• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unsteady flow structures in centrifugal pump under two types of stall conditions *

    2019-01-05 08:08:38PeijianZhou周佩劍JiachengDai戴嘉鋮YafeiLi李亞飛TingChen陳婷JiegangMou牟介剛
    水動力學研究與進展 B輯 2018年6期
    關鍵詞:陳婷佩劍

    Pei-jian Zhou (周佩劍), Jia-cheng Dai(戴嘉鋮), Ya-fei Li(李亞飛), Ting Chen(陳婷),Jie-gang Mou (牟介剛)

    1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310034, China

    2. Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, Hangzhou 310034, China

    3. School of Science, Wuhan Institute of Technology, Wuhan 430205, China

    Abstract: The stall is an unsteady flow phenomenon that always causes instabilities and low efficiency for pumps. This paper focuses on the unsteady flow structures and evolutions under two types of stall conditions in centrifugal pump impellers. Two centrifugal pump impellers, one with 6 and another with 5 blades, are considered and a developed large-eddy simulation method is adopted. The results show that the alternative stall occurs in the impeller with 6 blades, while, the rotating stall is observed in that with 5 blades. The flow structure and the pressure fluctuation characteristics are further analyzed. For the alternative stall, the stall cells are fixed relative to the impeller, but a large vortex in the stalled passage is always swaying. The outlet vortex is generated from it, and then develops and sheds periodically. For the rotating stall, the stall cells first occur in the suction side of the blade. With the growth of the stall cells, the block area gradually increases until the inlet region is almost blocked, then moves to the pressure side with a continuous decay. When the rotating stall occurs, the amplitude of the pressure fluctuation is much larger than that under the alternative stall condition. The propagation of the stall cells has a significant effect on the pressure fluctuations in the impeller.

    Key words: Centrifugal pump, flow structures, rotating stall, alternative stall, large-eddy simulation

    Introduction

    The stall is an unsteady flow phenomenon that always causes instabilities and low efficiency for pumps[1-4]. Under the stall condition, the periodic generation and shedding of the stall cells always induce significant low frequency pressure fluctuations and vibrations, with a severe influence on the safety and stability of pumps. It is necessary to study the stall phenomenon to improve the safety and the stability of the pump operation. This study focuses on the unsteady flow structures and evolutions under two types of stall conditions in the centrifugal pump impellers.

    The stall, as an unsteady flow phenomenon,occurs in pumps due to the flow separation along the flow-guiding parts[5]. The large region of the separated flow is considered as the stall cell, which plays an important role in pumps, and can induce vibrations,noises, and even severe damages to the machine[6-7].Therefore the characteristics of the stall cells are important factors in improving not only the efficiency but also the operating safety and stability of pumps.

    So far, only a few experimental studies are found in literature for the stall phenomenon in centrifugal pumps. Pedersen et al.[8]used the particle image velocimetry (PIV) to show the internal flow through a centrifugal pump impeller, and identified the alternative stall for the first time. Further investigations were followed, including the study performed by Johnson et al.[9], which showed that these stall patterns also existed in the volute pump. Feng et al.[10], Ullum et al.[11]found similar stall cells in the vaned centrifugal pumps. Krause et al.[12]adopted the time-resolved PIV to find another type of stall called the rotating stall, where the instabilities occurred at a low flow rate. However, the PIV has some limitations,such as in the time resolution and the measurement area. Thanks to the development of the computational fluid dynamics (CFD), the stalled flows in the centrifugal pumps were numerically studied. Feng et al.[13]applied different turbulence models for unsteady flow simulations of a radial diffuser pump, and the results showed that the RANS models often failed to predict the stall phenomenon. The SST -kω model could capture the stall cells, but with a large deviation when the stall occurred[14]. The large-eddy simulation(LES) shows a promising advance for complex turbulent flows. A series of validation simulations are performed for the stall phenomenon, and the results are in an excellent agreement with the available experimental data[5,15].

    In the above studies, the stall phenomena were identified in centrifugal pumps. However, the structures and the motion of the stall cells are not yet fully understood. This study focuses on the stall cell characteristics in a centrifugal pump impeller by analyzing two types of stall phenomenon. The flow field and the stall cell structures are represented based on a developed large-eddy simulation with the dynamic mixed nonlinear model (DMNM).

