張?旭,羅?震,畢?敬,張?禹
?
外加磁場對TA1工業(yè)純鈦電阻點(diǎn)焊連接質(zhì)量的影響
張?旭1,羅?震1,畢?敬2,張?禹1
(1. 天津大學(xué)材料科學(xué)與工程學(xué)院,天津 300072;2. 天津航天長征火箭制造有限公司,天津 300462)
針對TA1工業(yè)純鈦在電阻點(diǎn)焊時(shí)極易與氧氣發(fā)生反應(yīng)而導(dǎo)致接頭局部脆化的情況,引入了外加橫向磁場以改善其電阻點(diǎn)焊接頭的連接質(zhì)量.實(shí)驗(yàn)使用材料為1mm厚的TA1工業(yè)純鈦薄板,在220kW的逆變直流電阻點(diǎn)焊設(shè)備上進(jìn)行.電極采用端部直徑為6mm的錐形電極頭.外加磁場由一對環(huán)形釹鐵硼永磁鐵N40產(chǎn)生.上、下永磁體S極相對,沿電極臂中心線呈軸對稱安裝.上、下永磁體距兩試件的接觸面為9mm.以熔核尺寸和接頭在拉剪測試中表現(xiàn)出的峰值載荷為指標(biāo),分析了外加橫向磁場對TA1工業(yè)純鈦電阻點(diǎn)焊連接質(zhì)量的影響.并且測量了點(diǎn)焊接頭截面的顯微硬度以判斷熔核邊緣的氧化程度.結(jié)果表明,在同等熱輸入前提下,外加磁場不影響TA1熔核內(nèi)部的結(jié)晶形態(tài),但能夠有效增加熔核直徑,改善TA1點(diǎn)焊接頭的承載能力.并且在熱輸入較小的條件下,外加磁場對熔核直徑生長的作用更明顯.當(dāng)接頭熔核尺寸相近時(shí),施加外部橫向磁場的點(diǎn)焊過程所需熱輸入量更?。@也導(dǎo)致了在同等熔核尺寸和峰值載荷前提下,有外加磁場下的點(diǎn)焊接頭斷裂模式呈現(xiàn)對稱紐扣斷裂模式,無磁場的點(diǎn)焊接頭呈現(xiàn)單側(cè)紐扣斷裂模式.同時(shí)外加磁場作用下的點(diǎn)焊接頭拉伸斷口的韌窩尺寸更大,表現(xiàn)出更好的塑韌性,這是因?yàn)檩^小的熱輸入能降低熔核邊緣區(qū)域的氧化程度.
電阻點(diǎn)焊;外加磁場;工業(yè)純鈦;點(diǎn)焊質(zhì)量
電阻點(diǎn)焊工藝因?yàn)榫哂行矢?、成本低、易于?shí)現(xiàn)自動(dòng)化等優(yōu)點(diǎn),被廣泛用于汽車與航天工業(yè)中薄板結(jié)構(gòu)的連接[1].各類新型輕量化材料的工業(yè)化應(yīng)用給這一傳統(tǒng)連接工藝帶來挑戰(zhàn).
有學(xué)者提出采用電磁攪拌技術(shù)改善新型難焊材料電阻點(diǎn)焊的加工質(zhì)量.Watanabe等[2]研究表明外加磁場可以增大301不銹鋼焊點(diǎn)熔核的直徑.Shen?等[3]發(fā)現(xiàn)在DP590和DP780的電阻點(diǎn)焊工藝中,針對電極軸線施加橫向恒定磁場能與焊接區(qū)電流發(fā)生交互作用,細(xì)化熔核區(qū)晶粒,并在同樣焊接參數(shù)前提下增加熔核直徑,實(shí)現(xiàn)減小能耗、提高連接質(zhì)量的目的.Yao等[4]發(fā)現(xiàn)在鎂合金電阻點(diǎn)焊過程中,施加磁場可以強(qiáng)化熔核局部強(qiáng)度,促進(jìn)接頭的紐扣斷裂傾向性.張忠典等[5]發(fā)現(xiàn)外加磁場能夠有效改善高強(qiáng)鋼30CrMnSi的電阻點(diǎn)焊接頭組織.
TA1工業(yè)純鈦因其具有較高的比強(qiáng)度和熔點(diǎn)高、韌性好、密度小、膨脹系數(shù)低等一系列優(yōu)點(diǎn),被廣泛應(yīng)用于航天航空類設(shè)備.紅熱、熔融狀態(tài)的鈦有很高的化學(xué)活性,極易與氧氣發(fā)生反應(yīng),導(dǎo)致熔化焊接頭局部脆化[6].
