• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    2017-02-08 07:42:31CAITingLUQianwenXIANGWenliangZHANGQingZHANGQishengCHENGongCAIYimin
    食品科學 2017年2期
    關(guān)鍵詞:泡菜乳酸菌耐藥性

    CAI Ting, LU Qianwen, XIANG Wenliang,*, ZHANG Qing, ZHANG Qisheng, CHEN Gong, CAI Yimin

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    CAI Ting1, LU Qianwen1, XIANG Wenliang1,*, ZHANG Qing1, ZHANG Qisheng2, CHEN Gong2, CAI Yimin3

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    For formulating reasonable measures for the prevention and control of bacterial antibiotic resistance to ensure food safety, penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL) resistance of lactic acid bacteria (LABs) and the corresponding resistance genes were evaluated, including Enterococcus mundtii (n = 5), Enterococcus faecalis (n = 2), Enterococcus hirae (n = 2), Lactococcus lactis (n = 7), Leuconostoc mesenteroides (n = 2), Leuconostoc holzapfelii (n = 3) and Weissella cibaria (n = 79) from fresh red bell peppers used for Sichuan pickle fermentation. All of the isolated strains were susceptible to PEN or ERY, but they had solo, double or triplicate resistance to TET, STR and CHL. All the isolates of L. mesenteroides as well as some strains of E. hirae, E. faecalis and L. holzapfelii showed solo STR resistance. Some strains of E. faecalis, E. hirae, L. lactis and W. cibaria had double resistance to STR and TET, as well as STR and CHL. However, isolates with triplicate resistances to STR, TET and CHL were only found in W. cibaria. It was found that except norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’) genes, all antibiotic resistance genes were harbored by the resistant isolates partly or completely. The multiple-drug resistance efflux pump genes efrA, tolC, norC, sugE and mdfA showed higher positive rates (which were 49%, 41%, 48%, 41% and 47%, respectively) than the ribosomal protection protein genes and the enzymatic modification genes in the corresponding polymerase chain reaction (PCR). Even though the dissemination of these antibiotic resistances needs to be further studied, such results demonstrated that food safety concerns will be partly focused on antibiotic resistance of LABs on fresh red bell peppers according to Qualified Presumption of Safety criteria.

    red bell peppers; lactic acid bacteria; food safety; antibiotic resistance; antibiotic resistance genes

    Sichuan pickle is the typical representative of Chinese traditional vegetable fermentation. It normally serves as a key flavor for Sichuan cuisine or is used as an appetizer because of its unique flavor in many regions of China. Like the kimchi, Sichuan pickle also has various beneficial properties on general health for the consumers, including anti-oxidative activity, antiaging effects, antimutagenic, antigenotoxic and antitumor activities, antimicrobial activity, immune stimulation, weight-controlling, lipidlowering, and anti-atherogenic activities[1]. The material basis of beneficial properties is closely linked to fermentation process dominated by strains of Lactobacillus, Leuconostoc, Weissella and Pediococcus genera from the old salt brine and the fresh vegetable materials. In the last years, the lactic acid bacteria (LAB) genera which are involved in traditional lactic fermentation, were generally considered to be safe for human according to the “Generally Recognized as Safe (GRAS)”principles and the “Qualitative Presumption of Safety (QPS)”risk assessment approach based on a long history of safe use[2]. However, in the recent years, along with antibiotic resistance genes (ARGs) polluting intensively, several antibiotic resistance genes have already been found in the Sichuan pickle[3]. This gives a new challenge to the traditional GRAS and QPS state of Sichuan pickle, more specifically to those without heat-treated before consumption.

    The antibiotic resistance genes (ARGs), as emerging contaminants, were first proposed in 2006[4]. They fleetly became a new research topic in the food safety and environmental science because their health risks resulted from spreading among different hosts were often greater than the harm caused by antibiotics themselves. In 2000, the World Health Organization (WHO) report focused on antibiotic resistance as one of the most critical human health challenges of the next century and heralded the need for “a global strategy to contain resistance”. The food chain was considered as the main route of transmission of antibiotic resistance[5]. The development of antibiotic resistance among bacteria introduced in the food chain is of great novel concern in the food safety[6]. Recently, several spontaneously fermented foods have been considered as important potential transmission vehicles of ARGs from environment to human gastrointestinal tract[7-9], moreover the transfer of ARGs in the commensal or bacteria may be also induced by low pH, high salt concentration, antimicrobial compounds and the high number of living bacteria. And thus the European Food Safety Authority (EFSA) requires that bacteria which are to be introduced into the food chain should lack acquired or transferable ARGs to prevent their spread among different bacteria[10]. Unfortunately, with the aggravation of pollution of ARGs in the environment, the bacteria with transferable ARGs would be inevitably introduced into food produce chains[11-12].

    Bell pepper, a vegetable of nightshade (Solanaceae) family, is one of the best vegetable to serve in a cruditéplatter because of its bright color, thick flesh, great favor, crunchy high texture capsorubin and high vitamin content[13]. In the southwest of China, it is also usually used to make the Sichuan pickle for the flavor refreshments to stimulate the appetite before the meal, or to relieve oleaginous taste after the meal in the summer. However, in the recent years, LABs with ARGs were often found in the Sichuan pickle fermentation system after the bell peppers were introduced to the old salt brine[3], which would make the GRAS and QPS state of Sichuan pickle worse if the transfer of ARGs took place between different LABs. Therefore, it is necessary to evaluate antibiotic resistance and ARGs of epibiotic LABs from the fresh red bell peppers. In current study, we have investigated their resistance to 5 important antibiotics including penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL), and their ARGs were also detected by polymerase chain reaction (PCR). This study would be very significant to food safety of epibiotic LABs on the fresh red bell peppers used for the Sichuan pickle.

    1 Materials and Methoddss

    1.1 LABs and growth condition

    In the present study, 100 LAB strains were previously obtained from the fresh red bell peppers used for the Sichuan pickle fermentation. They were identified according to the methods described by Pan Lu et al[14]and then stored as frozen stocks at -20 ℃ in de Man Rogosa and Sharpe (MRS) broth containing 20% (V/V) glycerol for long term storage. They were routinely propagated at 30 ℃ in MRS broth (Fluka, Madrid, Spain) or agar slants under aerobic conditions for 24-48 h.

