李成輝,朱芬芬*,張冬蕊,青達罕,高小中,侯 瑞,許宜平,王子健
?
污泥中有機磷酸酯檢測的預(yù)處理優(yōu)化
李成輝1,朱芬芬1*,張冬蕊1,青達罕2,高小中2,侯 瑞2,許宜平2,王子健1
(1.中國人民大學(xué)環(huán)境學(xué)院,北京 100872;2.中國科學(xué)院生態(tài)環(huán)境研究中心,北京 100085)
基于“富集(加速溶劑萃取)+凈化+檢測”的步驟,進行污泥取樣量、萃取條件、凈化柱類型、淋洗液極性和洗脫液極性的優(yōu)化.確定了0.2g污泥取樣量、130℃萃取溫度、1:1(/)的丙酮/二氯甲烷混合溶液為萃取劑、氨基柱凈化、2:5(/)的二氯甲烷/正己烷混合溶液為淋洗液、二氯甲烷為洗脫液,最后用超高效液相色譜-串聯(lián)質(zhì)譜對有機磷酸酯進行定性定量檢測.結(jié)果表明,各物質(zhì)的基質(zhì)加標回收率均在60%~120%之間,基質(zhì)效應(yīng)也基本控制在±15%.凈化方法同樣適用于污水樣品,用此方法成功測定了北京市某污水處理廠各工藝單元的水相及固相樣品,顯示出良好的適用性.
有機磷酸酯(OPEs);污泥;凈化;污水
有機磷酸酯(OPEs)作為阻燃劑[1]和塑化劑[2]被廣泛地應(yīng)用于各產(chǎn)品中.隨著各國對防火的日益重視,阻燃劑的使用更加廣泛頻繁.隨著溴系阻燃劑被禁止使用[3-4],磷系阻燃劑作為替代品生產(chǎn)和使用范圍劇增.多數(shù)OPEs是添加型阻燃劑[5],在其生命周期中易釋放到環(huán)境中.多個研究報道了其在各種介質(zhì)中的污染情況[6-10],也有研究表明部分有機磷酸酯具有毒性[11-16].污水處理廠的排放水是水環(huán)境中OPEs的重要來源[17-18],為了有效控制水環(huán)境中的OPEs,污水處理廠內(nèi)OPEs的研究非常必要,它將為污水處理廠中OPEs的控制技術(shù)提供支持.
要進行污水處理廠中OPEs的研究,首先就要精確檢測污水和污泥中的有機磷酸酸酯.污水和污泥都是復(fù)雜基質(zhì),污泥因為其形成特點,比污水更復(fù)雜,這樣會對OPEs的檢測造成很大干擾.所以,有必要對污泥樣品進行有效的前處理.但是,目前相關(guān)研究很少.通常分萃取、凈化然后檢測[19].其中萃取方式中:索氏提取、超聲輔助溶劑萃取、加速溶劑萃取等應(yīng)用較多.索氏提取雖然對各種物質(zhì)都有著較高的提取效果,但其需要消耗大量有機溶劑、耗時較長[18];超聲輔助溶劑萃取,有著不錯的萃取效果,但是在萃取的過程中溫度會升高且不可控[20].加速溶劑萃取作為自動化程度較高的固體樣品富集方式有很多優(yōu)點,精確的控制溫度及溶劑的配比,并且可對溫度、壓力等參數(shù)進行優(yōu)化[21].凈化方法主要包括:凝膠滲透色譜(GPC)凈化[22-23]、柱層析凈化[8,24-25]、固相萃取(SPE)凈化[9,26-29].GPC凈化樣品損失率很高;柱層析需要人工裝柱,在樣品數(shù)多時人工操作的不穩(wěn)定性大大增加;使用固相萃取柱凈化成為趨勢.雖然現(xiàn)在已經(jīng)有針對固體樣品的凈化方法,但是,基質(zhì)主要為沉積物、生物、土壤等,污泥樣品與上述幾種基質(zhì)性質(zhì)差別較大,并且成份更為復(fù)雜,所以,有必要專門針對污泥建立一種適用于污泥樣品的凈化方法,最大程度的減少污泥復(fù)雜基質(zhì)的干擾,實現(xiàn)對污泥中OPEs的測定.
