• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Blue-emissions Modulated by Packing Forces in Alkaline-earth Metal Organic Frameworks Based on Thiophene-2,5-dicarboxylic: Structures and Theoretical Calculations①

    2019-01-07 01:36:00CHENJiaYue
    結(jié)構(gòu)化學(xué) 2018年12期

    CHEN Jia-Yue

    ?

    Blue-emissions Modulated by Packing Forces in Alkaline-earth Metal Organic Frameworks Based on Thiophene-2,5-dicarboxylic: Structures and Theoretical Calculations①

    CHEN Jia-Yue②

    (350007)

    Solvothermal reactions of Ca(NO3)2, Sr(NO3)2with thiophene-2,5-dicarboxylic in DMF afforded two new inorganic-organic hybrid frameworks, [M(TDC)(DMF)](M = Ca (1), Sr (2), TDC = thiophene-2,5-dicarboxylic, DMF = N,N?-dimethylformamide), which have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis and IR spectra. Both compounds feature three-dimensional (3D) frameworks based on the versatile coordinated modes (3-2:2,3-2:1,2-2:1) of carboxylic groups in tdc ligands. C–H···S hydrogen bonds and C–H···interactions contribute to the stabilization of the structures. They exhibit weaker packing force compared with their literature isomers. Consequently, blue and blue/green luminescence of two compounds has been observed. Their luminescence mechanism can be ascribed to ligand-to-metal charge transfer (LMCT) compared with the ligand-centered luminescence in their isomers. Electronic structural calculations illustrate that under the condition of weaker packing forces, larger gaps can be achieved, which facilitate the LMCT. This work suggests that the introduction of S-heteroatom can result in more electrons rich in the metal centers, thus giving rise to metal-involved luminescence.

    alkaline-earth metal complex, thiophene-2,5-dicarboxylic, photoluminescence, theoretical calculation;

    1 INTRODUCTION

    In the last decade, hybrid inorganic-organic frameworks have captured the interest of chemists not only due to their intriguing architectures and topologies, but also to their fascinating applications such as luminescence, semiconductors, storage materials and magnetic materials[1, 2]. However, in this field, most attention has been focused on the incorporation of transition metal ions and rare-earth ions as coordination centers[3, 4], whereas much less attention is paid to alkaline earth metal-based com- pounds. Recently, the inorganic-organic frame- works based on main group alkaline-earth metals have received more and more research attention due to their low polarizability, versatile coordination modes for the construction of high dimensional materials with robust structures[5]and interesting properties such as tunable fluorescent indicators, ion sensing, macrocyclic ion receptors[6, 7]. Among them, the divalent calcium and strontium cations (Ca2+and Sr2+) have higher abundances in earth and play important roles in new functional materials and biological processes, for example, oxygen-evolving complexes such as photosystem II and metallo- proteins[8-10].So far, numerous alkaline earth metal-based inorganic-organic hybrids constructed from aromatic carboxylate ligands have been reported[11-17]. But alkaline earth metal compounds based on S-hetero carboxylate ligands are much less. Because of the bigger radius of the S atom than the C, N and O atoms, its lone pair of electrons can be more easily delocalized within the heterocycle, so the ligand exhibits good charge-transfer ability[18].

    Thiophene-2,5-dicarboxylic acid (H2TDC) is a typical S-hetero aromatic ligand in constructing high-dimensional coordinated networks with enhan- ced thermal stabilities and luminescent properties, which stem from diverse coordination modes of the carboxylate groups (including monodentate, biden- tate, tridentate, et al) and the more delocalized rigid heterocyclic ring[19-21]. Up to now, to our knowledge, H2tdc/alkaline-earth metal MOFs are still rare, and their photoluminescence was mainly violet and dominated by organic moiety[22, 23]. How to control their emission is still a big challenge. In this work, we report the solvothermal synthesis, structural characterization and blue/green emissions of two new 3-D s-block coordination networks using TDC as the linker. Our study suggests that the network topology and the presence of coordinated solvent molecules are important factors in controlling the luminescence properties of the synthesized ma- terials.

    2 EXPERIMENTAL

    2. 1 Materials and methods

    All chemicals of regent grade were obtained from commercial sources and used without further puri- fication.Elemental analyses for C, H and N were performed on a Vario MICRO elemental analyzer. IR spectra were recorded on a Perkin-Elmer Spectrum- 2000 FTIR spectrophotometer (4000~400 cm-1). Fluorescence spectrum was carried out on a PW2424 spectrometer.

    2. 2 Computational details

    The band structure calculation was based on density function theory (DFT)[24], in which wave functions were explained in a plane wave basis set and the spin polarized version of the PW-91 GGA was employed for the exchange-correlation func- tional in the CASTEP code[25].The number of plane waves included in the basis was determined by a cutoff energyEof 550 eV.

    2. 3 Synthesis

    Synthesis of [Ca(TDC)(DMF)](1) 1 was pre- pared by solvothermal method. Thiophene-2,5-dicar- boxylic acid (H2tdc, 0.0344 g, 0.2 mmol) was dissolved in 5 mL DMF, and the suspension was stirred till complete dissolution. Then Ca(NO3)2(0.0164 g, 0.1 mmol) was added and kept stirring for 1 h. The mixture was removed into a 25 mL Te?on-lined autoclave, which was heated to 120 °C and held at this temperature for 72 h. Then the autoclave was cooled to room temperature in two days. Colorless block single crystals were obtained and washed with ether (0.0170 g, yield 71.3% based on Ca). Anal. Calcd. for C18H18Ca2N2O10S2(566.62): C, 38.16; H, 3.20; N, 4.94%. Found: C, 38.32; H, 3.38; N, 4.45%. IR(cm-1): 3089(m), 1562(w), 1369(w), 1118(w), 1030(s), 770(s), 684(s), 458(s).

