• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Cd(II) Coordination Polymers Based on a Flexible Tricarboxylate Ligand: Syntheses, Structures, and Photoluminescence and Catalytic Properties①

    2019-01-07 01:36:52ZHUEnWeiSUNJunJieJIAYuQIAOYuZHUYuCHEGungBo
    結(jié)構(gòu)化學(xué) 2018年12期

    ZHU En-Wei SUN Jun-JieJIA Yu QIAO Yu ZHU Yu CHE Gung-Bo

    ?

    Two Cd(II) Coordination Polymers Based on a Flexible Tricarboxylate Ligand: Syntheses, Structures, and Photoluminescence and Catalytic Properties①

    ZHU En-WeiaSUN Jun-JiebJIA YuaQIAO YuaZHU Yub②CHE Guang-Boa②

    a(()130103)b(225300)

    Studies on the synthesis and design of coordination polymers (CPs) with flexible ligands are of great interest owing to their dynamic structures and promising applications. The title coordination polymers, {[Cd·(HTTTA)·(phen)]·2H2O}n(1) and [Cd·(HTTTA)·(phen)]n(2) (H3TTTA = 2,2?,2??-[1,3,5-triazine-2,4,6-triyltris(thio)] tris-acetic acid, phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, IR, powder XRD and single-crystal X-ray diffraction. Complex 1consists of one CdIIion, one HTTTA2-ligand and one phen co-ligand. The Cd(II) metal clusters were bridged by the tridentate HTTTA2-ligands into infinite 1D chains, which are further connected into the 3D architecture by abundant hydrogen bonds. In 2, three carboxyl groups of HTTTA2-ligand show different coordination directions because of the C–S–C flexible bond angle, which leads to different 1D chains of 2. The strong-stacking interaction and four C–H···O hydrogen bonds connect the 1D chains into a 3D framework. The solid-state photoluminescence and catalytic properties were studied as well.

    crystal structure, H3TTTA, cadmium (II) complex, photoluminescence, catalytic property;

    1 INTRODUCTION

    Coordination Polymers (CPs) with well-defined supramolecular architectures have been one of the most attractive increasing targets owing to the remarkable potential applications such as gas adsorption and separation, chemical sensing, biome- dical imaging, magnetic and catalytic materials and so on[1-6]. In the construction of CPs, metal ions ‘joints? connect organic ‘struts? to generate multi- dimensional metal-organic structures through the coordinated bonds and supramolecular interac- tions[7-9]. Compared to the rigid ligands which constructed the predicting frameworks directly and predictably, CPs based on flexible and multi-dentate ligands are quite challenging as they can adopt multiple conformations and self-adaption with rota- tions of ligands in self-assembly[10-13]. Though it is difficult to predict and control the frameworks, flexible CPs can bring more opportunities to explore unpredictable chiral, helical frameworks and high-nuclear networks for understanding and controlling the internal factor on crystallization[14]. H3TTTA (2, 2?,2??-[1,3,5-triazine-2,4,6-triyltris-(thio)]tris-acetic acid) owns a planar triazine ring with three metal-compounding mercaptodiacetate flexible arms, which leads to abundant frameworks by self-adapted to meet the geometrical require- ments and the different protonations of carboxyl groups. Besides, free sulfur and nitrogen atoms in CPs will act as both electron donors or acceptors of interesting hydrogen bonds and the free functional organic sites (FOSs) which should be an important strategy for metal ions or molecules sorption and post-synthetizations of CPs[15, 16]. Several coordina- tion polymers related to H3TTTA ligand have been reported, displaying versatile coordination modes and architectures along with magnetic, fluorescent and photocatalytic properties[17-20]. Recently, we have also explored CPs for chemical sensor and heterogeneous catalyst with this flexible and func- tional tripodal ligand H3TTTA[21-23].

    2 EXPERIMENTAL

    The ligand was prepared according to the previous procedure[24]. All other reagents were commercially available and used as purchased. The elemental analyses were carried out with a Perkin-Elmer 240 elemental analyzer. The FT-IR spectra were recor-ded from KBr pellets in the range of 400~4000 cm-1on a Nicolet spectrometer. Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku D/max2500VB3+/PC diffractometer equipped with Cu-radiation (= 1.5406 ?).The fluorescence spectra were performed on a QuantaMaster TM 40 &TimeMaster spectrophotometer with slit width of 2 nm.

    2. 1 Synthesis of {[Cd·(HTTTA)·- (phen)]·2H2O}n (1)

    A mixture containing H3TTTA (0.0087 g, 0.025 mmol), phen (0.0045 g, 0.0025 mmol), Cd(NO3)2·6H2O (0.0030 g, 0.0125 mmol) and 1 M NaOH (40 μL) in 5 mL water was sealed in a Teflon-lined autoclave and heated to 85oC under autogenous pressure for three days and then allowed to cool to room temperature. After filtration, the colorless prism crystals were washed with water and dried in air. Anal. Calcd. for C21H19CdN5O8S3(M= 678.00): C, 37.20; H, 2.82; N, 10.33%. Found: C, 36.99; H, 2.93; N, 10.07%. IR (cm-1): 3419(w), 3068(w), 2990(w), 2913(w), 1658(m), 1587(s), 1521(m), 1472(s), 1384(s), 1266(s), 1218(s), 1099(w), 937(w), 838(m), 778(w), 729(m), 690(m), 640(w).