二氯甲烷、正己烷、甲醇、乙腈、丙酮等溶劑均為HPLC純,購于美國Thermo Fisher公司;甲酸為色譜純,購于美國Sigma公司.
13種OPEs標準樣品:磷酸三(2-氯乙基)酯(TCEP)、磷酸三(2-氯丙基)酯(TCPP)、磷酸三(1,3-二氯異丙基)酯(TDCP)、磷酸三苯酯(TPhP)、DCP、磷酸三異丁酯(TiBP)、磷酸三丁酯(TnBP)、磷酸三(丁氧基乙基)酯(TBEP)、磷酸三(鄰甲苯酯)(TOCP)、磷酸三(間甲苯酯)(TMCP)、磷酸三(對甲苯酯)(TPCP)2-乙基己基二苯基磷酸酯(EHDP)、磷酸三(2-乙基己基)酯 (TEHP)均購于北京百靈威科技有限公司.
TnBP-d27液體標準樣品購于美國劍橋同位素公司(CIL),TCEP-d12、TDCP-d15、TPhP-d15固體標準樣品均購于加拿大多倫多化學(xué)科技有限公司(TRC).
超高效液相色譜-串聯(lián)質(zhì)譜儀(美國Waters公司);加速溶劑萃取儀(戴安ASE 350,美國);Oasis HLB固相萃取小柱(6mL/500mg,美國Waters公司);Supelclean LC-18固相萃取小柱(6mL/500mg,美國Sigma公司);Supelclean LC-Florisil固相萃取小柱(6mL/1g,美國Sigma公司);Bond Elut-NH2固相萃取小柱(6ml/1g,美國Agilent 公司);142mm不銹鋼換膜過濾器(美國Merck Millipore公司);GF/C玻璃纖維濾膜(英國Whatman公司);旋轉(zhuǎn)蒸發(fā)儀(瑞士BUCHI公司);ME204E電子天平(瑞士Mettler Toledo公司);Milli-Q超純水儀(美國Merck Millipore公司).
準確稱取0.2g冷干后的污泥與0.2g活化銅粉(投加氘代物TnBP-d27、TCEP-12和TDCP-d15各50ng)進行加速溶劑萃取,溶劑:丙酮/二氯甲烷(1:1)(/),溫度:130℃靜態(tài)時間:5min,循環(huán)次數(shù):3次,吹掃體積:50%,吹掃時間:90s.
樣品經(jīng)富集后,將萃取液置換溶劑為1mL正己烷后進行凈化.凈化柱比較了弗羅里硅土柱和氨基柱兩種柱子.淋洗液的優(yōu)化主要是優(yōu)化二氯甲烷和正己烷的體積比,找到比較合適的極性,最后選擇適合的溶劑進行洗脫.經(jīng)氮吹置換溶劑為甲醇,加入內(nèi)標化合物并定容為1mL,待測.
1.4.1 超高效液相色譜儀器條件 BEH C18色譜柱(100mm′2.1mm,3.5mm,美國Waters公司);流動相:0.1%(/)甲酸(A)和甲醇(B);流速為0.2mL/min;樣品室溫度:10℃;柱溫:30℃;進樣體積:10mL;流動相梯度為:0~1min,60%~35%A;1~2min,35%A;2~ 5.5min,35%~15%A;5.5~10min,15%~0%A;10~15min,0%A;15~15.1min,0%~60%A;15.1~16min, 60%A.
1.4.2 質(zhì)譜儀器條件 電噴霧離子源(ESI),正離子模式;多反應(yīng)離子監(jiān)測(MRM);離子源溫度:110℃;脫溶劑氣溫度:390℃;脫溶劑氣流量:800L/h;錐孔流量:50L/h;碰撞氣流量:0.07mL/min;其它參數(shù)見表1.
表1 目標化合物質(zhì)譜文件中的參數(shù)
為了確定加速溶劑萃取過程的回收率,以及判斷加速溶劑萃取過程中是否會將目標物質(zhì)分解,對影響加速溶劑萃取最重要的兩個因素(溫度和溶劑類型)的各種組合進行了實驗.因為常用的溫度有100℃和130℃溶劑類型有正己烷和1:1(/)的丙酮/二氯甲烷,所以對兩兩組合4種加速溶劑萃取條件下各物質(zhì)的回收率進行測定(即100℃正己烷;130℃正己烷;100℃1:1(/)的丙酮/二氯甲烷; 130℃1:1(/)的丙酮/二氯甲烷4種組合),結(jié)果如圖1所示.