    1. The investigated pump and simulation details

    The investigated pump impeller is a shrouded,low specific-speed centrifugal impeller with 6 blades,as shown in Fig. 1. Under the design condition, the pump flow rate is=3. 0 6 L/ s and the head is=1.75 m. More detailed geometric and experimental data can be found in Ref. [8]. In order to study two types of stall phenomenon, another one with 5 blades is considered in the study, with the otherwise same geometry. The large-eddy simulation is performed under the initial stall condition, the developed stall conditionand the deep stall condition

    Fig. 1 Geometry of the impeller with 6 blades

    The entire flow passages of the impeller is modelled and simulated. In order to reduce the boundary influence, extensions are made at the outlet and the inlet of the flow passage, respectively. Owing to the complexity of the computational domain, the unstructured hexahedron mesh is employed because of its fine adaptability. In the near-wall region the mesh is refined according to the requirement of the LES. In view of the Ref. [16] the grid stretching factor is chosen to allow the wall-adjacent cells to be located 0.02 mm off the wall, whilst also refining the grids in the streamwise and spanwise directions. A mesh of a total 3.2×106cells is utilized as the best compromise between the solution accuracy requirements and the available computer resources. Increasing the number of grids does not make a significant difference during the grid independent process. Figure 2 represents the mesh construction of the full passages.

    Fig. 2 Computational domain and mesh

    Fig. 3 The locations of monitor points

    A rotational reference frame is set for the flow passage, with the rotating speed of the reference frame equal to the rotating speed of the impeller. The velocity inlet boundary condition is chosen in the simulation. The inlet velocity is determined by the flow rate, including some fluctuation components,with the velocity normal to the inlet boundary. The Neumann condition, ?φ/?n=0, is considered for the pressure. At the outlet of the passage the pressure is given. The no-slip wall condition is considered, as u =0, v = 0, w = 0.

    The time step is set as 0.00023 s corresponding to a Courant number estimation smaller than 10, with a total 360 time steps per impeller revolution. The residual convergence criterion for each time step is reduced to 10-5, while the maximum number of iterations allowed per time step is limited to 15.

    The arrangement of the recording points is shown in Fig. 3. In view of the prediction for the number and the speed of the stall cells, the monitor points (P1-P6)are uniformly distributed on the shroud of the impeller for recording the pressure fluctuations.

    A developed large-eddy simulation with the dynamic mixed nonlinear model (DMNM) is performed on a full annulus of the impeller. The key to the success of the LES is to accurately represent the subgrid-scale (SGS) stress. The SGS stress can be written as follows[17]

    Fig. 4 (Color online) Evolution of outlet vortices

    In the DMNM, the resolved modified Leonard term and the modelled modified cross term are retained, with the modified Reynolds stress. This model combines the advantages of the dynamic mixed model (DMM) and the dynamic nonlinear model(DNM). The previous work shows that the DMNM,with its inclusion of the turbulent anisotropic properties, is more suitable for high curvature, strong rotational turbulence calculations[18]. The derivation details of this model can be found in the Ref. [19].

    Fig. 5 (Color online) Evolution of main vortices

    2. Alternative stall

    2.1 Flow structures analysis

    The alternative stall occurs in the impeller with 6 blades. As shown in Fig. 4, the stalled and unstalled passages can be observed, as reported by Pedersen et al.[8]. Three stall cells block the entrance of the passage, which does not rotate with respect to the impeller. Besides, one observes another two types of vortex motion in the stalled passage. The passage A is taken as an example to analyze the flow structures. A larger vortex appears downstream, which is more unsteady with characteristics of the wake flow due to the adverse pressure gradient and the centrifugal force.As the flow develops, the large vortex shakes and splits into small vortexes at the passage outlet. Then,the main vortex core gradually moves downstream,induces the shedding of the outlet vortex and disappears.

    Fig. 6 Frequency spectrum analysis

    Figure 5 shows the instantaneous streamline distributions at six equally spaced time steps during one cycle of the main vortex motion obtained by the simulation. The main vortex core starts to move downstream and another small vortex simultaneously appears upstream, to form two counter-rotating vortex pairs with the main vortex. As the small vortex grows larger, the main vortex core is forced to keep moving downstream. Then the main vortex changes dramatically, to be squashed with an increased length. The small vortex is surrounded by exterior streamlines of the main vortex. The two vortexes are emerged together, and a new main vortex is generated. In summary,the main vortex shows its obvious life cycle including decay, split, mergence and growth.