    1.2 Antimicrobial susceptibility testing

    Antimicrobial susceptibility tests were performed by broth micro-dilution method[15]. Brief y, a 96-well plate was inoculated with 2 μL of fresh LAB cultures and 198 μL of MRS broth with serial two-fold dilutions of antibiotics (0.125-64.000 μg/mL PEN, 0.25-128.00 μg/mL ERY, 1-512 μg/mL TET, 2-1 024 μg/mL STR, 0.5-256.0 μg/mL CHL). LABs were f rst cultured in 2 mL of MRS for 24 h at 30 ℃and subsequently diluted in 0.85 g/100 mL physiological saline to the concentration of approximately 1×105CFU/mL. LABs inoculated in MRS were used as positive control, and a LAB-free well as negative. Plates were incubated under anaerobic conditions at 30 ℃ for 48 h.

    The minimal inhibitory concentration (MIC) of each antibiotic was visually evaluated as the lowest concentration at which no growth was observed. All the tests were repeated at least thrice. In duplicate experiments, the differences of MIC for independent sample never exceeded 1 order of dilution. Interpretation for susceptibility status was based on the threshold X defined also as Extended Common Object File Forma (ECOFF) according to the EFSA (2012)[16-17]and the European Committee on Antimicrobial Susceptibility Testing (EUCAST, http://www.eucast.org). When MIC ≤ECOFF value, the strain was sensitive to the antibiotic; on the contrary, it was resistant.

    1.3 Detection of ARGs

    The temple DNA for PCR was prepared as methods by Xiang et al[18]. The genes associated with resistance to chloramphenicol acetyltransferase gene (cat)[14,19], TET (tet(A), tet(B), tet(C), tet(D), tet(G), tet(H), tet(K), tet(M), tet(O), tet(S), tet(W) and tet(X))[19-20], and STR (strA, strB, aadA, aad6, aph(3’)-Ⅲa and aac(6’)-aph(2’)) were detected by PCR amplification[19]. The efflux pump genes mediating antibiotic resistance eff ux were also investigated according to the PCR methods described by Swick et al[21]for acrA, acrB, tolC, mdfA and norE; He et al[22]for sugE; Noguchi et al[23]for smr; Lee et al[24]for efrA and efrB; Patel et al[25]for mdeA, mepA, norA, norB, norC, sdrM and sepA. The PCR primers were listed in Table 1.

    All the amplified ARGs were respectively cloned into the pGEM-T plasmid vector (Promega, Madison, WI, USA) and transformed into the chemically competent E. coli DH5α cells for sequencing. Then the antibiotic resistance genes were further verified by sequence BLASTx program in the National Center for Biotechnology Information (NCBI).

    Table1 PCR primers for antibiotic resistance genes

    Table1 continued

    1.4 Statistical analysis

    The MIC distribution of 5 antibiotics was statistically analyzed using Excel 2010 (Microsoft, Redmond, Washington, USA). Distribution of antibiotic susceptibility and antibiotic resistance genes were performed using SPSS version 17.0 (IBM, Armonk, New York, USA).

    2 Results and Analysis

    2.1 Antibiotic susceptibility

    Antibiotics had been spread in the environment when used as growth promoters in livestock years ago, leading to the selection of antibiotic resistant bacteria[26]. These resistant bacteria may inhabitat in or on fruits, vegetables and animal feeds, and may further disseminate during the food fermentation[27-28]. Therefore, it is important to evaluate the antibiotic resistance incidences of bacteria in fermented vegetables[29]. A total of one hundred isolates were initially identified as LAB by 16S rRNA sequence analysis, and these LABs were further verified by physiological and biochemical methods. They were turned out to be seventy-nine strains of Weissella cibaria, five strains of Enterococcus mundtii, two strains of Enterococcus faecalis, two strains of Enterococcus hirae, two strains of Leuconostoc mesenteroides, three strains of Leuconostoc holzapfelii and seven strains of Lactococcus lactis (Table 2).

    Table2 Microbial classification of LABs isolated from red bell peppers using 16S rRNA gene sequence analysis

    Table3 MIC distribution of 5 antibiotics for LABs isolated from red peppers used for Sichuan pickle production

    The susceptibility determination was performed with epibiotic LABs to PEN, ERY, TET, STR and CHL. The results indicated that the MICs to PEN and ERY did not exceed the ECOFF values posed by the EFSA 2012 for E. mundtii, E. faecalis, E. hirae, L. mesenteroides, L. holzapfelii, L. lactis and W. cibaria (Table 3). It suggested that all epibiotic LABs on the fresh red bell peppers are sensitive to PEN and ERY. Conversely, except L. holzapfelii, most of them displayed resistance to the STR (84 strains LABs), with 100% of E. hirae and L. mesenteroides, 60% of E. mundtii, 50% of E. faecalis, 85.7% L. lactis and 88.6% W. cibaria (Table 3), and these resistant LABs showed high MIC values as previously reported by Elkins et al[30]. For TET, all strains of E. mundtii, L. mesenteroides and L. holzapfelii showed susceptibility, while 50% of E. faecalis, 100% of E. hirae and 28.6% of L. lactis strains had higher MIC than their corresponding ECOFF values, suggesting resistance to TET (Table 3). In the CHL, only 3.8% of W. cibaria strains had obtained resistance, the other species and 96.2% of W. cibaria strains were sensitive to CHL (Table 3).