4種加速溶劑萃取條件下,萃取溶劑為1:1(/)的丙酮/二氯甲烷兩種條件的回收率較高.考慮到脫硫的問題,所以選擇了(溶劑:丙酮/二氯甲烷(1:1(/)),溫度:130℃.
圖1 不同加速溶劑萃取條件下的回收率
由此確定了加速溶劑萃取的條件,即溶劑:丙酮/二氯甲烷(1:1(/)),溫度:130℃靜態(tài)時間:5min,循環(huán)次數(shù):3次,吹掃體積:50%,吹掃時間:90s.
比較了2種凈化柱:弗羅里硅土柱和氨基柱.分別使用1:1(/)的二氯甲烷/正己烷10mL、二氯甲烷15mL、正己烷15mL對固相萃取小柱進行活化,1mL正己烷上樣,1:4(/)的二氯甲烷/正己烷3mL淋洗,抽干凈化柱后,依次使用1:4(/)的二氯甲烷/正己烷4mL、二氯甲烷8mL、9:1(/)的二氯甲烷:甲醇4mL進行洗脫.將洗脫液收集于K-D濃縮器內(nèi),經(jīng)過氮吹將溶劑置換成正己烷,加入內(nèi)標物后定容于1mL,過萬能針式過濾器后待測.結(jié)果如圖2.起初已先對兩種柱子對應(yīng)的處理方法進行了比較,鑒于氨基柱的效果比弗羅里硅土柱好,因此選用處理氨基柱的方法處理了弗羅里硅土柱,并進行比較.雖然弗羅里硅土柱效果有所提高,但仍低于氨基柱,所以本文只描述了第二次的比較.
圖2 兩種凈化柱的回收率
使用同樣的活化、淋洗、洗脫等步驟氨基凈化柱的回收率大部分都優(yōu)于弗羅里硅土柱.所以選擇氨基柱作為凈化柱.
圖3 不同樣品量3種氘代物的回收率
分別在0.2g和0.5g冷干后的污泥中投加三種氘代物(TnBP-d27,TCEP-12和TDCP-d15),經(jīng)加速溶劑萃取與氨基柱凈化后回收率如圖3所示,0.2g污泥樣品的回收率優(yōu)于0.5g污泥樣品的回收率.這可能是因為在將萃取液(丙酮/二氯甲烷的混合溶液)置換為正己烷時,樣品量越大越容易析出物質(zhì);或者樣品量越大,基質(zhì)干擾越多,從而影響了回收率.結(jié)合氘代物的回收率樣品量選擇0.2g.
淋洗液通常為二氯甲烷/正己烷的混合溶液,配置不同極性的淋洗液(體積比分別為2:1、1:1、1:2和1:3),氨基凈化柱經(jīng)過活化、上樣等步驟后,分別使用不同極性的淋洗液進行淋洗,各OPEs在不同極性的淋洗液中的分布情況如表2.
表2 不同極性淋洗液中OPEs的分布情況(%)
注:DCM為二氯甲烷,HEX為正己烷.
由表2可知1:1(/)的二氯甲烷/正己烷淋洗液極性太強,有5種OPEs已經(jīng)在淋洗的過程中洗脫了下來.返回去看1:2(/)的二氯甲烷/正己烷在淋洗液A中有約20%的TCP被洗了下來.1:3的極性考慮有點偏弱,有些雜質(zhì)可能未洗出來,所以最終確定淋洗液的比例為2:5(/)(1:2.5)的二氯甲烷/正己烷.
重新用標準物質(zhì)過氨基凈化柱進行凈化實驗,分別收集上樣(1mL HEX)和淋洗液(3mL2:5的二氯甲烷/正己烷(V/V))以及3種洗脫液(洗脫液A(4mL)為1:4DCM/HEX(V/V),洗脫液B為8mL DCM,和洗脫液C(4mL)為9:1DCM/Methanol(V/V))進行測定,結(jié)果見表3.結(jié)果顯示上樣和淋洗液以及第一部分、第三部分的洗脫液中均無OPEs的檢出.