    2.2 Stall characteristics

    A frequency spectrum analysis is carried out for the series of pressure fluctuations to reveal the stall characteristics. Figure 6 shows the frequency domain of the vibration signals obtained at the location P1 at three different flow rates. It can be seen that the lower frequency is obviously the dominant frequency, which is contributed by the main vortex motion. Further, the“broadband” with a high frequency can also be seen,which is caused by the outlet vortex., the low frequency is 2.6 Hz, only 26.5% of the rotational frequency. While atshown in Figs.6(b), 6(c), the low frequencies are 3.13 Hz, 3.6 Hz,respectively. However, as the flow rate increases, the“broadband” with a high frequency keeps almost the same.

    3. Rotating stall

    3.1 Flow structures

    The rotating stall occurs in the impeller with 5 blades. Figure 7 shows instantaneous streamline distributions at six equally spaced time steps during one cycle of the rotating stall obtained by the simulation.The passage A is taken as an example to analyze the rotating stall. At =0t , we can see the stall cell almost blocks the whole entrance. At 1 6/T, the stall cell becomes larger, and no fluid can flow into the passage A. The fluid is forced to flow into the adjacent passages. In the passage E, the inlet attack angle decreases, and the flow becomes smooth.However, in the passage B, the inlet attack angle increases, then the blade suction surface produces a separation vortex, gradually developing into another stall cell, which eases the block in the passage A.Therefore, the stall cell in the passage A becomes smaller gradually. At 5 6/T, the streamline in the passage A is smooth, but the flow field in the passage B is completely blocked. This mechanism of the rotating stall is consistent with what described in Emmons et al.[20].

    3.2 Stall characteristics

    In order to determine the propagation speed and direction of the stall cells, the recorded pressure fluctuations on the monitor points P1-P5 are put in the same coordinate frame by transforming the coordinate system, as shown in Fig. 8, where n represents rotor period. At 0. 25Qd, the pressure signals at the points P1-P5 are seen to be fully periodic. The pressure fluctuations on all points have similar periods and amplitudes. But, they have a phase difference, because the stall cells propagate in a circular direction in the impeller. The numbers of stall cells can be calculated as follow

    From Fig. 8(a), TCR=3TOSC. Consequently, the number of the stall cells is 3. They propagate from P1-P5 through P2, P3 and P4. In the relative coordinate system, the stall cells rotate in the opposite direction of the impeller rotation. When the flow rate is increased to 0. 5 0 Qd, 0. 60Qd, Figs. 8(b), 8(c) show similar pressure fluctuations observed in Fig. 8(a).According to Eq. (2), the number of stall cells is also 3 at 0. 5 0 Qd, 0. 60Qd. The amplitude of the pressure fluctuations at stall point changes little from 0. 25Qd-0. 60Qd, while the periods during the same time are increased.

    A frequency spectrum analysis is carried out for the series of pressure fluctuations to reveal the rotating stall characteristics. Figure 9 shows the frequency domain of the vibration signals obtained at the location P1 at 3 different flow rates. It can be seen that the rotating stall frequency ( fstall) is obviously the dominant frequency, much lower than the rotational frequency. At 0. 2 5 Qd, fstallis 2.4 Hz. While at 0. 5 0 Qd, 0. 6 0Qdshown in Figs. 8(b), 8(c), fstallis 1.73 Hz, 1.4 Hz, respectively.

    The propagation speed of the stall cells (ωS) is determined by the angle of the pressure field rotation(Δθ) and the duration of this angle of the pressure field rotation (Δt). Consequently

    According to Eq. (3), at 0. 25Qd, the propagation speed of the stall cells is 5.03 rad/s, which is 8% of the rotor speed. While at 0. 5 0 Qd, 0. 60Qdshown in Figs. 9(a), 9(c), it is 3.8% (3.62 rad/s), 1.68% (3.11 rad/s),respectively. Therefore, it can be concluded that the rotating stall frequency is different at different flow rates. With the decrease of the flow rate, the amplitude of the pressure fluctuations tends to be larger, the propagation speed and the rotating stall frequency are lower, but the number remains the same.

    Fig. 9 Pressure fluctuation frequencies

    4. Conclusions

    The results show that the alternative stall occurs in the impeller with 6 blades, while the rotating stall is observed in that with 5 blades. The conclusions can be obtained as follows:

    (1) For the alternative stall, the stall cells are fixed relative to the impeller, but a large vortex in the stalled passage is always swaying. The outlet vortex is generated from it, and then develops and sheds periodically. The pressure fluctuation caused by the outlet vortex motion, acting on the blades, appears as a “broadband” with a high frequency. Further, the large vortex shows an obvious life cycle including decay, split, mergence and growth, which results in a low frequency compared with the impeller passing frequency. With the decrease of the flow rate, the amplitude of the low frequency fluctuation tends to be larger, but the “broadband” with a high frequency keeps almost the same.

