在线天堂| 99九九线精品视频在线观看视频| 最近手机中文字幕大全| 色视频www国产| 日韩欧美精品免费久久| 成人无遮挡网站| 国产成人a∨麻豆精品| 国产淫片久久久久久久久| 国产黄色视频一区二区在线观看 | 午夜激情欧美在线| 中国美白少妇内射xxxbb| 中文资源天堂在线| 精品一区二区三区人妻视频| 天天躁夜夜躁狠狠久久av| 一区二区三区高清视频在线| 欧美又色又爽又黄视频| 亚洲精品成人久久久久久| 欧美+亚洲+日韩+国产| 欧美日本亚洲视频在线播放| 婷婷色综合大香蕉| 精华霜和精华液先用哪个| 久久这里只有精品中国| 国国产精品蜜臀av免费| 精品久久久久久久末码| 欧美成人免费av一区二区三区| 大又大粗又爽又黄少妇毛片口| 给我免费播放毛片高清在线观看| 精品久久国产蜜桃| 国产一区二区在线观看日韩| 久久人人精品亚洲av| 婷婷色综合大香蕉| 伦理电影大哥的女人| 国产精品人妻久久久久久| 大香蕉久久网| 午夜福利在线观看免费完整高清在 | 毛片一级片免费看久久久久| 俺也久久电影网| 久久久久性生活片| 亚洲av电影不卡..在线观看| 日本在线视频免费播放| 亚洲欧美日韩东京热| 久久久久久久久中文| 麻豆成人午夜福利视频| 国产欧美日韩一区二区精品| 插阴视频在线观看视频| 99久久精品国产国产毛片| 一进一出抽搐动态| 国产v大片淫在线免费观看| 亚洲美女搞黄在线观看 | 亚洲国产精品sss在线观看| avwww免费| 免费电影在线观看免费观看| 亚洲av美国av| 久久久久久久午夜电影| 亚洲七黄色美女视频| 一区二区三区免费毛片| 国产精品嫩草影院av在线观看| 久久久国产成人免费| 亚洲一区高清亚洲精品| 晚上一个人看的免费电影| 亚洲国产日韩欧美精品在线观看| 亚洲中文字幕一区二区三区有码在线看| 91久久精品电影网| 99视频精品全部免费 在线| av天堂中文字幕网| 国内精品一区二区在线观看| 日韩欧美 国产精品| 亚洲综合色惰| 久久精品国产清高在天天线| 国产成人91sexporn| 国产一区二区激情短视频| 女人十人毛片免费观看3o分钟| 99热全是精品| 联通29元200g的流量卡| 大香蕉久久网| 男女下面进入的视频免费午夜| 一区二区三区四区激情视频 | 嫩草影院新地址| 18禁在线无遮挡免费观看视频 | 无遮挡黄片免费观看| 18禁在线播放成人免费| 久久久国产成人精品二区| 搞女人的毛片| 午夜影院日韩av| 男女边吃奶边做爰视频| 国产男靠女视频免费网站| 精品国产三级普通话版| 最近中文字幕高清免费大全6| 最近的中文字幕免费完整| 天堂影院成人在线观看| 成人特级黄色片久久久久久久| 免费av毛片视频| 一边摸一边抽搐一进一小说| 特大巨黑吊av在线直播| 搞女人的毛片| 亚洲精品一区av在线观看| 97碰自拍视频| 日本与韩国留学比较| 日韩强制内射视频| 春色校园在线视频观看| 午夜免费激情av| 亚洲人与动物交配视频| 99热全是精品| 99热这里只有是精品在线观看| 亚洲欧美精品综合久久99| 可以在线观看毛片的网站| 欧美最新免费一区二区三区| 欧美日韩在线观看h| 久久人人爽人人爽人人片va| 亚洲精品影视一区二区三区av| 久久久色成人| 少妇人妻精品综合一区二区 | 搡老岳熟女国产| 日韩中字成人| 午夜精品一区二区三区免费看| a级一级毛片免费在线观看| h日本视频在线播放| 不卡一级毛片| 一级a爱片免费观看的视频| 国产国拍精品亚洲av在线观看| 91在线精品国自产拍蜜月| 午夜爱爱视频在线播放| 人妻久久中文字幕网| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 村上凉子中文字幕在线| 99久久精品热视频| 九九热线精品视视频播放| 成人无遮挡网站| 美女高潮的动态| 日日摸夜夜添夜夜添小说| 在线观看免费视频日本深夜| 此物有八面人人有两片| 久久婷婷人人爽人人干人人爱| 在线观看一区二区三区| 乱人视频在线观看| 精品一区二区三区视频在线| 亚洲精品乱码久久久v下载方式| 国产精品人妻久久久久久| 午夜福利在线观看免费完整高清在 | 国产aⅴ精品一区二区三区波| 欧美激情国产日韩精品一区| 国产免费一级a男人的天堂| 日本 av在线| 欧美一区二区亚洲| 国产淫片久久久久久久久| 天堂影院成人在线观看| 一个人看的www免费观看视频| 久久国产乱子免费精品| 亚洲18禁久久av| 久久韩国三级中文字幕| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av| 