所以,使用污泥樣品進行試驗,經(jīng)ASE萃取、氨基柱凈化、上樣、淋洗和洗脫,只收集二氯甲烷的洗脫液進行測定.最后,用以上優(yōu)化后的方法做了基質(zhì)加標和基質(zhì)效應(yīng)的實驗.結(jié)果如圖4所示.
表3 各物質(zhì)在凈化過程中各部分溶劑中的分布(%)
圖4 基質(zhì)加標回收率
圖5 基質(zhì)效應(yīng)
基質(zhì)效應(yīng)實驗結(jié)果如圖5.
各物質(zhì)基質(zhì)加標的回收率均在60%~120%之間,基質(zhì)效應(yīng)大部分也控制在±15%.由此最終確定凈化的條件為:凈化柱1g填料的氨基柱,分別使用1:1(/)的二氯甲烷/正己烷10mL、二氯甲烷15mL、正己烷15mL進行活化,1mL正己烷上樣,2:5(/)的二氯甲烷/正己烷3mL淋洗,抽干凈化柱后,再次使用2:5(/)的二氯甲烷/正己烷4mL淋洗,最后用二氯甲烷8mL進行洗脫.
采用本方法檢測了北京市某污水處理廠各工藝單元的固相樣品,其中某污泥樣品檢測的譜圖如圖6,初沉污泥的結(jié)果與研究北京市城市生活污泥中OPEs的相關(guān)文獻數(shù)據(jù)對比結(jié)果見表4.
圖6 10種OPEs的總離子流色譜圖
表4 固相中OPEs的濃度(ng/g)
注:n.d.為未檢出.
本研究固相中主要的OPEs為TBP、TBEP和TEHP.各OPEs的濃度與文獻報道類似[28-30].
將本方法應(yīng)用于污水樣品的檢測中.水樣富集采取1L水樣使用HLB固相萃取小柱和LC-18固相萃取小柱串聯(lián)的固相萃取方法,固相萃取柱依次使用二氯甲烷、甲醇和超純水各10mL進行活化,10mL二氯甲烷進行洗脫.洗脫液置換溶劑為正己烷.如圖7所示,應(yīng)用此凈化方法可以有效抑制污水的基質(zhì)效應(yīng)使得有較高的回收率.
圖7 污水樣品基質(zhì)加標回收率
采用本方法檢測了北京市某污水處理廠各工藝單元的水相樣品,部分結(jié)果與研究北京市城市生活污水中OPEs的相關(guān)文獻數(shù)據(jù)對比結(jié)果見表5.
表5 水相中OPEs的濃度(ng/L)
注:n.d.為未檢出.
本研究水相中主要的OPEs為TCEP和TCPP.各OPEs的濃度與文獻報道類似.
表6 水樣和污泥樣基質(zhì)加標回收率以及方法的檢測限
對于液體樣品來說,與梁鈧等[32]的方法相比,本方法中EHDP和TEHP等非極性較強的OPEs回收率較高(本方法分別為91%、76%,梁鈧等的方法分別為52%、47%);并且梁鈧等的方法沒有TCPP的基質(zhì)加標數(shù)據(jù);并且多種OPEs的檢測限低于他們的方法.對于液體樣品使用量來說,本方法采用1000mL的樣品量,較梁鈧等方法的100mL樣品量經(jīng)處理后的結(jié)果更穩(wěn)定可靠.
對于固體樣品來說,與Liang等[29]的方法相比,本方法中EHDP回收率明顯較高(本方法為81%, Liang等的方法為33%);并且多種OPEs的檢測限低于他們的方法.對于固體樣品的使用量,本方法采樣0.2g的樣品量較Liang等的0.1g結(jié)果穩(wěn)定性會更好.
建立了一種氨基柱凈化污泥樣品測定OPEs的凈化方法.通過1:1(/)的二氯甲烷/正己烷、二氯甲烷、正己烷進行活化,2:5(/)的二氯甲烷/正己烷進行淋洗,二氯甲烷洗脫,可以極大程度的降低基質(zhì)效應(yīng).該方法同樣適用于污水樣品.
[1] Stevens R, van Es D S, Bezemer R, et al. The structure–activity relationship of fire retardant phosphorus compounds in wood [J]. Polymer Degradation and Stability, 2006,91(4):832-841.