    (2) For the rotating stall, the stall cells first occur in the suction side of the blade. With the growth of the stall cells, the block area gradually increases until the inlet region is almost blocked, then moves to the pressure side with a continuous decay. When the rotating stall occurs, the amplitude of the pressure fluctuation is much larger than that under the alternative stall condition. The propagation of the stall cells has a significant effect on the pressure fluctuations in the impeller. The dominant frequency of the pressure fluctuation on the blade is the rotating stall frequency. With the decrease of the flow rate, the amplitude of the pressure fluctuations changes little,while the rotating stall frequency decreases.

    猜你喜歡
    陳婷佩劍
    我國女子佩劍技戰(zhàn)術打法特征及發(fā)展趨勢探究
    當代體育(2021年37期)2021-11-27 13:19:42
    Germs May Make Us Ill
    一個非終止7F6-級數(shù)求和公式的q-模擬
    駐村隊里的手搟面
    黃河之聲(2019年1期)2019-03-30 03:36:16
    Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions *
    Investigation of rotating stall for a centrifugal pump impeller using various SGS models*
    全國首對肺移植戀人:以愛的刺青銘記你
    How to improve the oral English communication level of rural students
    我國男子佩劍運動員比賽中進攻技術統(tǒng)計分析
    擊劍體驗課
    av免费在线看不卡| 日日爽夜夜爽网站| 大陆偷拍与自拍| 18禁观看日本| 久久久久久久大尺度免费视频| 欧美 日韩 精品 国产| 亚洲精品456在线播放app| 亚洲五月色婷婷综合| 欧美成人午夜精品| 性色av一级| 狠狠精品人妻久久久久久综合| 国产亚洲精品第一综合不卡 | 国产精品麻豆人妻色哟哟久久| a级片在线免费高清观看视频| 国产免费现黄频在线看| 欧美日韩综合久久久久久| 最新的欧美精品一区二区| 午夜久久久在线观看| 嫩草影院入口| 中文字幕亚洲精品专区| 免费在线观看完整版高清| 1024视频免费在线观看| 成人18禁高潮啪啪吃奶动态图| 久久久久国产精品人妻一区二区| 国产精品国产av在线观看| 亚洲av欧美aⅴ国产| 国产欧美另类精品又又久久亚洲欧美| 曰老女人黄片| 日韩精品免费视频一区二区三区 | 国产av国产精品国产| 国产亚洲一区二区精品| 十八禁网站网址无遮挡| 国产精品秋霞免费鲁丝片| 啦啦啦中文免费视频观看日本| 久久精品久久久久久久性| 国产精品国产av在线观看| 久久免费观看电影| 女人精品久久久久毛片| 亚洲国产av影院在线观看| 精品卡一卡二卡四卡免费| 久久青草综合色| 黄片播放在线免费| 一区二区三区乱码不卡18| 国产免费视频播放在线视频| 