文中研究在TA1電阻點(diǎn)焊過程中引入外部橫向磁場,研究了該措施對接頭力學(xué)性能、熔核直徑和接頭失效模式的影響.
實(shí)驗(yàn)用材料為1mm厚的TA1工業(yè)純鈦薄板.試件尺寸為100mm×25mm,搭接長度為25mm.焊接實(shí)驗(yàn)在220kW的逆變直流電阻點(diǎn)焊設(shè)備上進(jìn)行.電極采用端部直徑為6mm的錐形電極頭.
實(shí)驗(yàn)中的外加磁場由一對環(huán)形釹鐵硼(NdFeB)永磁體N40產(chǎn)生,其性能參數(shù)見表1.實(shí)驗(yàn)裝置示意如圖1所示.上、下永磁體S極相對,沿電極臂中心線呈軸對稱安裝.上、下永磁體距兩試件的接觸面為9mm.實(shí)驗(yàn)工藝參數(shù)如表2所示,每組參數(shù)重復(fù)焊接5個(gè)試樣.
實(shí)驗(yàn)前用砂紙打磨TA1板,以去除表面污垢,然后用酒精清洗,以保證焊接過程的穩(wěn)定性.
焊后采用 CSS-44100 萬能拉伸實(shí)驗(yàn)機(jī)對接頭進(jìn)行拉剪性能測試(拉伸速率為1.0mm/min),并測量破壞后試樣的熔核直徑.對接頭截面進(jìn)行維氏硬度測試,載荷為100,保壓時(shí)間為15s.此外,使用日立S4800型場發(fā)射掃描電鏡對拉剪實(shí)驗(yàn)斷口形貌進(jìn)行觀察.
表1?N40型NdFeB永磁體性能參數(shù)和尺寸參數(shù)
Tab.1?Dimensions and performance parameters of N40 type NdFeB permanent magnet
圖1?點(diǎn)焊外加磁場焊接示意
表2?實(shí)驗(yàn)參數(shù)
Tab.2?Experimental parameters
試驗(yàn)中典型的點(diǎn)焊接頭宏觀形貌如圖2所示.在同樣焊接參數(shù)(5kA,150ms)前提下,外加磁場能夠促進(jìn)點(diǎn)焊熔核直徑的增加,同時(shí)熔核厚度方面幾乎沒有變化.這是因?yàn)樵谕饧哟艌龅淖饔孟拢附与娏鲿a(chǎn)生對液態(tài)金屬沿熔核切線向外的洛倫茲力,從而迫使熔核內(nèi)部的高溫液態(tài)金屬做高速離心運(yùn)動(dòng),因此將更多熱量帶到熔核邊緣,有利于熔核的生長[7].
與之前外加磁場點(diǎn)焊相關(guān)研究相比[8],TA1熔核內(nèi)部結(jié)晶形態(tài)并未發(fā)生變化(兩類試樣熔核內(nèi)部均為較粗大的柱狀晶).這是由于文中研究所采用的焊接板材為純金屬,幾乎不存在成分過冷.因此外加磁場對TA1點(diǎn)焊接頭截面形貌的影響主要體現(xiàn)在熔核尺寸的增加.
圖2?點(diǎn)焊接頭宏觀形貌
圖3為在焊接電流為5kA、7kA條件下無磁場和外加磁場時(shí)熔核直徑和峰值載荷隨焊接時(shí)間的變化規(guī)律.
由圖3可以看出在焊接電流較小、焊接時(shí)間較短時(shí),外加磁場對熔核直徑生長的作用更明顯.這是因?yàn)楫?dāng)焊接電流較大、焊接時(shí)間較長時(shí),焊接熱輸入非常充足,熔核已經(jīng)能夠充分生長,外磁場的施加難以使熔核進(jìn)一步長大,因此其作用較弱.
而由于電阻點(diǎn)焊過程中峰值載荷與熔核直徑呈正相關(guān),因此外加磁場能夠提高點(diǎn)焊接頭的峰值載荷,同時(shí)在焊接電流較小和焊接時(shí)間較短時(shí),外加磁場對峰值載荷提高的作用更加明顯.此外,在同一個(gè)電流水平下,更短的焊接時(shí)間能使熔核直徑生長至紐扣斷裂所需尺寸.