    Synthesis of [Sr(TDC)(DMF)](2) The synthesis process of 2 is the same with that of 1 except that Sr(NO3)2(0.0211 g, 0.1 mmol) was used as the starting material. Colorless block single crystals were obtained with the yield of 74.6% (0.0246 g, based on Sr). Compared with the synthesis condition of reported analogs[22, 23], the reaction temperature in this work is higher (120. 100 °C), which leads to structural difference. Anal. Calcd. for C9H9NO5SSr (330.85): C, 32.67; H, 2.74; N, 4.23%. Found: C, 32.82; H, 2.82; N, 4.31%. IR(cm-1): 3224(w), 3089(m), 1570(w), 1377(w), 1118(w), 1022(s), 770(s), 677(W), 458(s).

    2. 4 X-ray crystallography

    Block crystals of 1 and 2 were mounted on glass fibers. The intensity data were collected on a Rigaku Weissenberg IP diffractometer with a graphite- monochromated Moradiation (= 0.71073 ?) at 293(2) K by using an-2scan mode. The multi-scan absorption corrections were applied. The structurewas solved by direct methods with SHELXS-97program and refined by full-matrix least-squarestechniques on2with SHELXL-97 program[26].The non-hydrogenatoms were refined with anisotropic thermal displacement coefficients, andhydrogen atoms were determined with theoreticalcalculations and refined isotropically.Crystal data of 1: monoclinic, space group21/withM= 566.62,= 10.078(2),= 14.262(3),= 19.603(5) ?,= 116.54(2)°,= 2520.7(10) ?3,= 4,D=g/cm3,(000) =,(Mo) =mm–1, the final= 0.0410 and= 0.1178,= 0.940, (Δ/)max= 0.000, (Δ)max= 0.850and (Δ)min= –0.524 e/?3. Crystal data of 2: monoclinic, space group21/withM= 330.85,= 6.0067(10),= 16.926(3),= 11.679(2) ?,= 91.394(3)°,= 1187.1(3) ?3,= 4,D=g/cm3,(000) =,(Mo) = 4.725 mm–1, the final= 0.0329 and= 0.1054,= 1.195, (Δ/)max= 0.000, (Δ)max=1.401 and (Δ)min= –0.997 e/?3. Important bond lengths are listed in Table 1, and hydrogen bond details are given in Table 2.

    Table 1. Selected Bond Lengths (?) for Compounds 1 and 2

    Table 2. Hydrogen Bridging Details of Compound 1

    3 RESULTS AND DISCUSSION

    3. 1 Structure description

    1 crystallizes in monoclinic space group21/, which is an isomer of [Ca2(TDC-2H)2(DMF)2] (space group21/)[22]. There are two crystallogra- phically independent Ca centers in the lattice, which exhibit different coordination numbers and coor- dination environments. As illustrated in Fig. 1a, Ca(1) is coordinated by seven O atoms to give a distorted pentagonal bipyramidal geometry: four oxygen atoms (O(5), O(6), O(7), O(8)) from two carboxylate groups, two (O(3) and O(6)a, a: ––1, ––1, ––1) from two different carboxylate groups and one (O(10)) from one DMF molecule. O(3) and O(10) occupy the apical positions with a trans angle of 172.58(11)°. The Ca(1) center lies on the pentagonal plane with the deviation less than 0.01 ?. The Ca(1)–O bond distances range from 2.2941(17) to 2.5050(16) ? (Table 1), which are consistent with those in reported calcium carboxylate com- plexes[15, 27, 28]Comparably, Ca(2) is in a six-coor- dinated distorted octahedral environment with five oxygen atoms from five different carboxylate groups and one oxygen from the DMF molecule, where O(8) and O(9) occupy the axial positions and other four locate at the equator plane. The Ca(2)–O bond distances are in the normal range of 2.259(2)~2.4355(16) ?. The Ca(1)O7pentagonal bipyramid and Ca(2)O6octahedron are connected into a Ca2O10dimmer via edge-sharing mode with the Ca(1)–Ca(2) separation of 3.6702(9) ?, and two Ca2O10dimmers are linked into a Ca4O18tetramer via edge-sharing (defined by O(6)–O(6)a) with the Ca(1)–Ca(1)adistance of 3.6656(10) ?. These Ca–Ca distances are obviously shorter than those of reported binuclear complexes (Ca–Ca distances of 3.860(2) and 3.891(4) ?[29, 30]), which imply the existence of Ca···Ca interactions in 1.

    Adjacent Ca4O18tetramers are extended into a 1-D chain along the-axis by two bridged carboxylate groups (Fig. 1a). Neighbouring 1-D chains are bri- dged by one of the crystallographically independent thiophene-2,5-dicarboxylic acid ligands to give a 2-D layer along-plane (Fig. 1b), in which two carboxylate groups of tdc ligand adopt the3-2:2(each oxygen atom coordinates to two metal atoms, and the carboxylic group coordinates to three metal atoms) and2-2:1(one oxygen atom connects two metal ions, the other connects one metal atom, and the carboxylic group coordinates to two metal atoms) coordination modes (Scheme 1, a). Finally, adjacent 2-D layers are extended to be a 3-D network via another crystallographically independent bridged tdc ligand (Fig. 1c), where this tdc presents the2-1:1(two oxygen atoms connect two metal ions, and the carboxylic group coordinates to two metal atoms) coordinated mode (Scheme 1, b).

    Fig. 1. (a) 1-D chain constructed from Ca4O18tetramers bridged by carboxylate groups; (b) 2-D layer along theplane based on 1-D chains; (c) 3-D network of 1 showing hydrogen bonds; (d) C–H···interactions between tdc and DMF in 1

    Scheme 1. Coordinated modes of tdc ligand in this work

    Specially, hydrogen bonds between tdc and DMF molecules can be observed (Table 2, blue imaginary lines for C–H···S hydrogen bonds and red imaginary lines for C–H···O hydrogen bonds in Fig. 1a and 1c). In addition, C–H···interactions can also be detected between tdc ligand and DMF (Fig. 1d). All these weak interactions contribute to the stabilization of structure. Comparably, in [Ca2(TDC-2H)2(DMF)2][22],one of Ca centers is in five-coordinated square bipyramidal geometry. Consequently, in 1, a new coordinated mode3-2:1is presented compared with those in [Ca2(TDC-2H)2(DMF)2]. The strengths of C–H···S hydrogen bonds of two isomers are generally the same, but one of the C–H···O hydrogen bonds in 1 (C(18)–H(18A)···O(4)) is weaker (H···A distance 2.60. 2.31 ?).