亚洲,一卡二卡三卡| 91精品伊人久久大香线蕉| 丝袜美足系列| 嫩草影院入口| 国产片特级美女逼逼视频| 2021少妇久久久久久久久久久| 国产精品99久久99久久久不卡 | 两性夫妻黄色片 | 91精品伊人久久大香线蕉| 午夜91福利影院| 免费黄色在线免费观看| 在线亚洲精品国产二区图片欧美| 美女中出高潮动态图| 亚洲国产日韩一区二区| 制服丝袜香蕉在线| 男女国产视频网站| 欧美日韩亚洲高清精品| 人体艺术视频欧美日本| 精品久久蜜臀av无| 国产黄色视频一区二区在线观看| 久久久久久久久久成人| 国产精品国产三级专区第一集| 日韩中字成人| 日韩av在线免费看完整版不卡| 欧美日本中文国产一区发布| 国产毛片在线视频| 插逼视频在线观看| 亚洲精品,欧美精品| 日韩av在线免费看完整版不卡| 两性夫妻黄色片 | 国产精品久久久久久av不卡| 女性被躁到高潮视频| av不卡在线播放| 久久精品久久久久久久性| 涩涩av久久男人的天堂| 亚洲欧美成人精品一区二区| 久久精品人人爽人人爽视色| 大话2 男鬼变身卡| 国产熟女午夜一区二区三区| 日韩av免费高清视频| 丝袜美足系列| 成人二区视频| 久久狼人影院| 欧美最新免费一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲天堂av无毛| 大码成人一级视频| 亚洲 欧美一区二区三区| 22中文网久久字幕| 国产精品国产三级专区第一集| 亚洲一码二码三码区别大吗| 黄色配什么色好看| 男女免费视频国产| 精品一区二区三区四区五区乱码 | 天美传媒精品一区二区| av不卡在线播放| 亚洲图色成人| 在线天堂中文资源库| freevideosex欧美| 一边亲一边摸免费视频| 丝袜脚勾引网站| 精品亚洲乱码少妇综合久久| 亚洲性久久影院| 少妇高潮的动态图| 波野结衣二区三区在线| 国产福利在线免费观看视频| 街头女战士在线观看网站| 色婷婷av一区二区三区视频| 狂野欧美激情性xxxx在线观看| 美女福利国产在线| 在线观看www视频免费| 久久精品国产a三级三级三级| 久久国产精品男人的天堂亚洲 | 一级毛片 在线播放| 丰满迷人的少妇在线观看| 99精国产麻豆久久婷婷| 亚洲中文av在线| 日韩一本色道免费dvd| 五月玫瑰六月丁香| 最后的刺客免费高清国语| 国产深夜福利视频在线观看| 国产在线视频一区二区| 久久久久久人妻| 最近的中文字幕免费完整| 日韩视频在线欧美| 日本-黄色视频高清免费观看| 欧美xxⅹ黑人| 国产成人免费观看mmmm| 国产成人免费无遮挡视频| 国内精品宾馆在线| 亚洲精品国产av蜜桃| 色5月婷婷丁香| 秋霞伦理黄片| 国产1区2区3区精品| 日日爽夜夜爽网站| 黄色视频在线播放观看不卡| 少妇 在线观看| 中文字幕免费在线视频6| 国产在线一区二区三区精| 蜜桃在线观看..| 精品国产露脸久久av麻豆| 制服诱惑二区| √禁漫天堂资源中文www| 国产免费一区二区三区四区乱码| 亚洲精品中文字幕在线视频| 久久亚洲国产成人精品v| 国产成人精品无人区| 国产熟女午夜一区二区三区| 午夜久久久在线观看| av电影中文网址| 亚洲精品456在线播放app| 久久久精品免费免费高清| 久久人妻熟女aⅴ| av福利片在线| 一边亲一边摸免费视频| www日本在线高清视频| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 街头女战士在线观看网站| 中文欧美无线码| 日韩伦理黄色片| 少妇人妻久久综合中文| 亚洲av电影在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 亚洲婷婷狠狠爱综合网| 日本免费在线观看一区| 色吧在线观看| 天美传媒精品一区二区| 少妇熟女欧美另类| 精品国产一区二区三区四区第35| 国产男女超爽视频在线观看| 国产一区二区三区av在线| 久久人人爽人人爽人人片va| 丰满少妇做爰视频| 啦啦啦啦在线视频资源| 国产一区有黄有色的免费视频| 免费高清在线观看日韩| 国产精品国产三级专区第一集| 又粗又硬又长又爽又黄的视频| 99久久精品国产国产毛片| av在线老鸭窝| 