    2. 2 Synthesis of [Cd·(HTTTA)·(phen)]n (2)

    A mixture containing H3TTTA (0.0087 g, 0.025 mmol), phen (0.0045 g, 0.0025 mmol), Cd(NO3)2·6H2O (0.0030 g, 0.0125 mmol) and 1 M NaOH (400 μL) in 5 mL water was sealed in a Teflon-lined autoclave and heated to 85oC under autogenous pressure for three days and then allowed to cool to room temperature. After filtration, the colorless block crystals were washed with water and dried in air. Anal. Calcd. for C21H15CdN5O6S3(M= 641.96): C, 39.29; H, 2.36; N, 10.91%. Found: C, 38.98; H, 2.43; N, 11.07%. IR (cm-1): 3068(w), 2990(w), 2913(w), 1658(m), 1587(s), 1521(m), 1472(s), 1384(s), 1266(s), 1218(s), 1099(w), 937(w), 838(m), 778(w), 729(m), 690(m), 640(w).

    2. 3 Structure determination

    For X-ray diffraction analyses,single crystals of dimensions 0.28 × 0.25 × 0.20 mm3for 1 and 0.26 × 0.24 × 0.22 mm3for 2 were mounted on a glass rod. The crystal data were collected with a Rigaku Saturn 724+ CCD area detector systemusing gra- phite-monochromated Moα radiation (= 0.071073 nm) at 293 K. The numbers of observed and unique reflections are 10538 and 3819 (int= 0.0202) for 1 and 20183 and 3823 (int= 0.1295) for 2. Absorption corrections were applied using the multi-scan technique[25]. The structure was solved by direct methods of SHELXS-97[26]and refined by full-matrix least-squares methods on2using the SHELXL-97 program package[27]. The hydrogen atoms were generated geometrically and refined isotropically using the riding model. Intensity data were corrected for factors and empirical absorption. Crystal data, as well as details of data collection and refinement, for the complexes are summarized in Table 1, and selected bond lengths and bond angles are listed in Table S1-S2.

    Table 1. Crystal Data and Structure Refinement for Complexes 1 and 2

    3 RESULTS AND DISCUSSION

    3. 1 Structural description

    The asymmetric unit of complex 1 consists of one CdIIion, one HTTTA2-ligand and one phen co-ligand (Fig. 1). Each six-coordinated Cd(II) ion is bound by two N atoms from one phen molecule, four oxygen atoms from two HTTTA2-ligands and one H2O molecule, adopting a distorted octahedral geometry. The axial position is occupied by O(2) and O(3) atoms with Cd(1)–O(2) and Cd(1)–O(3) bond lengths of 2.2886(14) and 2.5911(15) ?, while the equatorial plane is formed by two nitrogen atoms (N(1), N(3)) and two oxygen atoms (O(1), O(5) withbond distances Cd(1)–N(1) = 2.3478(16) ?, Cd(1)–N(2) = 2.3264(18) ?, Cd(1)–O(1) = 2.2520(14) ? and Cd(1)–O(5) = 2.2392(14) ?. The bond length of Cd(1)–O(3) is longer than the common Cd–O bond lengths, indicating the weaker interactions between CdIIions and the O atoms from unprotonated carboxyl groups. Two carboxyl groups of H3TTTA are deprotonated and further connect the metal clusters with2-1:1and1coordination modes, respectively. H3TTTA is more flexible because of the adjustable directions (one is coplanar and the other two are verticalplanar of the triazine rings) and angles of the -S–CH2- groups. As shown in Fig. 2, the metal clusters with two CdIIions were bridged by the tridentate HTTTA2–ligands into 1D infinite chains. Strong O–H···O hydrogen bonds (O(4)–H(4)···O(15), O(13)–H(131)···O(2), O(13)–H(132)···O(6), O(15)–H(151)···O(13), O(15)–H(152)···O(5)) existed in the structure between water molecules and coordinated carboxyl groups (Fig. S1). Besides the classical hydrogen bonds, weak hydrogen bonds such as C–H···O (C(1)–H(1)···O(5), C(3)–H(3)···O(13) and C(31)–H(31B)···O(3)) and C–H···S(C(8)–H(8)···S(3)) help to build a 3D architecture (Fig. 3).

    Fig. 1. ORTEP representation of the symmetry expanded local structure of complex 1. Displacement ellipsoids are drawn at 30% probability level

    Fig. 2. View of the 1D metal chain connected by chelating the carboxylate group

    Fig. 3. View of the 3D supramolecular network showing hydrogen bonds (dashed lines)

    Complex 2crystallizes in the orthorhombic space group. Theasymmetric unit of 2consists of one Cd(II) ion, one HTTTA2-and phen ligands (Fig. 4). The six-coordinated Cd(II) center issurrounded by two nitrogen atoms from one phen ligand (Cd–N = 2.303(10) and 2.316(11)?), and four carboxylic oxygen atoms from three HTTTA2-ligands (Cd–O = 2.188(9)~2.519(9) ?), forming adistorted CdN2O4octahedral geometry. The bond length between Cd(1) and O(1) is 2.754 ?, and we did not assign it as coordination bond which is longer than others in the structure, indicating weak interactions between Cd(1) and O(1). Each HTTTA2–ligand connects to threeCd(II) ions by the three carboxyl groups, showing two coordination modes of2-1:1and2-2:1. Three carboxyl groups of the HTTTA2–ligand which connect the Cd(II) ions into a 1D infinite chain show different spatial orientations, one on the plane of the ligand core and the other two perpendicular with the opposite directions (Fig. 5). Auxiliary phen ligand here not only acts as a coordination donor to finish the seven-coordinated environment, but also contributes to the 2D network by strongstacking interactions between Cg1 rings with a centroid···centroid distance of 3.5811 ? (Cg1i= C(13)~C(16), C(20),C(21); (i= –,, 3/2–)) along with the intermolecular C(15)– H(15)···O(5) hydrogen bond (Fig. 6). Furthermore, the 2D network is then connected into a 3D frame- work by the other three intermolecular C–H···O hydrogen bonds (C(4)–H(4B)···O(6), C(8)– H(8B)···O(2) and C(19)–H(19)···O(3) (Fig. S2).