    2.2 Antibiotic resistance phenotype and distribution

    Statistical analysis showed that none of strains were resistant to PEN and ERY, but there were some strains with solo, or double or triplicate resistance to TET, STR and CHL. As one of the most widespread agricultural antibiotics, the use of STR has lead STR resistance bacteria to grow in the environment, and thus unavoidably gathered at the surface of the vegetable. Therefore, STR resistant bacteria were often found on the surface of the vegetables[5]. It was also verified by our results that 84% of LAB isolates were resistant to STR, and the strains with solo resistance to STR almost existed in all species except E. hirae and E. faecalis (Fig. 1). All the strains of L. mesenteroides only showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates have double resistance to STR and TET or STR and CHL. However, the triplicate resistant strain was found only in W. cibaria, and it was against STR, TET and CHL (Fig. 1). Two E. hirae strains both displayed STR and TET double resistance. In two E. faecalis strains, one was sensitive to antibiotics tested, the other with TET and STR double resistance. In five E. mundtii strains, which have two strains with susceptibility to all testing antibiotics, three solo STR resistant. Among seven L. lactis strains, four strains were found to be with solo STR resistance, two strains with TET and STR double resistance, and one strain with susceptibility to all testing antibiotics. Among seventy nine W. cibaria strains, only one W. cibaria strain with triplicate resistance to TET, STR and CHL was observed. Furthermore, there were nine susceptibility isolates, fifty-eight solo STR resistant isolates, nine TET and STR double resistant isolates and two STR and CHL double resistant isolates.

    Fig. 1 Distribution of antibiotic susceptibility and resistant LAB isolates

    2.3 Antibiotic resistance genes

    The overuse and misuse of antibiotics have created a tremendous selective pressure toward antibiotic resistant bacteria[30]. Different mechanisms for the resistance to various antibiotics have been found in bacteria, including antibiotic degrading, pump efflux, altering and metabolism in cell[31]. The emergence of antibiotic resistance is a global threat because it reduces the efficiency of the antibiotic therapy, which is getting worse by the horizontal transfer of ARGs between bacteria[32-33]. Fermentative materials have been considered as potential vehicles of resistant genes from environment to products[5].

    To identify resistant determinants responsible for the resistance phenotypes observed, all the strains were screened by PCR for the presence of resistant genes as described above. In current investigation, these genes served the antibiotic resistance were detected and displayed in Fig. 2. Except the efflux genes norA and sepA, TET resistance genes tet(A) and tet(O), STR resistance gene aac(6’)-aph(2’), the other resistant genes were harbored by resistance isolates partly or completely. The multiple-drug resistant efflux pump genes, including efrA, tolC, norC, sugE and mdfA, showed higher positive ratios than the others in the corresponding PCR reactions, in which their detected ratios were 49, 41, 48, 41 and 47%, respectively. The results were similar to the eff ux pump genes in the LAB described by del Carmen et al[19]. The STR and TET double resistant W. cibaria CT023 carried most resistant genes, including seven drug eff ux pump genes efrA, efrB, acrB, sugE, norC, mdfA and mepA, three TET efflux genes tet(B), tet(C) and tet(K), two ribosomal protection protein genes tet(S) and tet(W), one enzymatic modif cationgene tet(X), and three STR resistance genes strB, aad6 and aph(3’)-Ⅲa. While, E. mundtii CT080, CT081, W. cibaria CT012, CT014, CT098 and CT206 have only possessed one resistance gene, norE for CT080, mdfA for CT081, strB for CT012 and CT206, acrA for CT014 and CT098. And all of them were positive for solo STR resistance. The detection of ARGs in fermentative vegetable materials implies that there is a potential food safety risk when ARGs spread to other microorganisms during the fermentation by horizontal gene transfer.

    Fig. 2 Distribution of ARGs in different antibiotic resistance LAB isolates

    3 Conclusions

    Traditionally fermented vegetables play an important role in the food systems in China. However, no investigation has been conducted to assess the antibiotic resistance incidences and ARGs of LAB. In current investigation, all the LAB isolates from the fresh red bell peppers were susceptible to PEN and ERY. Concerning TET, STR and CHL, all the strains of L. mesenteroides showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates had double resistance to STR and TET or STR and CHL. However, the triplicate resistance was found only in W. cibaria. Except for norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’), the other resistance genes were harbored by resistant isolates partly or completely. The genes efrA, tolC, norC,

    sugE and mdfA showed higher positive ratios, which were 49%, 41%, 48%, 41% and 47% respectively. Even though the dissemination of these ARGs during vegetable fermentation need to be further studied, such studies will be conducive to safety assessment of fresh red bell peppers when being used as the material for fermentation.

    [1] JI Y, KIM H, PARK H, et al. Functionality and safety of lactic bacterial strains from Korean kimchi[J]. Food Control, 2013, 31(2): 467-473. DOI:10.1016/j.foodcont.2012.10.034.

    [2] ANADóN A, MART?NEZ-LARRA?AGA M R, MART?NEZ M A. Probiotics for animal nutrition in the European Union. regulation and safety assessment[J]. Regulatory Toxicology and Pharmacology, 2006, 45(1): 91-95. DOI:10.1016/j.yrtph.2006.02.004.

    [3] SONG Feifei, XU Gurong, CAI Ting, et al. Detection of streptomycin resistance and resistance genes in lactic acid bacteria from Sichuan Pickle of China[J]. Journal of Food Safety and Quality, 2014, 5(12): 4032-4039.

    [4] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science and Technology, 2006, 40(23): 7445-7450. DOI:10.1021/es060413l.

    [5] VERRAES C, van BOXSTAEL S, van MEERVENNE E, et al. Antimicrobial resistance in the food chain: a review[J]. International Journal of Environmental Research and Public Health, 2013, 10(7): 2643-2669. DOI:10.3390/ijerph10072643.

    [6] WANG H, McENTIRE J C, ZHANG L, et al. The transfer of antibiotic resistance from food to humans: facts, implications and future directions[J]. International Office of Epizootics, 2012, 31(1): 249-260. DOI:10.20506/rst.31.1.2117.

    [7] BAUTISTA-GALLEGO J, ARROYO-L?PEA F N, RANTSIOU K, et al. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential[J]. Food Research International, 2013, 50(1): 135-142. DOI:10.1016/j.foodres.2012.10.004.

    [8] AHAOTU I, ANYOGU A, NLOKU O H, et al. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba[J]. International Journal of Food Microbiology, 2013, 162(1): 95-104. DOI:10.1016/j.ijfoodmicro.2013.01.001.

    [9] HUDDLESTON J R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes[J]. Infecition and Drug Resistance, 2014(7): 167-176. DOI:10.2147/IDR.S48820.

    [10] van REENEN C A, DICKS L M T. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? a review[J]. Archives of Microbiology, 2011, 193(3): 157-168. DOI:10.1007/s00203-010-0668-3.