肉色欧美久久久久久久蜜桃| 99久久中文字幕三级久久日本| 久久99一区二区三区| 久久午夜综合久久蜜桃| 国产一区有黄有色的免费视频| 汤姆久久久久久久影院中文字幕| av不卡在线播放| 日韩欧美一区视频在线观看| 寂寞人妻少妇视频99o| 中文欧美无线码| 两性夫妻黄色片 | 大陆偷拍与自拍| 久久99蜜桃精品久久| 国产亚洲欧美精品永久| 9191精品国产免费久久| 成人二区视频| 深夜精品福利| 日本与韩国留学比较| 欧美性感艳星| 晚上一个人看的免费电影| 免费在线观看完整版高清| a级毛片在线看网站| av在线app专区| 少妇熟女欧美另类| 国产高清三级在线| 精品国产露脸久久av麻豆| 26uuu在线亚洲综合色| 亚洲精品av麻豆狂野| 国产精品一二三区在线看| 国产精品不卡视频一区二区| 国产精品成人在线| 亚洲情色 制服丝袜| 欧美亚洲日本最大视频资源| 亚洲精品美女久久久久99蜜臀 | 波多野结衣一区麻豆| 色视频在线一区二区三区| 欧美亚洲日本最大视频资源| 国产在线免费精品| 免费播放大片免费观看视频在线观看| 丝袜美足系列| 91成人精品电影| 久久人妻熟女aⅴ| 2018国产大陆天天弄谢| 久久久久精品性色| 亚洲人成网站在线观看播放| 亚洲精品久久久久久婷婷小说| 97在线视频观看| 久久久久久久大尺度免费视频| 美女大奶头黄色视频| 久久 成人 亚洲| 人妻 亚洲 视频| 国产成人91sexporn| 一边摸一边做爽爽视频免费| 伊人亚洲综合成人网| 嫩草影院入口| 九草在线视频观看| 亚洲情色 制服丝袜| 国产免费又黄又爽又色| 日韩制服骚丝袜av| 三上悠亚av全集在线观看| 1024视频免费在线观看| av女优亚洲男人天堂| 国产成人精品在线电影| 啦啦啦中文免费视频观看日本| 在线观看免费视频网站a站| 精品国产一区二区久久| 飞空精品影院首页| 一区二区三区精品91| 热99国产精品久久久久久7| 日韩,欧美,国产一区二区三区| 亚洲欧洲日产国产| 天天影视国产精品| 色婷婷av一区二区三区视频| 国产爽快片一区二区三区| 国产黄色免费在线视频| 国产成人aa在线观看| 美女脱内裤让男人舔精品视频| 校园人妻丝袜中文字幕| 日韩在线高清观看一区二区三区| 国产精品欧美亚洲77777| 男女午夜视频在线观看 | 国产亚洲精品第一综合不卡 | 天天影视国产精品| 最新中文字幕久久久久| 国产精品蜜桃在线观看| 亚洲美女黄色视频免费看| 9热在线视频观看99| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| 桃花免费在线播放| 丝袜在线中文字幕| 制服诱惑二区| 国产精品国产三级国产专区5o| 寂寞人妻少妇视频99o| 丝袜美足系列| 久久精品人人爽人人爽视色| 亚洲,一卡二卡三卡| 欧美老熟妇乱子伦牲交| 97在线视频观看| 又黄又爽又刺激的免费视频.| 日韩伦理黄色片| 性色av一级| 天天操日日干夜夜撸| 人妻人人澡人人爽人人| 99精国产麻豆久久婷婷| av国产久精品久网站免费入址| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | √禁漫天堂资源中文www| 丁香六月天网| 一级毛片 在线播放| 国产爽快片一区二区三区| 街头女战士在线观看网站| 午夜激情av网站| 免费女性裸体啪啪无遮挡网站| 久久 成人 亚洲| 欧美激情国产日韩精品一区| 免费大片18禁| 欧美变态另类bdsm刘玥| 国产精品三级大全| 免费人成在线观看视频色| 日韩大片免费观看网站| 久久久国产欧美日韩av| 一级毛片 在线播放| 成年av动漫网址| 制服诱惑二区| 国产精品久久久久久久久免| 观看av在线不卡| 一边摸一边做爽爽视频免费| 美女大奶头黄色视频| 日本欧美国产在线视频| 精品熟女少妇av免费看| 欧美国产精品va在线观看不卡| 成人亚洲欧美一区二区av| 日日爽夜夜爽网站| 国产一区二区激情短视频 | 女人被躁到高潮嗷嗷叫费观| 国产黄频视频在线观看| 欧美3d第一页| 亚洲美女黄色视频免费看| 欧美成人午夜精品| 国产精品偷伦视频观看了| 51国产日韩欧美| 国产成人精品无人区| 