    Fig. 4. ORTEP representation of the symmetry expanded local structure of complex 2. Displacement ellipsoids are drawn at 30% probability level

    Fig. 5. View of the 1D metal chain connected by chelating the carboxylate group

    Fig. 6. View of the 2D network connected by hydrogen bonds and π-π stacking interactions

    3. 2 PXRD pattern

    The experimental PXRD patterns of complexes 1 and 2were measured at room temperature (Figs. 7 and 8). The peak positions of the experimental and simulated XRPD patterns are in good agreement, which demonstrates that the complex was obtained successfully as pure crystalline phase.

    3. 3 FT-IR spectrum

    In the FT-IR spectrum of 1 (Fig. 9), the wide band at 3419 cm-1can be assigned to the O–H group of solvent water molecules. Strong absorption observed at 1587 cm-1corresponds to the vibration of O–H group of coordination water molecules. The asymmetric stretching vibrationsas(COO?) are observed at about 1658 cm?1and symmetric stretching vibrationss(COO?) at 1384 cm?1. The stretching vibration of C–S bond is at 719 cm-1. The peak of C=N bonds in phen molecules is shown at 1472 cm-1and the stretching vibration of C=C bonds is at 1658 cm-1. The shifts of the two peaks in phen molecule indicate the coordination effect between the metal centers and phen molecules. The difference between the two complexes is the wide bands at 3419 cm-1because no H2O solvent mole- cule appears in complex 2.

    Fig. 7. PXRD patterns of complex 1 (black: simulated; blue: experimental)

    Fig. 8. PXRD patterns of complex 2 (black: simulated; blue: experimental)

    Fig. 9. FT-IR spectra of complexes 1 and 2

    3. 5 Catalytic activity

    The catalytic activities of complexes 1 and 2 in the cyanosilylation of benzaldehyde and aceto- phenone have been investigated in sonication without solvent (Scheme 1). The results are summa- ri-zed in Table 2 with complex 1, a higher conver- sion of 88.13 % of benzaldehyde is reached in 1 h reaction time while 61.29 % conversion of aceto- phenone. Meanwhile, 2 can only catalyze benzal- dehyde and acetophenone with conversions of 84.15% and 55.66%, respectively. The catalytic yields of acetophenone are less than that of ben- zaldehyde because of the less active substrates. The possible catalytic mechanism which happened in the coordinated metal centers for the cyanosilylation reaction in the case of complexes 1 and 2 has been reasonably shown in Scheme 2.

    Fig. 10. Emission spectra of H3TTTA and complexes in solid sample

    Scheme 1. Cyanosilylation reaction in the presence of complexes 1 and 2

    Table 2. Catalytic Activities for Two Complexes in 2 h ( yielda and TOFb)

    aYield determined by GC.bTOF = (yield)/(mol% cat)/(t)

    Scheme 2. Possible catalytic mechanism for the cyanosilylation reaction with 1 and 2

    4 CONCLUSION

    Two complexes based on flexible ligand H3TTTA have been constructed successfully. The different directions of the carboxyl groups in H3TTTA make the 1D chains of 1 and 2 different. Both the 3D frameworks are connected by supramolecular inter- actions such as hydrogen bonds andstacking interactions. Emissions of both complexesare blue shifted and enhanced because of charge transfer between the metal and ligands,10electronic confi- vguration of Cd(II).1 and 2 show medium catalytic activities in the cyanosilylation of benzaldehyde and acetophenone.

    (1) Trickett, C. A.; Helal, A.; Al?Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. This review details the structural and chemical features of state-of-the-art metal-organic frameworks for their application in the carbon cycle of capturing, purifying and transforming CO2into valuable products.2017, 2, 17045.

    (2) Guo, Z.; Song, X.; Lei, H.; Wang, H.; Su, S.; Xu, H.; Qian, G.; Zhang, H.; Chen, B. A ketone functionalized luminescent terbium metal-organic framework for sensing of small molecules2015, 51, 376–379.

    (3) Zhu, Y.; Wang, Y. M.; Zhao, S. Y.; Liu, P.; Wei, C.; Wu, Y. L.; Xia, C. K.;Xie. J. M. Three N-H functionalized metal-organic frameworks with selective CO2uptake, dye capture, and catalysis.. 2014, 53, 7692–7699.

    (4) Xu, M.; Yuan, S.; Chen, X. Y.; Chang, Y. J.; Day, G. S.; Gu, Z. Y.; Zhou, H. C.Two-dimensional metal-organic framework nanosheets as an enzyme Inhibitor: modulation of the-chymotrypsin activity.. 2017, 139, 8312–8319.

    (5) Yang, J.; Trickett, C. A.; Alahmadi, S. B.; Alshammari, A.; Yaghi, O. M.Calcium l-lactate frameworks as naturally degradable carriers for pesticides..2017, 139, 8118–8121.