    [11] ZHANG Xiangxu, ZHANG Tong, FANG H H P. Antibiotic resistance genes in water environment[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 397-414. DOI:10.1007/s00253-008-1829-z.

    [12] FUENTES M A F, MORENTE E O, ABRIOUEL H, et al. Antimicrobial resistance determinants in antibiotic and biocide resistant gram-negative bacteria from organic foods[J]. Food Control, 2014, 37: 9-14. DOI:10.1016/j.foodcont.2013.08.041.

    [13] OUYANG Jing, TAO Xianglin, LI Ziming, at el. Analysis of changes in the main components and volatile components in fermented pepper with high salt content[J]. Food Science, 2014, 35(4): 174-179. DOI:10.7506/spkx1002-6630-201416038.

    [14] PAN Lu, HU Xiaoqing, WANG Xiaoyuan. Assessment of antibiotic resistance of lactic acid bacteria in Chinese fermented foods[J]. Food Control, 2011, 22(8): 1316-1321. DOI:10.1016/ j.foodcont.2011.02.006.

    [15] KLARE I, KONSTABEL C, M?LLER-BERTLING S, et al. Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bif dobacteria[J]. Applied and Environmental Microbiology, 2005, 71(12): 8982-8986. DOI:10.1128/aem.71.12.8982-8986.2005.

    [16] DANIELSEN M, WIND A. Susceptibility of Lactobacillus spp. to antimicrobial agents[J]. International Journal of Food Microbiology, 2003, 82(1): 1-11. DOI:10.1016/S0168-1605(02)00254-4.

    [17] FLOREZ H, SLIVA E, FERN?NDEZ V, et al. Prevalence and risk factors associated with the metabolic syndrome and dyslipidemia in White, Black, Amerindian and Mixed Hispanics in Zulia State, Venezuela[J]. Diabetes Research and Clinical Practice, 2005, 69(1): 63-77. DOI:10.1016/j.diabres.2004.11.018.

    [18] XIANG Wenliang, LI Ke, LIU Sen, et al. Microbial succession in the traditional Chinese Luzhou-flavor liquor fermentation process as evaluated by SSU rRNA profiles[J]. World Journal of Microbiology and Biotechnology, 2012, 29(3): 559-567. DOI:10.1007/s11274-012-1210-3.

    [19] del CARMEN CASADO MU?OZ M, BENMAR N, LERMA L L, et al. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Alore?a table olives throughout fermentation process[J]. International Journal of Food Microbiology, 2014, 172(17): 110-118. DOI:10.1016/ j.ijfoodmicro.2013.11.025.

    [20] JIA Shuyu, HE Xiwei, BU Yuanqing, et al. Environmental fate of tetracycline resistance genes originating from swine feedlots in river water[J]. Journal of Environmental Science and Health, 2014, 49(8): 624-631. DOI:10.1080/03601234.2014.911594.

    [21] SWICK M C, MORGAN-LINNELL S K, CARLSON K M, et al. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(2): 921-924. DOI:10.1128/AAC.00996-10.

    [22] HE Guixin, ZHANG Chu, CROW R R, et al. SugE, a new member of the SMR family of transporters, contributes to antimicrobial resistance in Enterobacter cloacae[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(8): 3954-3957. DOI:10.1128/aac.00094-11.

    [23] NOGUCHI N, HASE M, KITTA M, et al. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus[J]. FEMS Microbiology Letters, 1999, 172(2): 247-253. DOI:10.1111/j.1574-6968.1999.tb13475.x.

    [24] LEE E W, HUDA M N, KURODA T, et al. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(12): 3733-3738. DOI:10.1128/ aac.47.12.3733-3738.2003.

    [25] PATEL D, KOSMIDIS C, SEO S M, et al. Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(12): 5070-5073. DOI:10.1128/aac.01058-10.

    [26] DEVIRGILIIS C, CARAVELLI A, COPPOIA D, et al. Antibiotic resistance and microbial composition along the manufacturing process of Mozzarella di Bufala Campana[J]. International Journal of Food Microbiology, 2008, 128(2): 378-384. DOI:10.1016/ j.ijfoodmicro.2008.09.021.

    [27] ZHANG Hongmei, HUANG Shaosong, ZHOU Hanji, et al. Two kinds of antibiotics resistance of lactic acid bacteria isolated from yogurt[J]. Chinese Journal of Public Health, 2010, 26(4): 511-512. DOI:10.11847/zgggws2010-26-04-73.

    [28] LIN Kai, CAI Ting, XU Gurong, et al. Antibiotic resistance of epibiotic lactic acid bacteria on the surface of organic white radish[J]. Food Science, 2015, 36(11): 145-149. DOI:10.7506/spkx1002-6630-201511028.

    [29] FU Mingchun, XI Huiping, LIU Yanzhao. Current antibiotic residues and control countermeasures of milk and meat[J]. Chinese Journal of Animal Quarantine, 2008, 25(6): 20-22. DOI:10.3969/j.issn.1005-944X.2008.06.010.

    [30] ELKINS C A, MULLIS L B. Bile-mediated aminoglycoside sensibility in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid[J]. Applied and Environmental Microbiology, 2004, 70(12): 7200-7209. DOI:10.1128/ aem.70.12.7200-7209.2004.

    [31] SHARMA P, TOMAR S K, GOSWAMI P, et al. Antibiotic resistance among commercially available probiotics[J]. Food Research International, 2014, 57(1): 176-195. DOI:10.1016/ j.foodres.2014.01.025.

    [32] NAWAZ M, WANG Juan, ZHOU Aiping, et al. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products[J]. Current Microbiology, 2011, 62(3): 1081-1089. DOI:10.1007/s00284-010-9856-2.

    [33] TOOMEY N, BOLTON D, FANNING S. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs[J]. Research in Microbiology, 2010, 161(2): 127-135. DOI:10.1016/ j.resmic.2009.12.010.