    2 is also an isomer of Sr(TDA)(DMF)[22, 23], which crystallizes in monoclinic with space group21/. Its asymmetric unit contains one Sr atom, one tdc ligand and one DMF molecule. The Sr atom is eight-coordinated with distorted di-cap triangular prism geometry, whose O donors stem from six tdc ligands and one DMF molecule. The Sr–O bond distances range from 2.438(3) to 2.739(3) ? (Table 1). Two SrO8polyhedra are connected into a Sr2O12dimmer via a face-sharing mode with the Sr–Sr distance of 3.5144(8) ?. Furthermore, neighboring Sr2O12dimmers are linked into a 1-D chain along the-axisan edge-sharing mode with the Sr–Sr distance to be 3.9396(9) ? (Fig. 2a). These Sr–Sr lengths imply the presence of Sr···Sr interactions compared with the data in literatures[31]. But in [Sr(TDC-2H)(DMF)][22],these two Sr–Sr distances are 3.470(2) and 3.928(2) ?, suggesting a more relaxed packing in 2. 1-D chains were further bridged by tdc ligands along theanddirections to give a 3-D network (Fig. 2b), in which a cavity with the size of 9.788 × 16.966 ?2can be found ((Fig. 2b). DMF molecules locate in these cavities. As a result, two carboxylate groups of tdc ligand adopt the3-2:2and3-2:1modes (Scheme 1c). There are no hydrogen bonds and···stacking interactions in the lattice, but a clear C–H···interaction between tdc ligand and DMF can be found, which stabilizes the structure (Table 3, Fig. 2c). In [Sr(TDC- 2H)(DMF)][22],due to the disorder of DMF molecu- les, a lager cavity (9.838 × 17.058 ?2) is given. In all, under the higher synthesis temperature (120 oC), compounds in this work exhibit a more relaxed packing compared with the reported isomers (for example, 1.851 g/cm3for 2 and 1.893 g/cm3for Sr(TDA)(DMF))[22].

    Table 3. C–H···π Interaction Parameters for Compounds 1 and 2

    Fig. 2. (a) 1-D chain constructed from Sr2O12dimmer bridged by carboxylate groups; (b) 3-D network of 2 based on bridged tdc ligands; (d) C–H···interactions between tdc and DMF in 2

    3. 2 Fluorescence properties

    The purities of bulk compounds 1 and 2 have been proved by powder X-ray diffraction (PXRD). The results show that theexperimental patterns arein good agreement with the simulatedones, indicating the good phase purities (Fig. 3).The minor difference in intensities between the simulated and experimental patterns may be due to the preferred orientation of the powder samples during the collec- tion of the experimental PXRD data.

    (a)

    (b)

    Fig. 3. Powder X-ray diffraction (PXRD) patterns for compounds1 (a) and 2 (b)

    The luminescence properties of 1 and 2 were studied in the solid state at room temperature. 1 exhibits blue/green emission with peak locating at 506 nm upon irradiation at 397 nm, and 2 produces blue emission at 478 nm when excited at 378 nm (Fig. 4). The emission of free H2tdc has been reported to be at 365 nm[22, 23, 32].According to the literatural alkaline earth metal complexes with crown ethers ligand, the photoluminescence of the crown ether ligands can be greatly enhanced by incorporation with alkaline earth metal ions[33]. Compared with the emission of free H2tdc, its Ca/Sr(II) complexes exhibited great red shifts with emission maximum at 506 and 478 nm. Therefore, the observed photoluminescence of complexes 1 and 2 is not the contribution of*-n/* of tdc ligand, but the component of ligand-to-metal charge transfer (LMCT) or metal-to-ligand charge transfer (MLCT). This situation is different from their isomers and other tdc-based complexes, whose emissions only stem from the*-n/* of organic ligands[11, 22, 23]. Why the emissions can change from tdc-centered to ligand-to-metal characters? A number of parameters, including crystal packing and the coordination environment of metal centers and linkers, can influence their luminescence[22, 23]. In 1, both different crystal packing and coordination environ- ment of metal centers compared to its isomer can be observed, but in 1, the coordination environments are the same, and only more relaxed crystal packing is given. Therefore, the weaker packing forces in this work might give rise to the presence of ligand- to-metal charge transfer (LMCT) and thus produce blue or blue/green fluorscence. In addition, the emit light of 1 exhibits red-shift by approximate 28 nm compared with 2, which may be due to the different binding modes of tdc ligands. The single coordina- ted mode of tdc in 2 may result in a more rigid structure of ligand than 1, which gives rise to more delocalized electrons between the ligand and metals.

    Fig. 4. Solid-state emission spectra of compounds 1 and 2

    3. 3 Electronic structures

    In order to look further insight into the blue photoluminescence of 1 and 2 compared with the literature compounds, DFT calculations illustrated by band structures along with high symmetry points of the first Brillouin zone and density of states (DOS) were executed using the CASTEP code in Materials Studio 8.0. The band structures of 1, 2 and their corresponding isomers, total/partial DOS ([Ca2(TDC-2H)2(DMF)2] and1 were set as examples)along certain symmetry directions are given in Figs. 5 and 6. The calculated band gaps based on GGA-PBE are 3.03 (for 1) and 3.35 eV (for 2), both of which are direct band gaps, but the gaps of their corres- ponding isomers are 1.32 and 0.54 eV. Judging from these data, under the weaker packing force in this work, much larger band gags can be found. The larger band gaps of 1 and 2 suggest that the higher energies are needed when the electrons transfer from ground states to excited states, which is consistent with its lower excited wave length (378 nm for 2. 397 nm for 1). As shown by the total and partial DOS diagrams (Fig. 6), in [Ca2(TDC-2H)2(DMF)2], the energy gaps of bonding- and anti-bondingorbitals in tdc are small, which facilitates the* transfer among tdc ligand. But in 1, the energy gaps are much larger. The top of VBs between ?5 and Fermi energy originate from thebonding orbitials of tdc, and the bottom of CBs are the contribution of p-* antibonding orbitals of tdc ligands mixed with small amount of Ca-3/Sr-4states. These orbital components prove that the intense luminescence of two compounds stem from the ligand-to-metal charge transfer (LMCT). The engagement of metalorbitals in the frontier orbitals might be led by the introduction of S-atom of aromatic ring, which results in more delocalized electrons and conse- quently, more electrons rich in the metal centers. This situation can not be found in benzene-ring based aromatic polycarboxylic ligands[34].