對于電阻點(diǎn)焊接頭,接頭的峰值載荷與工件厚度、熔核直徑以及母材的極限抗拉強(qiáng)度呈正比[9].因此,在此實(shí)驗(yàn)中,接頭的峰值載荷與熔核直徑直接有關(guān).挑選兩個(gè)具有相近水平的峰值載荷和熔核直徑的點(diǎn)焊接頭,其中一個(gè)無磁場,另一個(gè)有外加磁場,對其接頭失效進(jìn)行分析.所挑選的兩個(gè)點(diǎn)焊接頭的參數(shù)為無磁場、7kA、200ms和有磁場、5kA、250ms.
圖3 無磁場和外加磁場下焊接時(shí)間對熔核直徑和峰值載荷的影響
兩個(gè)參數(shù)下點(diǎn)焊接頭的力-位移曲線如圖4所示,從圖4中可以看出,雖然兩者峰值載荷相當(dāng),但有外加磁場下的點(diǎn)焊接頭的韌性比無磁場下的點(diǎn)焊接頭更優(yōu).此外,有外加磁場下的點(diǎn)焊接頭斷裂模式呈現(xiàn)對稱紐扣斷裂模式,無磁場的點(diǎn)焊接頭呈現(xiàn)單側(cè)紐扣斷裂模式.這是由于施加外部磁場的試樣所需熱輸入量更小,從而使得熔核周邊承力區(qū)工件氧化程度較小造成的.
圖4?無磁場和外加磁場下的力-位移曲線
文中對兩種典型的點(diǎn)焊接頭的截面進(jìn)行了顯微硬度測量,結(jié)果如圖5所示.有無外加磁場前提下,兩試樣熔核內(nèi)部硬度水平一致;不施加磁場的試樣熔核外側(cè)區(qū)域出現(xiàn)了更顯著的硬度提升.這是因?yàn)樵跓o磁場條件下,需要更高的熱輸入才能使熔核尺寸達(dá)到與施加外部磁場試樣的同等水平.在電極壓力的作用下,熔核不與外界直接接觸,而其周邊的金屬達(dá)到紅熱狀態(tài),發(fā)生氧化.熱輸入越高,熔核外側(cè)金屬被氧化范圍就越大,氧化程度越嚴(yán)重.這表現(xiàn)為顯微硬度的提升[10].
圖5?無磁場和外加磁場下的熔核硬度
使用掃描電鏡對拉伸斷口進(jìn)行觀察,結(jié)果如圖6所示.兩類試樣啟裂處均表現(xiàn)為韌性斷裂特征,然而不施加磁場時(shí),斷口呈現(xiàn)出的韌窩更細(xì)小.施加外部磁場時(shí),斷口的韌窩尺寸更大,因此說明該試樣韌性相對較好[11].
圖6?無磁場和外加磁場下的拉伸斷口
(1) 在同等熱輸入的前提下,外加磁場可以增加TA1電阻點(diǎn)焊接頭的熔核直徑,改善點(diǎn)焊接頭的承載能力.
(2) 當(dāng)接頭熔核尺寸相近時(shí),施加外部橫向磁場的點(diǎn)焊過程所需熱輸入量更?。?/p>
(3) 在同等熔核尺寸和峰值載荷前提下,外加磁場作用下的點(diǎn)焊接頭也表現(xiàn)出更好的塑韌性.這是由于較小的熱輸入能降低近熔核區(qū)域的氧化程度.
[1] Zhang H,Senkara J. Resistance Welding:Fundamen-tals and Applications[M]. Florida:CRC Press,2012.
[2] Watanabe Y,Takeda T,Sato H. Effect of magnetic field on weld zone by spot-welding in stainless steel[J]. Transactions of the Iron & Steel Institute of Japan,2006,46(9):1292-1296.
[3] Shen Q,Li Y B,Lin Z Q,et al. Effect of external constant magnetic field on weld nugget of resistance spot welded dual-phase steel DP590[J]. IEEE Transactions on Magnetics,2011,47(10):4116-4119.
[4] Yao Q,Luo Z,Li Y,et al. Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld[J]. Materials & Design,2014,63(63):200-207.
[5] 張忠典,王亞榮,李雙雙. 外加徑向恒定磁場改善高強(qiáng)鋼點(diǎn)焊質(zhì)量[C]// 第十一次全國焊接會議論文集(第1冊). 上海,2005.
Zhang Z,Wang Y,Li S. Effect of external radial magnetic field on high strength steel resistance spot welding[C]// Proceedings of the 11th National Welding Conference(Vol.1). Shanghai,China,2005(in Chinese).