日韩免费高清中文字幕av| 国产免费现黄频在线看| 嫩草影院入口| 最近中文字幕2019免费版| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 亚洲婷婷狠狠爱综合网| 99国产综合亚洲精品| 男男h啪啪无遮挡| 国产欧美亚洲国产| 黄色毛片三级朝国网站| 久久久久国产网址| 午夜免费鲁丝| 黄色一级大片看看| 久久久久人妻精品一区果冻| 天天影视国产精品| 久久99蜜桃精品久久| 久久韩国三级中文字幕| 欧美丝袜亚洲另类| 90打野战视频偷拍视频| 国产一区二区三区av在线| 夜夜骑夜夜射夜夜干| 欧美激情 高清一区二区三区| 搡女人真爽免费视频火全软件| 欧美xxxx性猛交bbbb| 人人妻人人澡人人爽人人夜夜| 男女国产视频网站| 高清在线视频一区二区三区| 在线观看免费日韩欧美大片| 春色校园在线视频观看| 亚洲成av片中文字幕在线观看 | 丝袜人妻中文字幕| 一级毛片我不卡| 中国美白少妇内射xxxbb| 99热网站在线观看| 麻豆精品久久久久久蜜桃| 国产av码专区亚洲av| 免费大片18禁| 久久婷婷青草| 日本vs欧美在线观看视频| 妹子高潮喷水视频| 日韩人妻精品一区2区三区| 9191精品国产免费久久| 午夜福利,免费看| 丰满迷人的少妇在线观看| 亚洲精华国产精华液的使用体验| 丰满迷人的少妇在线观看| 国产成人一区二区在线| 亚洲欧美日韩卡通动漫| 久久国产精品大桥未久av| 丰满少妇做爰视频| 寂寞人妻少妇视频99o| 亚洲精品日本国产第一区| 亚洲一码二码三码区别大吗| 97精品久久久久久久久久精品| 亚洲精品视频女| 欧美成人午夜精品| 哪个播放器可以免费观看大片| 如何舔出高潮| 极品人妻少妇av视频| 极品少妇高潮喷水抽搐| av免费在线看不卡| 国产淫语在线视频| 亚洲欧洲精品一区二区精品久久久 | 一边摸一边做爽爽视频免费| 国产 一区精品| 国产精品蜜桃在线观看| 亚洲国产精品专区欧美| 亚洲欧美色中文字幕在线| 亚洲国产欧美在线一区| 国产午夜精品一二区理论片| 人人澡人人妻人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日日爽夜夜爽网站| 成人亚洲欧美一区二区av| 亚洲综合精品二区| 精品福利永久在线观看| 日韩一区二区三区影片| 最黄视频免费看| 天天躁夜夜躁狠狠躁躁| 国产精品国产三级国产av玫瑰| 久久久久久久亚洲中文字幕| 欧美少妇被猛烈插入视频| 亚洲精华国产精华液的使用体验| 久久精品久久精品一区二区三区| 久久久久久久久久人人人人人人| 亚洲四区av| 成人毛片60女人毛片免费| 水蜜桃什么品种好| 成人手机av| 晚上一个人看的免费电影| 日韩不卡一区二区三区视频在线| 免费黄频网站在线观看国产| 多毛熟女@视频| 亚洲,欧美精品.| 最近中文字幕高清免费大全6| 国产精品.久久久| 一本久久精品| 满18在线观看网站| 麻豆乱淫一区二区| 欧美bdsm另类| 免费黄频网站在线观看国产| 黑人猛操日本美女一级片| 18+在线观看网站| 欧美日韩视频高清一区二区三区二| 国产一区二区三区综合在线观看 | 美女大奶头黄色视频| 人妻系列 视频| 日本色播在线视频| av黄色大香蕉| 国产精品免费大片| 亚洲性久久影院| 卡戴珊不雅视频在线播放| 久久久久久久久久人人人人人人| 亚洲国产精品成人久久小说| 超色免费av| 久久久久久人人人人人| 成人国产av品久久久| 九色亚洲精品在线播放| 成人黄色视频免费在线看| 亚洲美女搞黄在线观看| av又黄又爽大尺度在线免费看| 久热这里只有精品99| 国产综合精华液| 国产成人精品在线电影| 国产精品久久久久久精品电影小说| 亚洲一区二区三区欧美精品| 满18在线观看网站| 成人黄色视频免费在线看| 国产在线一区二区三区精| 亚洲av福利一区| 午夜免费男女啪啪视频观看| 久久 成人 亚洲| 欧美日韩一区二区视频在线观看视频在线| 97精品久久久久久久久久精品| 亚洲天堂av无毛| 久久精品国产鲁丝片午夜精品| 大片电影免费在线观看免费| 久久久久久久久久成人| 99九九在线精品视频| 大陆偷拍与自拍| 国产 