    Fig. 5. Band structures of [Ca2(TDC-2H)2(DMF)2] and 1 (a); band structures of Sr(TDA)(DMF) and 2 (b)

    Fig. 6. Total and partial density of states of [Ca2(TDC-2H)2(DMF)2] in literature (a) and 1 (b)

    4 CONCLUSION

    Two new three-dimensional frameworks, [M(TDC)(DMF)](M = Ca (1), Sr (2)) exhibit blue and blue/green emissions, in which weaker packing forces compared with the reported isomers can be found. Their luminescence mechanism can be ascribed to ligand-to-metal charge transfer (LMCT) compared with the ligand-centered luminescence in their isomers, which were verified by electronic structural calculations. Interestingly, the introduction of S-heteroatom can result in more electrons rich in the metal centers, thus giving rise to metal-involved luminescence.

    (1) Zheng, S. T.; Bu, J. T.; Yi, Y. F.; Wu, T.; Zuo, F.; Feng, P. Y.; Bu, X. H. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2uptake.2010, 132, 17062–17064.

    (2) Luo, X. L.;Sun, L. B.;Zhao, J.; Li, D. S.; Wang, D. M.; Li, G. H.;Huo, Q. S.;Liu, Y. L.Three metal-organic frameworks based on binodal inorganic building units and hetero-O,N donor ligand: solvothermal syntheses, structures, and gas sorption properties.,, 4901–4907.

    (3) Liang, J. B.; Ma, R. Z.; Ebina, Y.; Geng, F. X.; Takayoshi Sasaki, T. New family of lanthanide-based inorganic-organic hybrid frameworks: Ln2(OH)4[O3S(CH2)nSO3]·2H2O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4) and their derivatives2013, 52, 1755?1761.

    (4) Maniam, P.;Stock, N.Investigation of porous Ni-based metal-organic frameworks containing paddle-wheel type inorganic building unitshigh-throughput methods.,, 5085–5097.

    (5) Banerjee, D.; Parise, J. B. Recent advances in-block metal carboxylate networks.2011, 11, 4704–4720.

    (6) Collot, M.; Loukou, C.; Yakovlev, A. V.; Wilms, C. D.; Li, D.; Evrard, A.; Zamaleeva, A.; Bourdieu, L.; Le?ger, J. F.; Ropert, N.; Eilers, J.; Oheim, M.; Feltz, A.; Mallet, J. M. Calcium rubies: a family of red-emitting functionalizable indicators suitable for two-photon Ca2+imaging2012, 134, 14923?14931.

    (7) Bar-Shir, A.; Gilad, A. A.; Chan, K. W. Y.; Liu, G.; van Zijl, P. C. M.; Bulte, J. W. M.; McMahon, M. T. Metal ion sensing using ion chemical exchange saturation transfer19F magnetic resonance imaging.2013, 135, 12164?12167.

    (8) Gatt, P.; Petrie, S.; Stranger, R.; Pace, R. J. 3D chemical image using TOF-SIMS revealing the biopolymer component spatial and lateral distributions in biomass.2012, 51, 12025?12028.

    (9) Tsui, E. Y.; Tran, R.; Yano, J.; Agapie, T. Redox-inactive metals modulate the reduction potential in heterometallic manganese-oxido clusters.2013, 5, 293?299.

    (10) Park, Y. J.; Cook, S. A.; Sickerman, N. S.; Sano, Y.; Ziller, J. W.; Borovik, A. S. Heterobimetallic complexes with MIII-(-OH)-MIIcores (MIII= Fe, Mn, Ga; MII= Ca, Sr, and Ba): structural, kinetic, and redox properties.2013, 4, 717?726.

    (11) Zhang, X.; Huang, Y. Y.; Zhang, M. J.; Zhang, J.; Yao, Y. G. A series of Ca(II) or Ba(II) inorganic-organic hybrid frameworks based on aromatic polycarboxylate ligands with the inorganic M?O?M (M = Ca, Ba) connectivity from 1D to 3D.2012, 12, 3231?3238.

    (12) Burgess, K. M. N.; Xu, Y.; Leclerc, M. C.; Bryce, D. L. Alkaline-earth metal carboxylates characterized by43Ca and87Sr solid-state NMR: impact of metal-amine bonding.2014, 53, 552?561.

    (13) Du, S. F.; Ji, C. Q.; Xin, X. L.; Zhuang, M.; Yu, X. Y.; Lu, J. T.; Yukun Lu, Y. K.; Sun, D. F. Syntheses, structures and characteristics of four alkaline-earth metalorganic frameworks (MOFs) based on benzene-1,2,4,5-tetracarboxylicacid and its derivative ligand.2017, 1130, 565?572.

    (14) Zou, R. Q.; Zhong, R. Q.; Han, S. B.; Xu, H. W.; Baurrell, A. K.; Henson, N.; Cape, J. L.; Hickmott, D. D.; Timofeeva,T. V.; Larson, E.; Zhao, Y. S. A porous metal-organic replica of-PbO2for capture of nerve agent surrogate.2010, 132, 17996–17999.

    (15) Zhu, H. F.; Zhang, Z. H.; Sun, W. Y.; Okamura, T.; Veyama, N. Syntheses, structures, and properties of two-dimensional alkaline earth metal complexes with flexible tripodal tricarboxylate ligands.2005, 5, 177–182.

    (16) Wiesbrock, F.; Schimdbaur, H. Crystal structures of rubidium and cesium anthranilates and salicylates.. 2003, 42, 7283–7289.