    (6) Sawano, T.; Lin, Z.; Boures, D.; An, B.; Wang, C.; Lin, W.Metal-organic frameworks stabilize mono(phosphine)-metal complexes for broad-scope catalytic reactions.2016, 138, 9783–9786.

    (7) O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets.2008, 41, 1782–1789.

    (8) Rao, K. P.; Higuchi, M.; Sumida, K.; Furukawa, S.; Duan, J. G.; Kitagawa, S. Design of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unit.. 2014, 53, 8225–8230.

    (9) Zhang, L.; Zou, C.; Zhao, M.; Jiang, K.; Lin, R. B.; He, Y. B.; Wu, C. D.; Cui, Y. Y.; Chen, B. L.; Qian, G. D. Doubly interpenetrated metal-organic framework for highly selective C2H2/CH4and C2H2/CO2separation at room temperature.. 2016, 16, 7194–7197.

    (10) Zhang, S. Q.; Jiang, F. L.; Wu, M. Y.; Ma, J.; Bu, Y.; Hong, M. C.Assembly of discrete one-, two-, and three-dimensional Zn(II) complexes containing semirigid V-shaped tricarboxylate ligands.. 2012, 12, 1452–1463.

    (11) Zhu, Y.; Wang, Y. M.; Liu, P.; Xia, C. K.; Wu, Y. L.; Lu, X. Q.; Xie, J. M. Two chelating-amino-functionalized lanthanide metal-organic frameworks for adsorption and catalysis.. 2015, 44, 1955–1961.

    (12) Gomez, G. E.; Brusau, E. V.; Kaczmarek, A. M.; Mellot-Draznieks, C.; Sacanell, J.; Rousse, G.; Deun, R. V.; Sanchez, C. Narda, G. E.; Soler Illia, G. J. A. A.Flexible ligand based lanthanide three-dimensional metal-organic frameworks with tunable solid-state photoluminescence and OH-solvent-sensing properties.. 2017, 17, 2321–2331.

    (13) Guo, Z. J.; Yu, J. M.; Zhang, Y. Z.; Zhang, J.; Chen, Y.; Wu, Y. F.; Xie, L. H.; Li, J. R. Water-stable In(III)-based metal-organic frameworks with rod-shaped secondary building units: single-crystal to single-crystal transformation and selective sorption of C2H2over CO2and CH4.2017, 56, 2188–2197.

    (14) Liu, C. L.; Huang, Q. Y.; Meng, X. R. A one-dimensional zinc(II) coordination polymer with a three-dimensional supramolecular architecture incorporating 1-[(1H-benzimidazol-2-yl)meth-yl]-1H-tetra-zole and adipate.. 2016, C72, 1002–1006.

    (15) Zhang, Y. B.; Furukkawa, H.; Zhang, Y. B.; Yaghi, O. M.High methane storage working capacity in metal-organic frameworks with acrylate links.. 2016, 138, 10244–10251.

    (16) Zhang, J. W.; Jiang, Y.; Xie, Y. R.; Chu, J.; Liu, B. Q. Syntheses, structures, photoluminescence, and magnetism of a series of discrete heavy lanthanide complexes based on a tricarboxylic acid.2016, 453, 257–262.

    (17) Wang, S. N.; Sun, R.; Wang, X. S.; Li, Y. Z.; Pan, Y.; Bai, J. F.; Scheer, M.; You, X. Z. Versatile lanthanide coordination assemblies due to the synergistic effect of lanthanide contraction and flexibility of a flexible tricarboxylate ligand.. 2007, 9, 1051–1061.

    (18) Zhu, Y.; Zhu, M.; Liu, P.; Xia, L.; Wu, Y. L.; Xie, J. M. Two Gd(III) coordination polymers based on a flexible tricarboxylate: syntheses, structures, luminescence and catalytic properties.. 2017, 1130, 26–32.

    (19) Zhu, Y.; Wang, Y. M.; Xu, J.; Liu, P.; Weththasinha, H. A. B. M. D.; Xia, L.; Wu, Y. L.; Xie, J. M.Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate..2014, 219, 259–264.

    (20) Chi, C. J.; Peng, Y. Q.; Zeng, S. Y.; Sun, D, Z. Poly[[(1,10-phenanthroline){3-2,2?,2??-[1,3,5-triazine-2,4,6-triyltris(sulfane-diyl)]tri-acetato}-cadmium]0.42-hydrate].2011, E67, m826–m827.

    (21) Wang, Y. M.; Zhu, Y.; Xu, J.; Wei, C.; Liu, P.; Wu, Y. L.; Xie, J. M. Structures, photoluminescence and heterogeneous catalysis of five metal complexes constructed by a flexible tricarboxylate ligand.2014, 81, 32–38.

    (22) Zhu, Y.; Zhu, M.; Xia, L.; Wu, Y. L.; Hua, H.; Xie, J. M. Lanthanide metal-organic frameworks with six-coordinated Ln(III) ions and free functional organic sites for adsorptions and extensive catalytic activities.. 2016, 6, 29728

    (23) Saha, R.; Joarder, B.; Roy, A. S.; Islam, S. M.; Kumar, S. Simultaneous presence of both open metal sites and free functional organic sites in a noncentrosymmetric dynamic metal-organic framework with bimodal catalytic and sensing activities.2013, 19, 16607–16614.

    (24) Li, B. Y.; Chrzanowski, M.; Zhang, Y. M.;Ma, S. Q. Applications of metal-organic frameworks featuring multi-functional sites.2016, 307, 106–129.