[6] 李?菊,關(guān)?橋,史耀武. 鈦合金焊接過程應(yīng)力應(yīng)變特點(diǎn)分析[J]. 焊接學(xué)報(bào),2010,31(3):53-56.
Li Ju,Guan Qiao,Shi Yaowu. Investigation on welding stress and strain of titanium alloy[J]. Transactions of the China Welding Institution,2010,31(3):53-56(in Chinese).
[7] 姚?杞,李?洋,羅?震,等. 永磁體磁場對鋁合金電阻點(diǎn)焊力學(xué)性能及微觀組織的影響[J]. 焊接學(xué)報(bào),2016,37(4):52-56.
Yao Qi,Li Yang,Luo Zhen,et al. Impact of external magnetic field generated by permanent magnet on mechanical property and microstructure of aluminum alloy resistance spot weld[J]. Transactions of the China Welding Institution,2016,37(4):52-56(in Chinese).
[8] 沈?琦,李永兵,陳關(guān)龍,等. 永磁體磁場對雙相高強(qiáng)鋼電阻點(diǎn)焊質(zhì)量的影響[J]. 焊接學(xué)報(bào),2011,32(4):21-24.
Shen Qi,Li Yongbing,Chen Guanlong,et al. Impact of external magnetic field generated by permanent magnet on quality of dual phase high strength steel by resistance spot welding[J]. Transactions of the China Weld-
ing Institution,2011,32(4):21-24(in Chinese).
[9] Asme M. Ultimate strength and failure mechanism of resistance spot weld subjected to tensile,shear,or combined tensile/shear loads[J]. Journal of Engineering Materials & Technology,2003,125(2):125-132.
[10] Kaya Y,Kahraman N. The effects of electrode force,welding current and welding time on the resistance spot weldability of pure titanium[J]. International Journal of Advanced Manufacturing Technology,2012,60(1/2/3/4):127-134.
[11] 鐘群鵬,趙子華. 斷口學(xué)[M]. 北京:高等教育出版社,2006.
Zhong Qunpeng,Zhao Zihua. Fractography[M]. Beijing:Higher Education Press,2006(in Chinese).
Effect of External Magnetic Field on TA1 Resistance Spot Welding
Zhang Xu1,Luo Zhen1,Bi Jing2,Zhang Yu1
(1. School of Materials Science and Engineering,Tianjin University,Tianjin 300072,China;2. Tianjin Aerospace Long March Launch Vehicle Manufacturing Co.,Ltd.,Tianjin 300462,China)
Due to the easily oxidation of commercial pure titanium TA1 during resistance spot welding(RSW),which leads to embrittlement of the joints,external transverse magnetic field(EMF)is introduced to improve the quality of the joint.The materials used were 1 mm thick commercial pure titanium TA1.Welding was performed using a 220kW direct current resistance spot welding machine.Truncated-cone electrodes with a 6mm diameter tip end was used for the welding.The EMF was generated through two identical annular N40 type NdFeB permanent magnets mounted coaxially on electrode arms with opposite polarities.The two magnets were symmetrically located with their south poles(S)against each other.The distance between permanent magnet to origin was 9mm in this study.The effect of EMF on commercial pure titanium TA1 RSW is studied.Impacts of the EMF on the nugget size and peak load in tensile-shear tests have been systematically discussed.Besides,the microhardness of the spot welded joints was measured to determine the oxidation degree of the edge region of the nugget.The results show that the EMF doesn’t affect the crystal morphology of the joints,but improves the nugget diameter and tensile-shear peak load of the joints.Moreover,the effect of EMF on the improvement of nugget diameter is larger when the heat input is smaller.Besides,the heat-input of the RSW process with EMF is lower than its counterpart without EMF while in both situation the nugget sizes are similar to each other.The EMF can improve the plasticity of the RSW joint under the same nugget sizes and peak loads.And the joints with EMF exhibit symmetrical pull-out fracture mode and the joints without EMF exhibit unilateral pull-out fracture mode.This is because that the lower heat-input can reduce the oxidation degree of the edge region of the nugget.
resistance spot welding;external magnetic field;commercial pure titanium;spot weld quality
10.11784/tdxbz201807001
TG453.9
A
0493-2137(2019)05-0554-05
2018-07-03;
2018-08-29.
張旭(1994— ),男,碩士研究生,Zhangxutju16@163.com.
羅震,lz@tju.edu.cn.
(責(zé)任編輯:王新英)