    四川泡菜發(fā)酵原料-燈籠辣椒附生乳酸菌的抗生素耐藥性評估與耐藥基因分析

    蔡 婷1,盧倩文1,向文良1,*,張 慶1,張其圣2,陳 功2,蔡義民3

    (1.西華大學食品與生物工程學院,四川省食品生物技術(shù)重點實驗室,古法發(fā)酵(釀造)生物技術(shù)研究所,四川 成都 610039;2. 四川省食品發(fā)酵工業(yè)研究設計院,四川 成都 611130;3.日本國際農(nóng)業(yè)科學研究中心,日本 筑波 30528686)

    以四川泡菜蔬菜原料——新鮮燈籠辣椒為對象,分析其表面附生乳酸菌Enterococcus mundtii(5 株)、Enterococcus faecalis(2 株)、Enterococcus hirae(5 株)、Lactococcus lactis(7 株)、Leuconostoc mesenteroides(2 株)、Leuconostoc holzapfelii(3 株)和Weissella cibaria(79 株)對青霉素(penicillin,PEN)、紅霉素(erythromycin,ERY)、四環(huán)素(tetracycline,TET)、鏈霉素(streptomycin,STR)和氯霉素(chloramphenicol,CHL)的抗生素耐藥性和耐藥基因分布,為制定合理的食品安全防控措施提供科學依據(jù)。研究表明:所有分離菌株均無PEN和ERY耐藥性,其他種屬部分菌株對TET、STR和CHL表現(xiàn)出單一、二重或三重耐藥性。除E. hirae、E. faecalis和L. holzapfelii部分菌株對STR表現(xiàn)出單一耐藥性外,所有L. mesenteroide菌株只表現(xiàn)出了STR單一耐藥性;STR和TET、STR和CHL二重耐藥菌株在E. faecalis、E. hirae、L. lactis和W. cibaria分離菌株中都有發(fā)現(xiàn),但是STR、TET、CHL三重耐藥菌株僅在W. cibaria中發(fā)現(xiàn)。聚合酶鏈式反應檢測發(fā)現(xiàn):除基因norA、sepA、tet(A)、tet(O)和aac(6’)-aph(2’)未被檢出外,其他耐藥菌株都有相應1 個或多個耐藥基因被檢出。多重耐藥外排泵基因efrA、tolC、norC、sugE和mdfA較核糖體蛋白質(zhì)保護和酶修飾基因檢出率高,分別達到了49%、41%、48%、41%和47%。雖然辣椒表面附生乳酸菌的抗生素耐藥基因在四川泡菜發(fā)酵過程中的擴散行為需要進一步研究,但根據(jù)食品加工過程安全規(guī)范標準,也應關(guān)注其表面附生的乳酸菌抗生素耐藥性存在的潛在食品安全問題。

    燈籠辣椒;乳酸菌;食品安全;抗生素耐藥性;抗生素耐藥性基因

    TS201.3

    A

    1002-6630(2017)02-0027-07

    nces

    2016-03-11

    國家自然科學基金面上項目(31571935);教育部春暉計劃項目(Z2014061);四川省應用基礎項目(2014JY0045);四川省教育廳重點項目(14ZA0110)

    蔡婷(1991—),女,碩士研究生,主要從事食品微生物分子生態(tài)研究。E-mail:caiting1124@sina.com

    10.7506/spkx1002-6630-201702005

    *通信作者:向文良(1973—),男,教授,博士,主要從事中國西南地區(qū)特色發(fā)酵食品微生物分子生態(tài)與生物過程學研究。

    E-mail:biounicom@mail.xhu.edu.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. 食品科學, 2017, 38(2): 27-33.

    10.7506/ spkx1002-6630-201702005. http://www.spkx.net.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. Food Science, 2017, 38(2): 27-33. DOI:10.7506/spkx1002-6630-201702005. http://www.spkx.net.cn