    (25) Higashi, T.. Rigaku Corporation, Tokyo, Japan 1995.

    (26) Sheldrick, G. M.. University of Goettingen, Germany 1997.

    (27) Sheldrick, G. M.. University of Goettingen, Germany 1997.

    (28) Liyanage, P. S.; de Silva, R. M. de Silva, K. M. N. Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations.2003, 639, 195–201.

    (29) Aliprandi, A.; Genovese, D.; Mauro, M.; Cola, L. D. Recent advances in phosphorescent Pt(II) complexes featuring metallophilic interactions: properties and applications.2015,44, 1152–1169.

    22 March 2018;

    10 July 2018 (CCDC 1565078 for 1 and 1830616 for 2)

    ① This project was supported by the National Natural Science Foundation of China (51603086), Natural Science Research in Colleges and Universities in Jiangsu Province (17KJB150037), Science & Technology Development of Jilin Province (20160520131JH), Technology Support Program (Social Development) of Taizhou (TS201628), and Undergraduate Training Program for Innovation and Entrepreneurship (201612917021X)

    Zhu Yu, lecturer, majoring in coordination chemistry. E-mail: zhuyu0905@sohu.com Che Guang-Bo, professor, majoring in coordination chemistry. E-mail: guangboche@jlnu.edu.cn