丰满的人妻完整版| 少妇的逼好多水| 一级毛片电影观看 | 一级av片app| 亚洲最大成人中文| 国产高清激情床上av| 丝袜美腿在线中文| 亚洲人成网站在线播| 亚洲成人av在线免费| 国产精品一区二区三区四区久久| 老司机影院成人| 国产精品不卡视频一区二区| 亚洲成人精品中文字幕电影| 菩萨蛮人人尽说江南好唐韦庄 | 男女边吃奶边做爰视频| 久久久精品欧美日韩精品| 最近的中文字幕免费完整| 极品教师在线视频| 久久久久免费精品人妻一区二区| av中文乱码字幕在线| 日本免费a在线| 如何舔出高潮| 免费观看在线日韩| 国产精品免费一区二区三区在线| 俄罗斯特黄特色一大片| 久久精品夜色国产| 国产精品亚洲美女久久久| 少妇人妻一区二区三区视频| 久久99热这里只有精品18| 精品免费久久久久久久清纯| 美女高潮的动态| 国产伦精品一区二区三区四那| 91久久精品电影网| 亚洲国产欧洲综合997久久,| 秋霞在线观看毛片| 久久鲁丝午夜福利片| 99久久中文字幕三级久久日本| 别揉我奶头~嗯~啊~动态视频| 成人综合一区亚洲| 精品不卡国产一区二区三区| 2021天堂中文幕一二区在线观| 丰满人妻一区二区三区视频av| 亚洲精品国产av成人精品 | 美女大奶头视频| 久久人人爽人人爽人人片va| 欧美色视频一区免费| 国内精品久久久久精免费| 国产高潮美女av| 成年女人永久免费观看视频| 中文亚洲av片在线观看爽| 我的女老师完整版在线观看| av国产免费在线观看| 一a级毛片在线观看| 性插视频无遮挡在线免费观看| 韩国av在线不卡| 91狼人影院| 亚洲精品日韩av片在线观看| 免费观看人在逋| 久久草成人影院| 久久久久久久久久成人| 18禁黄网站禁片免费观看直播| av在线播放精品| 午夜福利成人在线免费观看| 久久久久国产精品人妻aⅴ院| 成人三级黄色视频| 成人午夜高清在线视频| 一本精品99久久精品77| 亚洲激情五月婷婷啪啪| 嫩草影院新地址| 淫妇啪啪啪对白视频| 人妻夜夜爽99麻豆av| 亚洲自偷自拍三级| av女优亚洲男人天堂| 中文字幕av在线有码专区| 日产精品乱码卡一卡2卡三| 亚洲婷婷狠狠爱综合网| 啦啦啦韩国在线观看视频| 国产男人的电影天堂91| 亚洲欧美日韩高清专用| 国产欧美日韩精品一区二区| 免费看a级黄色片| 午夜福利在线观看吧| 麻豆一二三区av精品| 一区福利在线观看| 狂野欧美白嫩少妇大欣赏| 国语自产精品视频在线第100页| 变态另类丝袜制服| 99热全是精品| 内射极品少妇av片p| 男人舔女人下体高潮全视频| 亚洲婷婷狠狠爱综合网| 人妻久久中文字幕网| 国产熟女欧美一区二区| 91久久精品国产一区二区三区| 晚上一个人看的免费电影| 寂寞人妻少妇视频99o| 卡戴珊不雅视频在线播放| 99热精品在线国产| 午夜影院日韩av| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 亚洲自拍偷在线| 好男人在线观看高清免费视频| 丝袜喷水一区| 精品熟女少妇av免费看| avwww免费| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久人妻蜜臀av| 又粗又爽又猛毛片免费看| av在线播放精品| av专区在线播放| 草草在线视频免费看| 美女 人体艺术 gogo| 欧美区成人在线视频| 我要搜黄色片| 午夜久久久久精精品| 国产午夜福利久久久久久| 久久久久久大精品| 能在线免费观看的黄片| 国产成人freesex在线 | 成年免费大片在线观看| 午夜福利在线观看免费完整高清在 | 白带黄色成豆腐渣| 国产av不卡久久| 欧美成人免费av一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 国产国拍精品亚洲av在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品合色在线| 国产高清视频在线观看网站| 观看美女的网站| 能在线免费观看的黄片| 网址你懂的国产日韩在线| 变态另类丝袜制服| 女的被弄到高潮叫床怎么办| 白带黄色成豆腐渣| 一级毛片电影观看 | 成人精品一区二区免费| 精品国产三级普通话版| 国产黄色视频一区二区在线观看 | 一个人免费在线观看电影| 黄色欧美视频在线观看| 看非洲黑人一级黄片| 99热全是精品| 午夜福利在线观看免费完整高清在 | 国产黄片美女视频| 亚洲18禁久久av| 欧洲精品卡2卡3卡4卡5卡区| 国产男靠女视频免费网站| 最近在线观看免费完整版| 亚洲欧美日韩东京热| 亚洲精品粉嫩美女一区| 女的被弄到高潮叫床怎么办| 国产高潮美女av| 99国产精品一区二区蜜桃av| 欧美日韩国产亚洲二区| 国产一区二区激情短视频| 啦啦啦观看免费观看视频高清| 久久精品影院6| 热99在线观看视频| 国产老妇女一区| 黄色一级大片看看| 最好的美女福利视频网| 精品久久国产蜜桃| 人妻久久中文字幕网| 成人精品一区二区免费| 日韩欧美精品v在线| 国产高清有码在线观看视频| 亚洲国产精品成人久久小说 | 免费大片18禁| 亚洲人成网站在线播| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 国内精品久久久久精免费| 在线观看av片永久免费下载| 露出奶头的视频| 如何舔出高潮| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 99热全是精品| 婷婷亚洲欧美| 免费高清视频大片| 国产黄色视频一区二区在线观看 | 久久午夜亚洲精品久久| 老熟妇乱子伦视频在线观看| 精品久久久久久久久av| 亚洲在线观看片| 国产精品国产三级国产av玫瑰| 日韩av在线大香蕉| 国产精品一区二区免费欧美| 国内精品美女久久久久久| 嫩草影院精品99| 亚洲第一电影网av| 国产精品综合久久久久久久免费| 俄罗斯特黄特色一大片| 久久久久久久久久久丰满| 三级经典国产精品| 欧美日本亚洲视频在线播放| 亚洲精品影视一区二区三区av| 最新中文字幕久久久久| 在线免费十八禁| 熟妇人妻久久中文字幕3abv| 日韩欧美一区二区三区在线观看| 在线免费十八禁| 国产毛片a区久久久久| 免费电影在线观看免费观看| 久久久久性生活片| 国产老妇女一区| 亚洲av一区综合| 天堂网av新在线| 国产真实伦视频高清在线观看| 久久久久国内视频| 人妻丰满熟妇av一区二区三区| 免费看a级黄色片| 亚洲精品久久国产高清桃花| 成人欧美大片| 色噜噜av男人的天堂激情| 好男人在线观看高清免费视频| 色综合色国产| 中国国产av一级| 精品人妻一区二区三区麻豆 | www.色视频.com| 日本黄色片子视频| 日本-黄色视频高清免费观看| 久久6这里有精品| 麻豆一二三区av精品| 久久中文看片网| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久久电影| 国国产精品蜜臀av免费| 精品人妻一区二区三区麻豆 | 久久久午夜欧美精品| 日韩高清综合在线| av在线亚洲专区| 黄色视频,在线免费观看| 美女被艹到高潮喷水动态| av免费在线看不卡| 99久国产av精品| 国产乱人视频| 能在线免费观看的黄片| 亚洲中文字幕一区二区三区有码在线看| 露出奶头的视频| 亚洲人成网站高清观看| 在线观看66精品国产| 欧美性感艳星| 亚洲丝袜综合中文字幕| 精品乱码久久久久久99久播| 晚上一个人看的免费电影| 亚洲成人久久性| 久久国内精品自在自线图片| 国产老妇女一区| 亚洲欧美清纯卡通| 国产高清不卡午夜福利| 久久韩国三级中文字幕| 18+在线观看网站| 欧美日韩在线观看h| 亚洲最大成人手机在线| 91久久精品电影网| 日本欧美国产在线视频| 亚洲中文字幕日韩| 午夜亚洲福利在线播放| 91狼人影院| a级毛片免费高清观看在线播放| 国产色婷婷99| 狂野欧美激情性xxxx在线观看| 内射极品少妇av片p| 狂野欧美激情性xxxx在线观看| 免费av观看视频| 久久人人爽人人爽人人片va| av在线老鸭窝| 久久精品国产清高在天天线| 亚洲国产精品久久男人天堂| 亚洲精品成人久久久久久| 亚洲国产色片| 亚洲欧美日韩东京热| 九九热线精品视视频播放| 国产aⅴ精品一区二区三区波| 国产精品福利在线免费观看| 午夜福利视频1000在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 五月玫瑰六月丁香| 人妻久久中文字幕网| 日韩av不卡免费在线播放| 六月丁香七月| 色5月婷婷丁香| 国产精品人妻久久久影院| 女的被弄到高潮叫床怎么办| 大型黄色视频在线免费观看| 亚洲精品久久国产高清桃花| 亚洲最大成人中文| 久久久久久国产a免费观看| 日本一本二区三区精品| 男人舔女人下体高潮全视频| 女人被狂操c到高潮| 欧美一区二区精品小视频在线|