    猜你喜歡
    泡菜乳酸菌耐藥性
    韓國泡菜,不僅僅是辣白菜
    長絲鱸潰爛癥病原分離鑒定和耐藥性分析
    禽用乳酸菌SR1的分離鑒定
    雪花泡菜
    嬰幼兒感染中的耐藥菌分布及耐藥性分析
    WHO:HIV耐藥性危機升級,普及耐藥性檢測意義重大
    我只是想吃一碗泡菜
    乳酸菌成乳品市場新寵 年增速近40%
    乳飲品中耐胃酸乳酸菌的分離鑒定與篩選
    中國釀造(2014年9期)2014-03-11 20:21:04
    產(chǎn)γ-氨基丁酸乳酸菌的篩選及誘變育種
    食品科學(2013年23期)2013-03-11 18:30:09
    国产男人的电影天堂91| 高清av免费在线| 交换朋友夫妻互换小说| 少妇高潮的动态图| 日韩欧美一区视频在线观看| 日本欧美视频一区| 涩涩av久久男人的天堂| av黄色大香蕉| 国产爽快片一区二区三区| 久久久久网色| 日韩成人av中文字幕在线观看| 久久综合国产亚洲精品| 久久精品久久精品一区二区三区| 69精品国产乱码久久久| 国产av精品麻豆| 亚洲精华国产精华液的使用体验| 久久狼人影院| videos熟女内射| 亚洲欧美精品自产自拍| 80岁老熟妇乱子伦牲交| 乱人伦中国视频| 人妻少妇偷人精品九色| a级毛片免费高清观看在线播放| 亚洲一级一片aⅴ在线观看| 男女边摸边吃奶| 亚洲无线观看免费| 国产亚洲精品第一综合不卡 | 国产白丝娇喘喷水9色精品| 亚洲第一av免费看| 伊人久久精品亚洲午夜| 欧美+日韩+精品| 亚洲欧美成人精品一区二区| 亚洲国产毛片av蜜桃av| 韩国av在线不卡| 春色校园在线视频观看| 久久久精品94久久精品| 日韩精品有码人妻一区| 亚洲天堂av无毛| 国产女主播在线喷水免费视频网站| .国产精品久久| 国产精品不卡视频一区二区| 国产在线一区二区三区精| 麻豆乱淫一区二区| 插阴视频在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲天堂av无毛| 美女大奶头黄色视频| 免费高清在线观看日韩| 久久精品国产亚洲av涩爱| 伊人久久国产一区二区| 国产老妇伦熟女老妇高清| 插阴视频在线观看视频| 中国国产av一级| 精品午夜福利在线看| 日韩制服骚丝袜av| 亚洲美女黄色视频免费看| 精品熟女少妇av免费看| 国产不卡av网站在线观看| 国产乱人偷精品视频| 久久久久国产精品人妻一区二区| 国产黄片视频在线免费观看| 一本—道久久a久久精品蜜桃钙片| 观看av在线不卡| 亚洲天堂av无毛| 日韩精品有码人妻一区| videosex国产| 一本久久精品| 黄色视频在线播放观看不卡| 久久精品国产亚洲网站| 亚洲精品456在线播放app| 亚洲国产精品国产精品| 精品视频人人做人人爽| 九草在线视频观看| 国产女主播在线喷水免费视频网站| 国产精品无大码| 各种免费的搞黄视频| 在线观看美女被高潮喷水网站| 日韩免费高清中文字幕av| a级毛色黄片| 亚洲少妇的诱惑av| a级片在线免费高清观看视频| 亚洲经典国产精华液单| 亚洲精品久久久久久婷婷小说| 18禁裸乳无遮挡动漫免费视频| 免费大片18禁| 日本欧美国产在线视频| 老熟女久久久| 国产伦理片在线播放av一区| 成年人免费黄色播放视频| 尾随美女入室| 伊人久久精品亚洲午夜| 亚洲中文av在线| 夫妻性生交免费视频一级片| 天堂中文最新版在线下载| 国产精品 国内视频| 菩萨蛮人人尽说江南好唐韦庄| 伦理电影免费视频| 国产成人免费无遮挡视频| 大香蕉97超碰在线| 日本wwww免费看| 久久人妻熟女aⅴ| 大香蕉久久成人网| av又黄又爽大尺度在线免费看| 国国产精品蜜臀av免费| 观看美女的网站| 日日摸夜夜添夜夜爱| 亚洲四区av| 久久久久精品性色| 999精品在线视频| 亚洲精品乱码久久久v下载方式| 亚洲av成人精品一区久久| 国产精品99久久久久久久久| 亚洲第一区二区三区不卡| 欧美日韩成人在线一区二区| 一级毛片 在线播放| 色视频在线一区二区三区| 老司机亚洲免费影院| 99热6这里只有精品| 国产亚洲av片在线观看秒播厂| 国产精品国产av在线观看| av有码第一页| 国产女主播在线喷水免费视频网站| 黄片无遮挡物在线观看| 亚洲国产精品专区欧美| a级毛片免费高清观看在线播放| 日日爽夜夜爽网站| 久久久久网色| 亚洲美女搞黄在线观看| 一区二区日韩欧美中文字幕 | av不卡在线播放| 精品人妻一区二区三区麻豆| 欧美日本中文国产一区发布| 男女边摸边吃奶| 爱豆传媒免费全集在线观看| 校园人妻丝袜中文字幕| 日本欧美国产在线视频| 啦啦啦啦在线视频资源| 国产爽快片一区二区三区| 新久久久久国产一级毛片| 91精品三级在线观看| 国产精品偷伦视频观看了| 校园人妻丝袜中文字幕| 欧美 日韩 精品 国产| 国产成人freesex在线| 国产熟女午夜一区二区三区 | 黄色一级大片看看| 国产精品秋霞免费鲁丝片| 黄色怎么调成土黄色| 国产欧美日韩一区二区三区在线 | 免费观看无遮挡的男女| 国产 精品1| 亚洲第一av免费看| 一个人看视频在线观看www免费| 国产白丝娇喘喷水9色精品| 亚洲天堂av无毛| √禁漫天堂资源中文www| 我要看黄色一级片免费的| av线在线观看网站| 国产精品人妻久久久久久| 高清黄色对白视频在线免费看| 又大又黄又爽视频免费| av一本久久久久| 亚洲av免费高清在线观看| 久热久热在线精品观看| 男女无遮挡免费网站观看| 99国产综合亚洲精品| 最黄视频免费看| 成人漫画全彩无遮挡| 亚洲欧美清纯卡通| 高清在线视频一区二区三区| 两个人免费观看高清视频| 欧美精品一区二区大全| 美女国产视频在线观看| 亚洲国产精品一区三区| 99热6这里只有精品| 一区二区日韩欧美中文字幕 | 精品人妻在线不人妻| 免费观看av网站的网址| 最新中文字幕久久久久| 久久 成人 亚洲| a 毛片基地| 亚洲美女搞黄在线观看| 亚洲第一av免费看| 99视频精品全部免费 在线| 国产黄色免费在线视频| 欧美精品国产亚洲| 色视频在线一区二区三区| 日韩一区二区三区影片| 赤兔流量卡办理| 欧美精品一区二区大全| 国产精品国产三级国产av玫瑰| 高清欧美精品videossex| 纯流量卡能插随身wifi吗| 久久亚洲国产成人精品v| 国产黄色免费在线视频| av又黄又爽大尺度在线免费看| 91精品伊人久久大香线蕉| 国产无遮挡羞羞视频在线观看| 18+在线观看网站| 天堂中文最新版在线下载| 亚洲欧美成人综合另类久久久| 色哟哟·www| 一本久久精品| 丝瓜视频免费看黄片| 亚洲人成网站在线观看播放| 人妻夜夜爽99麻豆av| 99久久中文字幕三级久久日本| 天堂俺去俺来也www色官网| 亚洲精品中文字幕在线视频| a级片在线免费高清观看视频| 边亲边吃奶的免费视频| 久久久久视频综合| 18禁在线无遮挡免费观看视频| 久久久a久久爽久久v久久| av.