    10.14102/j.cnki.0254-5861.2011-2014

    国产三级中文精品| 最近在线观看免费完整版| 亚洲国产看品久久| 亚洲自拍偷在线| 欧美又色又爽又黄视频| 我的老师免费观看完整版| 老司机深夜福利视频在线观看| 蜜桃久久精品国产亚洲av| 精品一区二区三区四区五区乱码| 午夜精品久久久久久毛片777| 90打野战视频偷拍视频| 日本精品一区二区三区蜜桃| 午夜福利18| 村上凉子中文字幕在线| 亚洲乱码一区二区免费版| 亚洲精品在线美女| 少妇的逼水好多| 成人三级做爰电影| 成年版毛片免费区| 色噜噜av男人的天堂激情| 国产精品爽爽va在线观看网站| 男人和女人高潮做爰伦理| 久久午夜综合久久蜜桃| 成年女人看的毛片在线观看| 免费电影在线观看免费观看| 丝袜人妻中文字幕| 亚洲av成人精品一区久久| 黄色成人免费大全| 国产精品av视频在线免费观看| 国产高清有码在线观看视频| 亚洲精品456在线播放app | 99国产极品粉嫩在线观看| 麻豆国产97在线/欧美| 欧美成狂野欧美在线观看| 级片在线观看| 亚洲一区二区三区色噜噜| 亚洲美女视频黄频| 国模一区二区三区四区视频 | 日韩欧美三级三区| 久9热在线精品视频| 男女那种视频在线观看| 身体一侧抽搐| 国产一区二区在线av高清观看| tocl精华| 麻豆一二三区av精品| 国产一区二区三区视频了| 国产一区在线观看成人免费| 国产欧美日韩精品亚洲av| 欧美成人一区二区免费高清观看 | 麻豆久久精品国产亚洲av| 亚洲av免费在线观看| 欧美xxxx黑人xx丫x性爽| 蜜桃久久精品国产亚洲av| 成人国产综合亚洲| 国产精品一及| 久9热在线精品视频| 国产探花在线观看一区二区| 91字幕亚洲| 国产成人福利小说| 最近在线观看免费完整版| 日韩大尺度精品在线看网址| 国产精品影院久久| 国产成人精品久久二区二区91| 中出人妻视频一区二区| 久久国产精品影院| 97超视频在线观看视频| 国产成人aa在线观看| 99热精品在线国产| 欧美日本亚洲视频在线播放| cao死你这个sao货| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区视频在线观看免费| 亚洲,欧美精品.| 久久性视频一级片| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 亚洲欧美一区二区三区黑人| 国产一区二区激情短视频| 岛国视频午夜一区免费看| 俺也久久电影网| 亚洲欧洲精品一区二区精品久久久| 一级黄色大片毛片| 国产三级黄色录像| 国产精品亚洲av一区麻豆| 国产伦在线观看视频一区| 国产三级在线视频| 欧美黑人巨大hd| 色尼玛亚洲综合影院| 日本成人三级电影网站| 国产午夜精品久久久久久| 一进一出抽搐动态| 真人做人爱边吃奶动态| 亚洲国产精品999在线| 最近最新中文字幕大全免费视频| 成人18禁在线播放| 1000部很黄的大片| 一个人免费在线观看的高清视频| 特大巨黑吊av在线直播| 中文字幕熟女人妻在线| 色综合欧美亚洲国产小说| 少妇熟女aⅴ在线视频| avwww免费| 少妇裸体淫交视频免费看高清| 午夜激情福利司机影院| 色老头精品视频在线观看| 国产主播在线观看一区二区| 亚洲五月婷婷丁香| 亚洲av成人一区二区三| 少妇丰满av| 男女视频在线观看网站免费| 麻豆av在线久日| 久99久视频精品免费| 欧美国产日韩亚洲一区| 黄色日韩在线| 国产精品久久久av美女十八| 亚洲精品粉嫩美女一区| 久久久久久久精品吃奶| 免费在线观看成人毛片| 啦啦啦观看免费观看视频高清| 国产乱人伦免费视频| 每晚都被弄得嗷嗷叫到高潮| 一区福利在线观看| 日本a在线网址| www国产在线视频色| 亚洲国产日韩欧美精品在线观看 | 国产精品综合久久久久久久免费| 亚洲国产精品sss在线观看| 波多野结衣高清作品| 亚洲七黄色美女视频| a在线观看视频网站| av女优亚洲男人天堂 | 国产精品综合久久久久久久免费| 成人三级黄色视频| 国产精品av视频在线免费观看| 18禁国产床啪视频网站| 亚洲中文字幕一区二区三区有码在线看 | 久久精品国产99精品国产亚洲性色| 久久伊人香网站| xxx96com| 真人做人爱边吃奶动态| 脱女人内裤的视频| 亚洲自偷自拍图片 自拍| 老熟妇乱子伦视频在线观看| 欧美一区二区精品小视频在线| 18禁观看日本| 亚洲自拍偷在线| 91麻豆精品激情在线观看国产| 舔av片在线| 国产成人av教育| 久久热在线av| 人人妻人人澡欧美一区二区| 久久久久九九精品影院| 欧美高清成人免费视频www| 精华霜和精华液先用哪个| 中国美女看黄片| 日日夜夜操网爽| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久com| 一级毛片高清免费大全| 此物有八面人人有两片| 亚洲国产看品久久| 在线免费观看的www视频| 成年版毛片免费区| 18禁黄网站禁片免费观看直播| 国产精品日韩av在线免费观看| 精品欧美国产一区二区三| 久久热在线av| 久久久久久人人人人人| 黄片小视频在线播放| 亚洲七黄色美女视频| 国产日本99.免费观看| 亚洲 欧美一区二区三区| 欧美三级亚洲精品| 亚洲国产欧美人成| 久久久国产成人免费| 欧美国产日韩亚洲一区| 黑人巨大精品欧美一区二区mp4| 国产精品久久久人人做人人爽| 亚洲av电影在线进入| aaaaa片日本免费| 国产高清三级在线| 久久精品91蜜桃| 巨乳人妻的诱惑在线观看| 免费电影在线观看免费观看| 免费看十八禁软件| 人妻丰满熟妇av一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 久久国产乱子伦精品免费另类| 亚洲精品粉嫩美女一区| 禁无遮挡网站| 国产高清videossex| 午夜成年电影在线免费观看| 又黄又爽又免费观看的视频| www日本在线高清视频| 亚洲av五月六月丁香网| 午夜免费成人在线视频| 亚洲精品一区av在线观看| 亚洲精品美女久久久久99蜜臀| 欧美激情在线99| 成人无遮挡网站| 成年女人毛片免费观看观看9| 