    (17) Kam, K. C.; Young, K. L. M.; Cheetham, A. K. Chemical and structural diversity in chiral magnesium tartrates and their racemic and meso analogues.. 2007, 7, 1522–1532.

    (18) Xu, K. X.Chemical Industry, Beijing 1986.

    (19) Wang, G.; Huang, C. C.; Huang, X. H.; Liu, D. S. Three-dimensional lanthanide thiophenedicarboxylate framework with an unprecedented (4,5)-connected topology.2008, 8, 795–798.

    (20) Yesilel, O. Z.; Ilker, I.; Buyukgungor, O. Three copper(II) complexes of thiophene-2,5-dicarboxylic acid with dissimilar ligands: synthesis, IR and UV-Vis spectra, thermal properties and structural characterizations2009, 28, 3010–3016.

    (21) Li, H. H.; Zeng, X. H.; Wu, H. Y.; Jie, X.; Zheng, S. T.; Chen, Z. R. Incorporating guest molecules into honeycomb structures constructed from uranium(VI)-polycarboxylates: structural diversities and photocatalytic activities for the degradation of organic dye,2015, 15, 10–13.

    (22) Chen, X. Y.; Plonka, A. M.;Banerjee, D.; Parise, J. B. Synthesis, structures and photoluminescence properties of a series of alkaline earth metal-based coordination networks synthesized using thiophene-based linkers.2013, 13, 326?332.

    (23) Chen, Q.; Guo, P. C.; Zhao, S. P.; Liu, J. L.; Ren, X. M. A rhombus channel metal-organic framework comprised of Sr2+and thiophene-2,5-dicarboxylic acid exhibiting novel dielectric bistability.. 2013, 15, 1264–1270.

    (24) Perew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple.1996, 77, 3865–3868.

    (25) Segall, M.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Refson, K.; Payne, M.2006.

    (26) Sheldrick, G. M.,University of G?ttingen, Germany 1997.

    (27) Onoda, A.; Yamada, Y.; Doi, M.; Okamura, T.; Ueyama, N. Dinuclear calcium complex with weakly N–H···O hydrogen-bonded sulfonate ligands.2001, 40, 516–521.

    (28) Pan, L.; Frydel, T.; Sander, M. B.; Huang, X.; Li, J. The effect of pH on the dimensionality of coordination polymers.2001, 40, 1271–1283.

    (29) Ueyama, N.; Takeda, J.; Yamada, Y.; Onoda, A.; Okamura, T.; Nakanura, A. Dinuclear calcium complexes with intramolecularly N–H···O hydrogen-bonded dicarboxylate ligands.1999, 38, 475–478.

    (30) Bahl, A. M.; Krishnaswamy, S.; Massand, N. G.; Burkey, D. J.; Hanusa, T. P. Heavy alkaline-earth polyether carboxylates. the crystal structure of {Ca[OOC(CH2)O(CH2)2]2O(H2O)2}2..1997, 36, 5413–5415.

    (31) Dan, M.; Cheetham, A. K.; Rao, C. N. R. Diverse structures and dimensionalities in hybrid frameworks of strontium and lanthanum with isomeric dihydroxybenzoates.2006, 45, 8227–8238.

    (32) Zhou, L.; Wang, C. G.; Zheng, X. F.; Tian, Z. F.; Wen, L. L.; Qua, H.; Li, D. F. New metal-organic frameworks based on 2,5-thiophenedicarboxylate and pyridine- or imidazole-based spacers: syntheses, topological structures, and properties.2013, 42, 16375–16386.

    (33) Prodi, L.; Bolletta, F.; Zaccheroni, N.; Watt, C. I. F.; Mooney, N. J. A new family of luminescent sensors for alkaline earth metal ions.1998, 4, 1090–1094.

    (34) Liang, P. C.; Liu, H. K.; Yeh, C. T.; Lin, C. H.; Zima, V. Supramolecular assembly of calcium metal-organic frameworks with structural transformations.2011, 11, 699–708.

    8 May 2018;

    25 August 2018 (CCDC 1839708 and 1839709)

    ① This work was supported by the Science and Technology Funding Project of Fujian Provincial Department of Transportation (No. 201337)