[2] Kannan S, Kishore K. Absolute Viscosity and Density of Trisubstituted Phosphoric Esters [J]. Journal of Chemical & Engineering Data, 1999,44(4):649-655.
[3] Official Journal of the European Union. Directive 2003/11/EC of the European Parliament and of the Council of 6February 2003 amending for the 24th time Council Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (pentabromodiphenyl ether, octabromodiphenyl ether) [EB].
[4] Betts K. Does a key PBDE break down in the environment? [J]. Environmental Science & Technology, 2008,42(18):6781.
[5] Word Health Organization. Flame retardants: a general introduction [R]. Geneva: WHO, 1997.
[6] Wei G, Li D, Zhuo M, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure [J]. Environmental Pollution, 2015,196:29-46.
[7] Marklund A, Andersson B, Haglund P. Traffic as a source of organophosphorus flame retardants and plasticizers in snow [J]. Environmental Science & Technology, 2005,39(10):3555-3562.
[8] Cristale J, Lacorte S. Development and validation of a multiresidue method for the analysis of polybrominated diphenyl ethers, new brominated and organophosphorus flame retardants in sediment, sludge and dust [J]. Journal of Chromatography A, 2013,1305:267- 275.
[9] Norwegian Institute for Water. Research screening of selected metals and new organic contaminants 2007 [R]. Norway: NIVA, 2008.
[10] 劉 琴,印紅玲,李 蝶,等.室內(nèi)灰塵中有機磷酸酯的分布及其健康風(fēng)險 [J]. 中國環(huán)境科學(xué), 2017,37(8):2831-2839. LIU Qin, YIN Hong-ling, LI Die, et al. Distribution characteristic of OPEs in indoor dust and its health risk [J]. China Environmental Science, 2017,37(8):2831-2839.
[11] Word Health Organization. Flame retardants : tris(chloropropyl) phosphate and tris(2- chloroethyl) phosphate [R]. Geneva: WHO, 1998.
[12] U.S. DOHS. Draft toxicological profile for phosphate ester flame retandants. Georgia: U.S. DOHS, 2009.
[13] Scientific Committee on Health and Environmental Risks. Risk assessment report on 2,2-bis(chloromethyl)trimethylene bis[bis(2- chloroethyl)phosphate] (V6) environmental part [R]. Brussels: SCHER, 2007.
[14] Scientific Committee on Health and Environmental Risks. Risk assessment report on TRIS(2-CHLORO-1-METHYLETHYL) PHOSPHATE (TCPP) environmental part [R]. Brussels: SCHER, 2007.
[15] Scientific Committee on Health and Environmental Risks. Risk assessment report on Tris [2-chloro-1-(chloromethyl) ethyl] phosphate (TDCP) environmental part [R]. Brussels: SCHER, 2007.
[16] Word Health Organization. Flame retardants : tricresyl phosphate [R]. Geneva: WHO, 1990.
[17] Fries E, Püttmann W. Occurrence of organophosphate esters in surface water and ground water in Germany [J]. Journal of Environmental Monitoring, 2001,3(6):621-626.
[18] Bester K. Comparison of TCPP concentrations in sludge and wastewater in a typical German sewage treatment plant—comparison of sewage sludge from 20 plants [J]. Journal of Environmental Monitoring, 2005,7(5):509.
[19] Quintana J B, Rodil R, Reemtsma T, et al. Organophosphorus flame retardants and plasticizers in water and air II. Analytical methodology [J]. TrAC Trends in Analytical Chemistry, 2008,27(10):904-915.
[20] Marklund A, Andersson B, Haglund P. Screening of organophosphorus compounds and their distribution in various indoor environments [J]. Chemosphere, 2003,53(9):1137-1146.
[21] Leonards P, Steindal E H, van der Veen I, et al. Screening of organophosphor flame retardants 2010. SPFO-Report 1091/2011. TA-2786/2011.
[22] Marklund A, Andersson B, Haglund P. Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants [J]. Environmental Science & Technology, 2005,39(19):7423-7429.
[23] 嚴小菊.典型OPEs阻燃劑在太湖水體和底泥中存在水平和分布特征[D]. 南京:南京大學(xué), 2013. Yan X. Occurrence and distribution of typical organophorus ester flame retardants in the surface water and sediment in Taihu Lake [D]. Nanjing: Nanjing University, 2013.