成人精品一区二区免费| 亚洲电影在线观看av| 欧美午夜高清在线| 中文字幕熟女人妻在线| 久久精品91无色码中文字幕| 精品日产1卡2卡| 国产精品亚洲美女久久久| 丁香欧美五月| 麻豆国产97在线/欧美| 午夜福利成人在线免费观看| 欧美+亚洲+日韩+国产| 欧美黑人巨大hd| 亚洲av中文字字幕乱码综合| 午夜视频精品福利| 亚洲精品色激情综合| 18禁裸乳无遮挡免费网站照片| 成人性生交大片免费视频hd| 欧美最黄视频在线播放免费| 免费看光身美女| 婷婷精品国产亚洲av在线| 精品国产美女av久久久久小说| 亚洲aⅴ乱码一区二区在线播放| 99精品久久久久人妻精品| 欧美3d第一页| 亚洲午夜理论影院| 国产三级中文精品| 国产三级在线视频| 免费看美女性在线毛片视频| 操出白浆在线播放| 9191精品国产免费久久| 男女午夜视频在线观看| 亚洲欧美一区二区三区黑人| 国产精品永久免费网站| 不卡一级毛片| 国产三级黄色录像| 亚洲国产欧美一区二区综合| 一区二区三区高清视频在线| 又黄又粗又硬又大视频| 成人特级黄色片久久久久久久| 草草在线视频免费看| 免费人成视频x8x8入口观看| 99热这里只有是精品50| 日本五十路高清| 一区二区三区激情视频| 99国产综合亚洲精品| 99久久综合精品五月天人人| 久久香蕉精品热| 99在线人妻在线中文字幕| 欧美乱妇无乱码| 看片在线看免费视频| 欧美日韩瑟瑟在线播放| 日韩欧美在线乱码| 精华霜和精华液先用哪个| 麻豆国产av国片精品| 可以在线观看毛片的网站| 免费看a级黄色片| 亚洲欧美一区二区三区黑人| 亚洲国产精品久久男人天堂| 国产伦精品一区二区三区四那| 欧美一区二区精品小视频在线| 国产精品九九99| 国产精品一区二区三区四区免费观看 | 亚洲七黄色美女视频| 国产真实乱freesex| 亚洲 欧美一区二区三区| 人妻夜夜爽99麻豆av| 视频区欧美日本亚洲| 无人区码免费观看不卡| 亚洲国产欧美网| 天天躁狠狠躁夜夜躁狠狠躁| 叶爱在线成人免费视频播放| www.精华液| 亚洲精品在线美女| 久久香蕉国产精品| 1024手机看黄色片| 一区二区三区激情视频| 在线观看午夜福利视频| 岛国在线观看网站| 久久中文字幕人妻熟女| netflix在线观看网站| 亚洲av成人av| 亚洲国产精品久久男人天堂| 午夜a级毛片| 性欧美人与动物交配| 又粗又爽又猛毛片免费看| 午夜免费激情av| 婷婷亚洲欧美| 国产成人精品久久二区二区91| 黑人操中国人逼视频| 亚洲精品美女久久av网站| 高清在线国产一区| 国产一区在线观看成人免费| 欧美一级毛片孕妇| 少妇人妻一区二区三区视频| 最新在线观看一区二区三区| 男人舔女人的私密视频| 麻豆成人午夜福利视频| 精品一区二区三区视频在线观看免费| 嫁个100分男人电影在线观看| 成人国产综合亚洲| 国产伦人伦偷精品视频| 91九色精品人成在线观看| 久久久水蜜桃国产精品网| 天堂影院成人在线观看| 久久这里只有精品中国| 国产精品亚洲av一区麻豆| 欧美+亚洲+日韩+国产| 亚洲欧美日韩高清专用| 999久久久精品免费观看国产| 最近最新免费中文字幕在线| 黄色日韩在线| 日本 欧美在线| 亚洲自偷自拍图片 自拍| 亚洲狠狠婷婷综合久久图片| 欧美高清成人免费视频www| АⅤ资源中文在线天堂| 国产探花在线观看一区二区| 长腿黑丝高跟| 精品国内亚洲2022精品成人| АⅤ资源中文在线天堂| 国产激情欧美一区二区| 波多野结衣高清作品| 观看免费一级毛片| 岛国视频午夜一区免费看| 亚洲欧洲精品一区二区精品久久久| 色噜噜av男人的天堂激情| 免费看日本二区| 亚洲 国产 在线| 精品欧美国产一区二区三| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看 | 亚洲欧美日韩无卡精品| 久久久国产成人精品二区| 精品人妻1区二区| 精品欧美国产一区二区三| 日本黄色视频三级网站网址| 又大又爽又粗| 夜夜看夜夜爽夜夜摸| 麻豆av在线久日| 亚洲色图av天堂| 亚洲av第一区精品v没综合| 成人永久免费在线观看视频| 极品教师在线免费播放| 国产精品亚洲美女久久久| 听说在线观看完整版免费高清| 99热精品在线国产| 久久久久久久午夜电影| 小蜜桃在线观看免费完整版高清| 嫩草影院精品99| 一区二区三区国产精品乱码| 精品久久久久久久毛片微露脸| 麻豆一二三区av精品| 久久香蕉国产精品| 在线国产一区二区在线| 亚洲精品国产精品久久久不卡| 啦啦啦观看免费观看视频高清| 岛国视频午夜一区免费看| 久久国产精品人妻蜜桃| 天堂动漫精品| 美女被艹到高潮喷水动态| 99在线人妻在线中文字幕| 免费观看精品视频网站| 亚洲中文av在线| 免费在线观看日本一区| 久久久久久国产a免费观看| 99热这里只有精品一区 | 成人av在线播放网站| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 99久久久亚洲精品蜜臀av| 国产真实乱freesex| 日韩欧美 国产精品| 别揉我奶头~嗯~啊~动态视频| 亚洲国产高清在线一区二区三| 一本久久中文字幕| 两个人的视频大全免费| 好男人在线观看高清免费视频| 国产极品精品免费视频能看的| 毛片女人毛片| 精品电影一区二区在线| 日本撒尿小便嘘嘘汇集6| 国产精品影院久久| 亚洲精品456在线播放app | 国产aⅴ精品一区二区三区波| 九九久久精品国产亚洲av麻豆 | 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app | 熟女少妇亚洲综合色aaa.