    . E-mail: fjfzcjy@126.com

    10.14102/j.cnki.0254-5861.2011-2064

    美女大奶头黄色视频| 欧美久久黑人一区二区| 狠狠婷婷综合久久久久久88av| 精品人妻一区二区三区麻豆| 午夜日韩欧美国产| 在线观看免费午夜福利视频| 性高湖久久久久久久久免费观看| 啦啦啦啦在线视频资源| 国精品久久久久久国模美| 亚洲精品乱久久久久久| 只有这里有精品99| 考比视频在线观看| 在线免费观看不下载黄p国产| 国产成人啪精品午夜网站| 伊人亚洲综合成人网| 考比视频在线观看| 最近的中文字幕免费完整| 男女高潮啪啪啪动态图| 人成视频在线观看免费观看| 蜜桃在线观看..| 婷婷成人精品国产| 亚洲精品久久午夜乱码| 亚洲av成人精品一二三区| 国产av码专区亚洲av| 亚洲国产毛片av蜜桃av| 久久久久国产精品人妻一区二区| 一本色道久久久久久精品综合| 国产有黄有色有爽视频| 一个人免费看片子| 一级黄片播放器| 久久 成人 亚洲| 少妇的丰满在线观看| 久久99一区二区三区| 少妇被粗大的猛进出69影院| 国产精品久久久久久精品古装| 亚洲精品av麻豆狂野| 电影成人av| 久久精品国产亚洲av涩爱| videos熟女内射| 久热爱精品视频在线9| 观看美女的网站| 精品国产乱码久久久久久小说| 亚洲久久久国产精品| 精品亚洲成a人片在线观看| a 毛片基地| 日韩成人av中文字幕在线观看| 亚洲国产av新网站| 你懂的网址亚洲精品在线观看| 日韩电影二区| 国产在线一区二区三区精| 免费日韩欧美在线观看| 国产日韩一区二区三区精品不卡| 丝袜人妻中文字幕| 国产成人精品福利久久| 亚洲欧美色中文字幕在线| 天堂俺去俺来也www色官网| 国产视频首页在线观看| 久久99一区二区三区| 国产成人一区二区在线| 久久人人97超碰香蕉20202| 老司机在亚洲福利影院| 亚洲av电影在线观看一区二区三区| 丝袜在线中文字幕| 久久精品久久精品一区二区三区| 七月丁香在线播放| 国产精品国产三级专区第一集| 啦啦啦 在线观看视频| 男人舔女人的私密视频| 亚洲自偷自拍图片 自拍| 久久久精品94久久精品| 亚洲欧洲国产日韩| 亚洲av国产av综合av卡| av有码第一页| 午夜免费观看性视频| 纯流量卡能插随身wifi吗| 九色亚洲精品在线播放| 最近中文字幕高清免费大全6| 操美女的视频在线观看| 午夜福利网站1000一区二区三区| 欧美日本中文国产一区发布| 日韩视频在线欧美| 国产精品蜜桃在线观看| 又黄又粗又硬又大视频| 久久综合国产亚洲精品| 国产精品亚洲av一区麻豆 | 天堂中文最新版在线下载| 久久精品熟女亚洲av麻豆精品| 亚洲欧美中文字幕日韩二区| 毛片一级片免费看久久久久| 国产精品人妻久久久影院| av福利片在线| 国产免费福利视频在线观看| 欧美精品高潮呻吟av久久| 国产精品熟女久久久久浪| av又黄又爽大尺度在线免费看| 天天躁夜夜躁狠狠久久av| 黄色视频不卡| 热99久久久久精品小说推荐| 嫩草影视91久久| 老司机在亚洲福利影院| 午夜免费鲁丝| 亚洲美女视频黄频| 国产欧美日韩综合在线一区二区| 大话2 男鬼变身卡| 香蕉丝袜av| 80岁老熟妇乱子伦牲交| 妹子高潮喷水视频| 无限看片的www在线观看| 观看美女的网站| 女人精品久久久久毛片| 人成视频在线观看免费观看| 中文字幕人妻丝袜一区二区 | av视频免费观看在线观看| 在线观看人妻少妇| 国产深夜福利视频在线观看| 亚洲精品第二区| 美国免费a级毛片| 一本色道久久久久久精品综合| 日韩伦理黄色片| 观看av在线不卡| 久久久亚洲精品成人影院| 免费高清在线观看日韩| 久久亚洲国产成人精品v| 亚洲成人国产一区在线观看 | 综合色丁香网| 成人国语在线视频| 午夜老司机福利片| bbb黄色大片| 如日韩欧美国产精品一区二区三区| 天天操日日干夜夜撸| 国产男女超爽视频在线观看| 国产成人一区二区在线| 亚洲精品一二三| 久久精品aⅴ一区二区三区四区| 亚洲欧美日韩另类电影网站| 色播在线永久视频| 国产精品亚洲av一区麻豆 | 1024视频免费在线观看| 国产福利在线免费观看视频| 国产有黄有色有爽视频| 精品人妻熟女毛片av久久网站| 国产精品香港三级国产av潘金莲 | 桃花免费在线播放| 日韩不卡一区二区三区视频在线| 晚上一个人看的免费电影| 一级片'在线观看视频| 制服诱惑二区| 国产精品 国内视频| 老司机影院毛片| 国产毛片在线视频| 少妇被粗大的猛进出69影院| 女人高潮潮喷娇喘18禁视频| 一边摸一边做爽爽视频免费| 亚洲欧美日韩另类电影网站| 国产精品久久久久成人av| 男女边吃奶边做爰视频| 桃花免费在线播放| 亚洲精品自拍成人| 中文字幕另类日韩欧美亚洲嫩草| 九草在线视频观看| 精品视频人人做人人爽| 久久国产精品男人的天堂亚洲| 黑人巨大精品欧美一区二区蜜桃| 中文字幕精品免费在线观看视频| 日日摸夜夜添夜夜爱| 青春草亚洲视频在线观看| 久久久久精品国产欧美久久久 | 国产av精品麻豆| 老汉色av国产亚洲站长工具| 久久精品熟女亚洲av麻豆精品| 极品少妇高潮喷水抽搐| 波多野结衣av一区二区av| 天天影视国产精品| 如何舔出高潮| 水蜜桃什么品种好| 国产老妇伦熟女老妇高清| 国产精品免费大片| 久久久久久久久久久久大奶| 最新的欧美精品一区二区| 制服诱惑二区| 免费观看a级毛片全部| 一区二区三区精品91| 看免费av毛片| 少妇被粗大的猛进出69影院| 国产成人系列免费观看| 欧美日韩亚洲高清精品| 国产精品免费视频内射| 国产黄色视频一区二区在线观看| 亚洲欧美一区二区三区国产| 99久国产av精品国产电影| 校园人妻丝袜中文字幕| 丰满迷人的少妇在线观看| 国产又爽黄色视频| 国产老妇伦熟女老妇高清| av女优亚洲男人天堂| 久久人人97超碰香蕉20202| 精品人妻在线不人妻| 国产精品二区激情视频| 欧美在线一区亚洲| e午夜精品久久久久久久| 成人国语在线视频| www.