精品1| 日本av免费视频播放| 国产乱人偷精品视频| 高清av免费在线| 伦精品一区二区三区| 久久午夜福利片| 亚洲精品aⅴ在线观看| 久久精品久久久久久久性| 国产麻豆69| 青春草视频在线免费观看| 久久人人爽av亚洲精品天堂| 黑丝袜美女国产一区| av女优亚洲男人天堂| 91aial.com中文字幕在线观看| 男人舔女人的私密视频| 啦啦啦在线观看免费高清www| 尾随美女入室| 日韩欧美精品免费久久| 亚洲精品视频女| 中文字幕免费在线视频6| 成人国语在线视频| 中国美白少妇内射xxxbb| 亚洲成人手机| 欧美精品人与动牲交sv欧美| 女的被弄到高潮叫床怎么办| 啦啦啦在线观看免费高清www| 人妻一区二区av| 王馨瑶露胸无遮挡在线观看| 美女大奶头黄色视频| 久热久热在线精品观看| 亚洲精品中文字幕在线视频| 亚洲成国产人片在线观看| 久久久欧美国产精品| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 精品久久久精品久久久| 国产av码专区亚洲av| 免费日韩欧美在线观看| 亚洲欧美一区二区三区黑人 | 午夜老司机福利剧场| 成人亚洲欧美一区二区av| 国语对白做爰xxxⅹ性视频网站| 香蕉丝袜av| 大片电影免费在线观看免费| 人妻少妇偷人精品九色| 在线看a的网站| 日韩免费高清中文字幕av| 大陆偷拍与自拍| 我要看黄色一级片免费的| 99精国产麻豆久久婷婷| 午夜福利影视在线免费观看| 亚洲av日韩在线播放| 亚洲国产最新在线播放| 亚洲成色77777| 黄色毛片三级朝国网站| 久久久国产精品麻豆| xxxhd国产人妻xxx| 看十八女毛片水多多多| videossex国产| 欧美最新免费一区二区三区| 18禁在线无遮挡免费观看视频| 日本免费在线观看一区| 侵犯人妻中文字幕一二三四区| 国产精品一国产av| 女人被躁到高潮嗷嗷叫费观| 久久久久精品久久久久真实原创| 99久久人妻综合| 国产成人精品婷婷| 尾随美女入室| 亚洲 欧美一区二区三区| 国产探花极品一区二区| av国产精品久久久久影院| 亚洲在久久综合| 久久99热这里只频精品6学生| 国产在线免费精品| 午夜91福利影院| 日本黄大片高清| 国产日韩欧美视频二区| 欧美精品一区二区免费开放| 久久精品久久久久久久性| av免费观看日本| 亚洲精品一区蜜桃| 99久久中文字幕三级久久日本| 久久久a久久爽久久v久久| 久久人人爽人人爽人人片va| 18禁国产床啪视频网站| 免费观看无遮挡的男女| 久久国产精品大桥未久av| 欧美 亚洲 国产 日韩一| 精品人妻偷拍中文字幕| 久久久精品区二区三区| 欧美bdsm另类| 亚洲精品456在线播放app| 欧美bdsm另类| 狠狠精品人妻久久久久久综合| 日韩大片免费观看网站| 97超碰精品成人国产| 亚洲欧美日韩卡通动漫| 国产成人精品久久久久久| 婷婷色综合www| 国产欧美亚洲国产| 中文字幕精品免费在线观看视频 | 免费av中文字幕在线| 国产成人午夜福利电影在线观看| 午夜免费鲁丝| 看免费成人av毛片| 夜夜骑夜夜射夜夜干| 亚洲精品久久久久久婷婷小说| 免费黄网站久久成人精品| 成人国产av品久久久| a级片在线免费高清观看视频| 伦理电影免费视频| 大香蕉久久网| 精品国产国语对白av| 精品熟女少妇av免费看| 97精品久久久久久久久久精品| 看十八女毛片水多多多| 成年人午夜在线观看视频| 国产精品不卡视频一区二区| 亚洲精品久久午夜乱码| 黄色一级大片看看| 精品久久久精品久久久| 22中文网久久字幕| 国产精品国产三级国产专区5o| 久久99精品国语久久久| 自线自在国产av| 欧美精品国产亚洲| 亚洲性久久影院| 夜夜骑夜夜射夜夜干| 日本与韩国留学比较| 免费黄网站久久成人精品| 国产男女内射视频| 精品酒店卫生间| 男人爽女人下面视频在线观看| av播播在线观看一区| av黄色大香蕉| 制服人妻中文乱码| 99精国产麻豆久久婷婷| 亚洲精品成人av观看孕妇| 国产一区二区在线观看日韩| 国产成人精品一,二区| 久久这里有精品视频免费| 免费在线观看完整版高清| 日韩免费高清中文字幕av| 久久99蜜桃精品久久|