| 久久久久久九九精品二区国产| 欧美成人一区二区免费高清观看 | 俄罗斯特黄特色一大片| 最近最新中文字幕大全电影3| 99视频精品全部免费 在线 | 国产成人精品久久二区二区免费| 三级国产精品欧美在线观看 | 亚洲国产欧美网| 男女做爰动态图高潮gif福利片| 亚洲成av人片免费观看| 日本熟妇午夜| 亚洲精品国产精品久久久不卡| 成人亚洲精品av一区二区| 午夜福利高清视频| 午夜福利在线观看吧| 亚洲无线观看免费| 国产精品,欧美在线| 久久久国产成人精品二区| 一进一出抽搐gif免费好疼| 一本久久中文字幕| 国产亚洲精品一区二区www| 亚洲av美国av| 校园春色视频在线观看| 亚洲精品在线观看二区| 精品欧美国产一区二区三| 一二三四在线观看免费中文在| 精品久久久久久久毛片微露脸| 欧美一级a爱片免费观看看| 久久精品国产亚洲av香蕉五月| 国产单亲对白刺激| 国产三级中文精品| 久久九九热精品免费| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 亚洲av中文字字幕乱码综合| 亚洲av免费在线观看| 久久草成人影院| 91av网一区二区| 蜜桃久久精品国产亚洲av| 国产精品一及| 亚洲av中文字字幕乱码综合| 黄频高清免费视频| 亚洲欧美精品综合一区二区三区| 欧美色视频一区免费| 成人国产一区最新在线观看| 亚洲国产欧美网| 日韩欧美免费精品| 亚洲专区国产一区二区| 后天国语完整版免费观看| 又粗又爽又猛毛片免费看| 欧美黄色淫秽网站| 丰满的人妻完整版| 亚洲人成网站高清观看| 宅男免费午夜| 成人18禁在线播放| 国产伦精品一区二区三区视频9 | 嫩草影院入口| 熟妇人妻久久中文字幕3abv| 亚洲av电影在线进入| 国产激情偷乱视频一区二区| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 午夜福利欧美成人| 性欧美人与动物交配| 伊人久久大香线蕉亚洲五| 国产真实乱freesex| 999久久久精品免费观看国产| 欧美成人一区二区免费高清观看 | 日韩av在线大香蕉| 亚洲国产精品合色在线| 一夜夜www| 国产熟女xx| 淫秽高清视频在线观看| 国内精品久久久久精免费| 1024香蕉在线观看| av黄色大香蕉| 亚洲激情在线av| 欧美国产日韩亚洲一区| 国内揄拍国产精品人妻在线| 欧美极品一区二区三区四区| 国产一区二区在线观看日韩 | 国产久久久一区二区三区| 男女床上黄色一级片免费看| 亚洲av成人一区二区三| 色播亚洲综合网| 国产一级毛片七仙女欲春2| 午夜激情福利司机影院| 午夜a级毛片| 久久久精品大字幕| 国产精品女同一区二区软件 | 非洲黑人性xxxx精品又粗又长| 美女午夜性视频免费| 国产又黄又爽又无遮挡在线| 舔av片在线| h日本视频在线播放| 久久九九热精品免费| 婷婷精品国产亚洲av在线| 亚洲国产中文字幕在线视频| 国产av不卡久久| 又黄又粗又硬又大视频| 性色avwww在线观看| 欧美+亚洲+日韩+国产| 成人亚洲精品av一区二区| 日本精品一区二区三区蜜桃| 成人永久免费在线观看视频| 桃红色精品国产亚洲av| 精品人妻1区二区| 日本在线视频免费播放| 国产一区二区激情短视频| 熟妇人妻久久中文字幕3abv| 桃红色精品国产亚洲av| 最好的美女福利视频网| 中文在线观看免费www的网站| www.999成人在线观看| 亚洲无线观看免费| 国产成人影院久久av| 亚洲av成人不卡在线观看播放网| 美女扒开内裤让男人捅视频| 长腿黑丝高跟| 欧美激情久久久久久爽电影| 别揉我奶头~嗯~啊~动态视频| 91av网一区二区| 精品久久久久久久久久免费视频| 少妇裸体淫交视频免费看高清| 熟女电影av网| 亚洲一区高清亚洲精品| 精品乱码久久久久久99久播| 国产午夜精品论理片| 久久久久九九精品影院| 欧美日本亚洲视频在线播放| 国产精品永久免费网站| 亚洲av电影在线进入| 久久国产精品影院| aaaaa片日本免费| 在线永久观看黄色视频| 日韩欧美在线乱码| 久久久久国内视频| 99国产极品粉嫩在线观看| 黄色丝袜av网址大全| 亚洲av电影在线进入| 麻豆成人av在线观看| 在线看三级毛片| 精品国产美女av久久久久小说| 国产成人精品久久二区二区免费| 中国美女看黄片| 波多野结衣高清无吗| 色尼玛亚洲综合影院| 叶爱在线成人免费视频播放| 国产亚洲精品久久久久久毛片| 欧美乱妇无乱码| 国产三级中文精品| 国产亚洲欧美98| 男女午夜视频在线观看| 亚洲一区高清亚洲精品| 精华霜和精华液先用哪个| 久久草成人影院| 国产真人三级小视频在线观看| www.精华液| 色吧在线观看| 亚洲av成人精品一区久久| 亚洲熟妇熟女久久| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲| 超碰成人久久| 免费搜索国产男女视频| 黄色成人免费大全| 给我免费播放毛片高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 一级作爱视频免费观看| 亚洲 国产 在线| 欧美丝袜亚洲另类 | or卡值多少钱| 女同久久另类99精品国产91| 亚洲一区高清亚洲精品| 亚洲av成人av| 一个人看的www免费观看视频| 精品一区二区三区四区五区乱码| 免费电影在线观看免费观看| 欧美绝顶高潮抽搐喷水| 别揉我奶头~嗯~啊~动态视频| 国产主播在线观看一区二区| 亚洲成av人片在线播放无| 这个男人来自地球电影免费观看| 久久国产乱子伦精品免费另类| 中文字幕久久专区| 母亲3免费完整高清在线观看| 嫩草影视91久久| 国产综合懂色| 51午夜福利影视在线观看| 99久久久亚洲精品蜜臀av| 亚洲精品乱码久久久v下载方式 | 国产单亲对白刺激| 国产黄a三级三级三级人| 老司机在亚洲福利影院| 在线看三级毛片| 波多野结衣高清作品| 免费无遮挡裸体视频| 中文字幕精品亚洲无线码一区| 精品乱码久久久久久99久播| 久久久久国产精品人妻aⅴ院| 国产成人av教育| 在线免费观看的www视频| 欧美日韩瑟瑟在线播放| 午夜激情福利司机影院| 99热只有精品国产| 国产精品国产高清国产av| 亚洲人成伊人成综合网2020| 88av欧美| 国产乱人伦免费视频| 色视频www国产| 变态另类丝袜制服| 小说图片视频综合网站| 老司机午夜福利在线观看视频| 久久精品综合一区二区三区| 亚洲人成网站在线播放欧美日韩| 免费看日本二区| 欧美性猛交黑人性爽| 日韩中文字幕欧美一区二区| 欧美极品一区二区三区四区| 嫩草影院精品99| 黄色 视频免费看| 国内久久婷婷六月综合欲色啪| 国内毛片毛片毛片毛片毛片| 成人av一区二区三区在线看|