熟女人妻精品国产| 我的亚洲天堂| 一本大道久久a久久精品| 亚洲精品中文字幕在线视频| 欧美黑人精品巨大| 成人亚洲欧美一区二区av| 国产精品久久久久久人妻精品电影 | 亚洲欧洲日产国产| 9191精品国产免费久久| 精品少妇一区二区三区视频日本电影 | 韩国av在线不卡| 九九爱精品视频在线观看| 久久婷婷青草| 人体艺术视频欧美日本| 人人妻人人澡人人看| 亚洲国产精品一区三区| 中文字幕av电影在线播放| 欧美精品亚洲一区二区| 伊人久久国产一区二区| 欧美日本中文国产一区发布| 亚洲一区二区三区欧美精品| 亚洲一级一片aⅴ在线观看| 毛片一级片免费看久久久久| 欧美亚洲日本最大视频资源| 波多野结衣av一区二区av| 亚洲av电影在线进入| 欧美精品一区二区免费开放| 男女边吃奶边做爰视频| 多毛熟女@视频| 亚洲综合精品二区| 亚洲av综合色区一区| 一区福利在线观看| 国产成人精品福利久久| 欧美亚洲 丝袜 人妻 在线| 成年女人毛片免费观看观看9 | 日日摸夜夜添夜夜爱| 婷婷色综合www| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品久久成人aⅴ小说| 久久国产精品大桥未久av| 国产免费现黄频在线看| 制服诱惑二区| 久久午夜综合久久蜜桃| 水蜜桃什么品种好| 日韩电影二区| 天天操日日干夜夜撸| 中国三级夫妇交换| 午夜免费鲁丝| 一二三四在线观看免费中文在| 国产精品久久久av美女十八| 欧美日韩一区二区视频在线观看视频在线| 两性夫妻黄色片| 丰满乱子伦码专区| 国产老妇伦熟女老妇高清| 国产精品秋霞免费鲁丝片| 肉色欧美久久久久久久蜜桃| 午夜老司机福利片| 校园人妻丝袜中文字幕| 亚洲欧美精品综合一区二区三区| 少妇精品久久久久久久| 国产精品.久久久| 成人亚洲欧美一区二区av| 亚洲第一区二区三区不卡| 亚洲国产av新网站| 久久精品久久精品一区二区三区| 在线免费观看不下载黄p国产| 久热这里只有精品99| 在线看a的网站| 十分钟在线观看高清视频www| 国产av国产精品国产| 中文字幕制服av| 国产一卡二卡三卡精品 | 欧美人与性动交α欧美精品济南到| 男女高潮啪啪啪动态图| 亚洲自偷自拍图片 自拍| 777久久人妻少妇嫩草av网站| 丝瓜视频免费看黄片| 久久久久精品人妻al黑| 一本—道久久a久久精品蜜桃钙片| 久久午夜综合久久蜜桃| 国产一区二区三区综合在线观看| 国产毛片在线视频| 狠狠婷婷综合久久久久久88av| 观看av在线不卡| 人人澡人人妻人| 久久人人爽人人片av| 在线观看免费视频网站a站| av.在线天堂| 国产成人免费观看mmmm| 国产女主播在线喷水免费视频网站| 建设人人有责人人尽责人人享有的| 悠悠久久av| 菩萨蛮人人尽说江南好唐韦庄| 国产精品人妻久久久影院| av卡一久久| 国产一级毛片在线| 热99久久久久精品小说推荐| 午夜日本视频在线| 欧美日韩亚洲国产一区二区在线观看 | 精品久久久久久电影网| 久久久久久久久免费视频了| 久久久精品区二区三区| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| 国产日韩一区二区三区精品不卡| 日日爽夜夜爽网站| 国产爽快片一区二区三区| 大香蕉久久网| 国产精品成人在线| 国产成人啪精品午夜网站| 又黄又粗又硬又大视频| 自线自在国产av| 成年人免费黄色播放视频| 国产一区二区三区av在线| 美女扒开内裤让男人捅视频| 99九九在线精品视频| 国产成人欧美| a级片在线免费高清观看视频| 制服丝袜香蕉在线| 亚洲国产av影院在线观看| 看免费av毛片| 亚洲图色成人| 日韩视频在线欧美| 亚洲精品视频女| 国产亚洲午夜精品一区二区久久| 侵犯人妻中文字幕一二三四区| 欧美激情 高清一区二区三区| 一区在线观看完整版| 9191精品国产免费久久| 一级爰片在线观看| 一级毛片黄色毛片免费观看视频| 国产黄色免费在线视频| 国产精品人妻久久久影院| 亚洲精华国产精华液的使用体验| 99久久99久久久精品蜜桃| 精品久久久久久电影网| 啦啦啦在线免费观看视频4| 韩国精品一区二区三区| 精品人妻熟女毛片av久久网站| 婷婷色麻豆天堂久久| av一本久久久久| 国产精品久久久久久精品古装| 国产伦理片在线播放av一区| 日本av免费视频播放| 啦啦啦在线免费观看视频4| 咕卡用的链子| tube8黄色片| 天天操日日干夜夜撸| 欧美另类一区| 97人妻天天添夜夜摸| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲av一区麻豆 | 亚洲国产毛片av蜜桃av| 久久99一区二区三区| 亚洲精品乱久久久久久| 女性被躁到高潮视频| 国产xxxxx性猛交| 国产极品天堂在线| 91精品国产国语对白视频| 精品亚洲成a人片在线观看| 中文天堂在线官网| 黄片播放在线免费| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人爽人人夜夜| 视频区图区小说| 日韩免费高清中文字幕av| 久久精品aⅴ一区二区三区四区| 老鸭窝网址在线观看| 综合色丁香网| 亚洲精品一区蜜桃| 欧美xxⅹ黑人| 久久午夜综合久久蜜桃| 999久久久国产精品视频| 免费观看av网站的网址| 欧美另类一区| 黄网站色视频无遮挡免费观看| 亚洲国产精品999| 大香蕉久久成人网| 男女国产视频网站| 五月天丁香电影| 十八禁高潮呻吟视频| 亚洲人成77777在线视频| 日韩制服骚丝袜av| 好男人视频免费观看在线| 亚洲伊人色综图| 国产成人精品久久二区二区91 | 欧美日韩视频高清一区二区三区二| 久久久久久免费高清国产稀缺| 捣出白浆h1v1| 亚洲精品久久久久久婷婷小说| 