在线天堂| 免费av中文字幕在线| 久久久久国产精品人妻一区二区| 夜夜爽夜夜爽视频| 欧美激情极品国产一区二区三区 | 免费播放大片免费观看视频在线观看| 能在线免费看毛片的网站| 久久久久久久久久久丰满| 熟女电影av网| 国产男女内射视频| 我要看黄色一级片免费的| 国产亚洲精品第一综合不卡 | 国产熟女欧美一区二区| 极品人妻少妇av视频| 一区二区三区免费毛片| av在线老鸭窝| 美女脱内裤让男人舔精品视频| 日韩制服骚丝袜av| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 女性生殖器流出的白浆| 国产一区二区在线观看日韩| 综合色丁香网| 亚洲国产成人一精品久久久| 91精品一卡2卡3卡4卡| 国产精品偷伦视频观看了| 观看美女的网站| 欧美日韩亚洲高清精品| 精品少妇黑人巨大在线播放| 大香蕉久久成人网| 18禁在线播放成人免费| 久久精品夜色国产| 男女无遮挡免费网站观看| 日本黄大片高清| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品亚洲一区二区| 97超碰精品成人国产| 成人手机av| 91久久精品国产一区二区成人| 十分钟在线观看高清视频www| av卡一久久| 亚洲精品国产av蜜桃| 国产精品一区二区三区四区免费观看| 最新中文字幕久久久久| 一本久久精品| 亚洲人成网站在线观看播放| 交换朋友夫妻互换小说| 一级毛片电影观看| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 欧美另类一区| 如何舔出高潮| 国产成人精品在线电影| 中文精品一卡2卡3卡4更新| 亚洲综合精品二区| 国产免费又黄又爽又色| 国产精品偷伦视频观看了| 中文字幕最新亚洲高清| a 毛片基地| 精品少妇黑人巨大在线播放| 日本wwww免费看| 黄色毛片三级朝国网站| av黄色大香蕉| 看十八女毛片水多多多| 亚洲国产精品专区欧美| av国产久精品久网站免费入址| 亚洲少妇的诱惑av| 亚洲精品亚洲一区二区| 亚洲成人手机| 秋霞伦理黄片| 国产黄频视频在线观看| 色哟哟·www| 国产伦精品一区二区三区视频9| 人人妻人人添人人爽欧美一区卜| 国产69精品久久久久777片| 黄色一级大片看看| 看非洲黑人一级黄片| 热re99久久国产66热| 日本91视频免费播放| 国产黄色免费在线视频| 一二三四中文在线观看免费高清| 久久久久久久久久久丰满| 99国产综合亚洲精品| 黑人猛操日本美女一级片| 内地一区二区视频在线| 久久久亚洲精品成人影院| 男男h啪啪无遮挡| 久久久精品免费免费高清| 26uuu在线亚洲综合色| 全区人妻精品视频| av福利片在线| 最近手机中文字幕大全| 亚洲精华国产精华液的使用体验| 国产欧美日韩综合在线一区二区| 好男人视频免费观看在线| 国产又色又爽无遮挡免| 一本色道久久久久久精品综合| 久热久热在线精品观看| 美女大奶头黄色视频| 午夜91福利影院| 国产精品99久久久久久久久| 一边亲一边摸免费视频| 午夜精品国产一区二区电影| 99精国产麻豆久久婷婷| 国产成人av激情在线播放 | 欧美人与善性xxx| 国产男女内射视频| 飞空精品影院首页| 国产成人精品无人区| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三区在线 | 日本黄色片子视频| 亚洲欧美一区二区三区黑人 | 国产 精品1| 欧美日本中文国产一区发布| 国产伦精品一区二区三区视频9| 人妻系列 视频| 免费高清在线观看日韩| 观看美女的网站| 精品亚洲成国产av| 制服丝袜香蕉在线| 久久精品久久精品一区二区三区| 久久久久久久国产电影| av视频免费观看在线观看| 精品国产乱码久久久久久小说| 亚洲欧美日韩另类电影网站| 国产探花极品一区二区| 色吧在线观看| 啦啦啦啦在线视频资源| 满18在线观看网站| 午夜老司机福利剧场| 欧美人与善性xxx| 亚洲欧美成人综合另类久久久| 国产精品熟女久久久久浪| 欧美+日韩+精品| 色婷婷av一区二区三区视频| 一本一本综合久久| 久久久久久久久久成人| 91久久精品国产一区二区三区| 一区二区日韩欧美中文字幕 | 校园人妻丝袜中文字幕| 人妻制服诱惑在线中文字幕| 视频中文字幕在线观看| 国产欧美亚洲国产| 91精品国产国语对白视频| 黄色一级大片看看| 亚洲成人手机| 免费高清在线观看日韩| 一本大道久久a久久精品| 九九在线视频观看精品| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在| 性色avwww在线观看| 99国产综合亚洲精品| 日韩欧美精品免费久久| 免费观看av网站的网址| 亚洲欧美中文字幕日韩二区| 一级,二级,三级黄色视频| 午夜激情av网站| 久久免费观看电影| 久久99热6这里只有精品| 日产精品乱码卡一卡2卡三| 一级黄片播放器| 国产极品天堂在线| 亚洲精品中文字幕在线视频| 少妇丰满av| 18禁动态无遮挡网站| 欧美bdsm另类| 精品人妻一区二区三区麻豆| 精品午夜福利在线看| 中文字幕久久专区| 97在线视频观看| 亚洲人成网站在线观看播放| 丰满乱子伦码专区| 伦精品一区二区三区| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 欧美最新免费一区二区三区| 午夜福利影视在线免费观看| 久久99一区二区三区| 下体分泌物呈黄色| 欧美精品人与动牲交sv欧美| 欧美xxxx性猛交bbbb| 最新的欧美精品一区二区| 99热全是精品| 欧美人与性动交α欧美精品济南到 | 日本色播在线视频| 蜜桃久久精品国产亚洲av| 亚洲国产av新网站| 