[24] Woudneh M B, Benskin J P, Wang G, et al. Quantitative determination of 13organophosphorous flame retardants and plasticizers in a wastewater treatment system by high performance liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography A, 2015,1400:149-155.
[25] 陳 蕾.上海市沉積物中多溴二苯醚和OPEs的污染特征研究[D]. 上海:上海大學(xué), 2015. Chen L. Studies on polybrominated diphenyl ethers and organophosphate esters in sediments of Shanghai [D]. Shanghai: Shanghai University, 2015.
[26] Brandsma S H, de Boer J, Leonards P E G, et al. Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study [J]. TrAC Trends in Analytical Chemistry, 2013,43:217-228.
[27] Lu J, Ji W, Ma S, et al. Analysis of organophosphate esters in dust, soil and sediment samples using gas chromatography coupled with mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2014, 42(6):859-865.
[28] Zeng X, He L, Cao S, et al. Occurrence and distribution of organophosphate flame retardants/plasticizers in wastewater treatment plant sludges from the Pearl River Delta, China [J]. Environmental Toxicology and Chemistry, 2014,33(8):1720-1725.
[29] Liang K, Liu J. Understanding the distribution, degradation and fate of organophosphate esters in an advanced municipal sewage treatment plant based on mass flow and mass balance analysis [J]. Science of The Total Environment, 2016,544:262-270.
[30] 龐 龍,張肖靜,龐 榕,等.城市污水處理工藝對OPEs類化合物的去除[J]. 河南師范大學(xué)學(xué)報(自然科學(xué)版), 2016,44(3):98-103. Pang L, Zhang X, Pang R, et al. Removal of organophosphate esters in municipal wastewater treatment process [J]. Journal of Henan Normal University (Natural Science Edition), 2016,44(3):98-103.
[31] Shi F, Liu J, Liang K, et al. Tris (pentafluoroethyl) trifluorophosphate- based ionic liquids as advantageous solid-phase micro-extraction coatings for the extraction of organophosphate esters in environmental waters [J]. Journal of Chromatography A, 2016,1447:9-16.
[32] 梁 鈧,牛宇敏,劉景富.超高效液相色譜-串聯(lián)質(zhì)譜法測定污水中14種OPEs阻燃劑[J]. 環(huán)境化學(xué), 2014,33(10):1681-1685. Liang K, Niu Y, Liu J. Determination of 14organophosphate ester flame retardants in wastewater by UPLC-MS/MS [J]. Environmental Chemistry, 2014,33(10):1681-1685.
Optimization of pretreatment method for determination of Organophosphate esters in sludge samples.
LI Cheng-hui1, ZHU Fen-fen1*, QING Da-han2, GAO Xiao-zhong2, HOU Rui2, XU Yi-ping2, WANG Zi-jian1
(1.School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China;2.Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)., 2019,39(1):219~225
In this his study, based on the steps of "enrichment (accelerated solvent extraction) + purification + detection", the operation parameters of sludge sampling volume, extraction conditions, purification column type, wash polarity and eluent polarity were optimized. The optimal parameters include: a sludge sampling volume of 0.2g, an extraction temperature of 130°C, a 1:1 (v/v) solution mixing ratio of acetone/dichloromethane extractant, and an amino column purification operation. A 2:5 (v/v) mixing ratio was used for the dichloromethane/n-hexane wash solution, and dichloromethane was used as the eluent. The qualitative and quantitative detection of organophosphate esters (OPEs) using an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS) demonstrated: the matrix spike recoveries for all identified OPEs were between 60% and 120% with a matrix effect no more than ±15%. The pretreatment method could also be appropriate for the determination of OPEs in wastewater samples. This pretreatment method was successfully applied to measure the concentrations of OPEs in the water phase and solid phase samples from the main units in a sewage treatment plant in Beijing, and a good result was achieved.
organophosphate esters (OPEs);sludge;purify;sewage
X705
A
1000-6923(2019)01-0219-07
李成輝(1992-),男,河北石家莊人,碩士研究生,主要從事固體廢物處理處置及資源化研究.
2018-06-12
北京市自然科學(xué)基金資助項目(8172029)
* 責(zé)任作者, 副教授, zhufenfen@ruc.edu.cn