在线观看一区二区三区激情| 色哟哟·www| 国产又色又爽无遮挡免| 人人妻人人添人人爽欧美一区卜| 看十八女毛片水多多多| 高清欧美精品videossex| 三级国产精品欧美在线观看| 久久久久国产精品人妻一区二区| 日本av免费视频播放| 特大巨黑吊av在线直播| 国产成人免费观看mmmm| 成年女人在线观看亚洲视频| av天堂久久9| 99re6热这里在线精品视频| 天美传媒精品一区二区| 国产免费现黄频在线看| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 在线免费观看不下载黄p国产| 亚洲av国产av综合av卡| 嘟嘟电影网在线观看| 亚洲av成人精品一二三区| 国产亚洲av片在线观看秒播厂| 日韩中文字幕视频在线看片| 精品人妻在线不人妻| 欧美性感艳星| 伦理电影大哥的女人| 国语对白做爰xxxⅹ性视频网站| 在线看a的网站| 久久精品夜色国产| 婷婷色综合大香蕉| 久久久国产欧美日韩av| 国国产精品蜜臀av免费| 国产探花极品一区二区| 欧美日韩国产mv在线观看视频| 免费观看av网站的网址| 亚洲五月色婷婷综合| 国产 一区精品| 久久久久久久国产电影| av又黄又爽大尺度在线免费看| 80岁老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 亚洲经典国产精华液单| 老司机影院成人| 日韩av不卡免费在线播放| 韩国高清视频一区二区三区| 亚洲怡红院男人天堂| 国产一区有黄有色的免费视频| 精品久久久久久久久av| 欧美激情 高清一区二区三区| 亚洲精品av麻豆狂野| 国产av码专区亚洲av| 曰老女人黄片| av在线观看视频网站免费| 成人二区视频| 色吧在线观看| av视频免费观看在线观看| 青青草视频在线视频观看| 亚洲成色77777| 国产老妇伦熟女老妇高清| 夫妻性生交免费视频一级片| 人妻人人澡人人爽人人| 日韩av在线免费看完整版不卡| 蜜桃国产av成人99| 日本wwww免费看| 日韩视频在线欧美| 人人澡人人妻人| .国产精品久久| 亚洲国产色片| 亚洲色图 男人天堂 中文字幕 | av专区在线播放| 成人漫画全彩无遮挡| 成人亚洲精品一区在线观看| 美女国产高潮福利片在线看| 亚洲色图 男人天堂 中文字幕 | 久久久欧美国产精品| 校园人妻丝袜中文字幕| 欧美三级亚洲精品| 韩国高清视频一区二区三区| 国产成人91sexporn| 日韩精品免费视频一区二区三区 | 热re99久久国产66热| 一级毛片黄色毛片免费观看视频| 久久精品国产亚洲网站| 极品人妻少妇av视频| av专区在线播放| 久久99热这里只频精品6学生| 久久久久久久久久久免费av| 久久久久精品性色| 欧美人与性动交α欧美精品济南到 | 免费不卡的大黄色大毛片视频在线观看| 男女无遮挡免费网站观看| 综合色丁香网| 狠狠婷婷综合久久久久久88av| 久久人人爽人人片av| 亚洲欧美成人综合另类久久久| 美女中出高潮动态图| 人人妻人人添人人爽欧美一区卜| 欧美日韩一区二区视频在线观看视频在线| 韩国av在线不卡| 中国美白少妇内射xxxbb| 日日爽夜夜爽网站| 国产女主播在线喷水免费视频网站| 超碰97精品在线观看| 99久久中文字幕三级久久日本| 国产成人午夜福利电影在线观看| 丝袜美足系列| a级毛片在线看网站| 午夜精品国产一区二区电影| 亚洲内射少妇av| 国产在线视频一区二区| 老司机亚洲免费影院| 国产一区二区三区av在线| 熟妇人妻不卡中文字幕| √禁漫天堂资源中文www| 国产精品不卡视频一区二区| 免费大片18禁| 国产探花极品一区二区| 一本一本综合久久| av播播在线观看一区| 丝袜在线中文字幕| 最黄视频免费看| 少妇精品久久久久久久| 丰满迷人的少妇在线观看| 人体艺术视频欧美日本| 久久久精品区二区三区| 免费不卡的大黄色大毛片视频在线观看| 热99久久久久精品小说推荐| 久久青草综合色| 满18在线观看网站| 亚洲国产成人一精品久久久| 精品久久国产蜜桃| 精品人妻熟女毛片av久久网站| av不卡在线播放| 男人操女人黄网站| 男女无遮挡免费网站观看| 久久97久久精品| 天天操日日干夜夜撸| 中文字幕免费在线视频6| 一级a做视频免费观看| 国产成人精品福利久久| 狂野欧美激情性bbbbbb| 日本vs欧美在线观看视频| 熟女av电影| av电影中文网址| 欧美精品一区二区免费开放| 精品久久久噜噜| av在线播放精品| 天天操日日干夜夜撸| 久久久久久人妻| 亚洲欧洲日产国产| 欧美最新免费一区二区三区| 三级国产精品片| 97超视频在线观看视频| 欧美日本中文国产一区发布| 国产精品一区www在线观看| 搡女人真爽免费视频火全软件| 秋霞伦理黄片| 99九九在线精品视频| 只有这里有精品99| 在线观看一区二区三区激情| 亚洲欧美日韩卡通动漫| 91午夜精品亚洲一区二区三区| 国产乱人偷精品视频| 一级二级三级毛片免费看| 日本-黄色视频高清免费观看| 欧美亚洲日本最大视频资源| 国产精品免费大片| 亚洲成色77777| 麻豆精品久久久久久蜜桃| 亚洲一级一片aⅴ在线观看| 十八禁网站网址无遮挡| 日韩亚洲欧美综合| 人人妻人人澡人人看| 考比视频在线观看| 午夜福利影视在线免费观看| 国产熟女午夜一区二区三区 | 久久97久久精品| 日韩av不卡免费在线播放| 中文字幕人妻熟人妻熟丝袜美| 观看美女的网站| av网站免费在线观看视频| 精品亚洲乱码少妇综合久久| 天堂8中文在线网| 人妻夜夜爽99麻豆av| 蜜桃久久精品国产亚洲av| 中国国产av一级| 男女免费视频国产| 亚洲美女搞黄在线观看| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区黑人 | 蜜桃国产av成人99| 精品久久久久久久久av| 欧美日韩综合久久久久久| 国产一级毛片在线| 免费av中文字幕在线| 一级毛片黄色毛片免费观看视频| 欧美 日韩 精品 国产| 精品一区在线观看国产| 亚洲第一区二区三区不卡| 熟妇人妻不卡中文字幕| 99九九线精品视频在线观看视频| 国产免费一级a男人的天堂| 亚洲精品一区蜜桃| 9色porny在线观看| 亚洲av欧美aⅴ国产| 高清在线视频一区二区三区| 国产黄片视频在线免费观看| 亚洲精品视频女| 国产免费又黄又爽又色| 国产免费一区二区三区四区乱码|