国精品久久久久久国模美| 亚洲美女搞黄在线观看| 狠狠婷婷综合久久久久久88av| 啦啦啦在线观看免费高清www| 18禁动态无遮挡网站| 男女边摸边吃奶| 亚洲色图综合在线观看| 欧美av亚洲av综合av国产av | 又黄又粗又硬又大视频| 久久婷婷青草| 久久精品久久久久久噜噜老黄| netflix在线观看网站| 80岁老熟妇乱子伦牲交| 日本一区二区免费在线视频| 在现免费观看毛片| 亚洲第一青青草原| 香蕉国产在线看| 99九九在线精品视频| 青春草视频在线免费观看| 中文字幕人妻丝袜制服| 国产激情久久老熟女| 日韩一区二区三区影片| 亚洲精品美女久久av网站| av片东京热男人的天堂| 美女国产高潮福利片在线看| 久久久国产精品麻豆| 免费在线观看黄色视频的| 在现免费观看毛片| 亚洲国产日韩一区二区| 一级毛片 在线播放| 亚洲成人一二三区av| 午夜福利免费观看在线| 午夜久久久在线观看| 悠悠久久av| 男女之事视频高清在线观看 | 天堂中文最新版在线下载| 伦理电影免费视频| 午夜精品国产一区二区电影| 日韩av不卡免费在线播放| 色视频在线一区二区三区| av在线老鸭窝| 国产 一区精品| 国语对白做爰xxxⅹ性视频网站| kizo精华| 女人精品久久久久毛片| 国产日韩欧美视频二区| 国产欧美亚洲国产| 国产成人啪精品午夜网站| 男人舔女人的私密视频| 高清黄色对白视频在线免费看| 久久影院123| 新久久久久国产一级毛片| 亚洲精品视频女| av国产精品久久久久影院| 亚洲国产看品久久| av福利片在线| a 毛片基地| 久久久国产精品麻豆| 国产视频首页在线观看| 丝袜喷水一区| 又大又黄又爽视频免费| 免费黄色在线免费观看| 午夜福利在线免费观看网站| 一边亲一边摸免费视频| 九九爱精品视频在线观看| 老鸭窝网址在线观看| 亚洲欧美一区二区三区久久| 午夜福利,免费看| 欧美日韩亚洲国产一区二区在线观看 | 久久亚洲国产成人精品v| 免费观看人在逋| 人妻人人澡人人爽人人| 成人亚洲精品一区在线观看| av卡一久久| 国产不卡av网站在线观看| 女人精品久久久久毛片| 丝瓜视频免费看黄片| 波多野结衣一区麻豆| 久久精品亚洲熟妇少妇任你| 国产日韩欧美亚洲二区| 国产 一区精品| 少妇 在线观看| 免费女性裸体啪啪无遮挡网站| 精品少妇久久久久久888优播| 一区二区日韩欧美中文字幕| 18禁国产床啪视频网站| 狂野欧美激情性xxxx| 久久久久久久国产电影| 一级片免费观看大全| 99久国产av精品国产电影| 男女午夜视频在线观看| 国产女主播在线喷水免费视频网站| 啦啦啦视频在线资源免费观看| 国产一卡二卡三卡精品 | 亚洲四区av| 国产成人精品久久二区二区91 | 亚洲第一av免费看| 国产一区二区在线观看av| 亚洲精品中文字幕在线视频| 亚洲精品久久久久久婷婷小说| 中文乱码字字幕精品一区二区三区| videosex国产| 国产人伦9x9x在线观看| 亚洲欧美色中文字幕在线| 欧美日韩福利视频一区二区| 久久人人爽人人片av| 天天操日日干夜夜撸| 亚洲综合精品二区| 国产在线免费精品| 久久久久人妻精品一区果冻| 日韩精品免费视频一区二区三区| 性少妇av在线| 免费黄网站久久成人精品| 亚洲色图 男人天堂 中文字幕| 最近的中文字幕免费完整| 国产免费福利视频在线观看| 大片免费播放器 马上看| 亚洲在久久综合| 搡老乐熟女国产| 久久婷婷青草| 又粗又硬又长又爽又黄的视频| 国产在线一区二区三区精| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 超色免费av| 国产 精品1| 国产免费福利视频在线观看| 亚洲国产欧美网| 大香蕉久久网| 久久精品久久精品一区二区三区| a级片在线免费高清观看视频| 欧美日韩亚洲国产一区二区在线观看 | 宅男免费午夜| 亚洲国产精品一区三区| 1024香蕉在线观看| 久久青草综合色| 国产精品.久久久| 一本久久精品| 午夜福利网站1000一区二区三区| 日韩 亚洲 欧美在线| 亚洲激情五月婷婷啪啪| 亚洲精品成人av观看孕妇| 51午夜福利影视在线观看| 啦啦啦视频在线资源免费观看| 日韩,欧美,国产一区二区三区| 亚洲,一卡二卡三卡| 久久精品aⅴ一区二区三区四区| 777米奇影视久久| 精品国产一区二区三区四区第35| 欧美少妇被猛烈插入视频| 亚洲精华国产精华液的使用体验| 国产一区亚洲一区在线观看| 老汉色∧v一级毛片| 欧美人与性动交α欧美精品济南到| 悠悠久久av| 日韩大码丰满熟妇| 一区二区三区激情视频| 中文欧美无线码| 日韩制服丝袜自拍偷拍| 国产一区二区在线观看av| 亚洲av成人不卡在线观看播放网 | 午夜福利视频在线观看免费| 亚洲免费av在线视频| 在线观看一区二区三区激情| 菩萨蛮人人尽说江南好唐韦庄| 国产爽快片一区二区三区| 夫妻性生交免费视频一级片| 日本欧美国产在线视频| 亚洲欧美一区二区三区黑人| 午夜久久久在线观看| 国产不卡av网站在线观看| 国产男女内射视频| 亚洲成人免费av在线播放| 成人三级做爰电影| 亚洲,欧美,日韩| 亚洲成人手机| 国产成人精品久久久久久| 欧美日韩av久久| 婷婷色麻豆天堂久久| 国产精品久久久久久久久免| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 国产成人免费观看mmmm| 久久精品熟女亚洲av麻豆精品| 久久久久久久久免费视频了| 成年人免费黄色播放视频| netflix在线观看网站| 国产成人精品在线电影| 一二三四中文在线观看免费高清| 你懂的网址亚洲精品在线观看| 成年人午夜在线观看视频| 久久久久久久久久久久大奶| 国产黄色视频一区二区在线观看| 亚洲精品自拍成人| 少妇 在线观看| 欧美日韩成人在线一区二区| 激情视频va一区二区三区| av福利片在线| 国产在线一区二区三区精| av片东京热男人的天堂| 乱人伦中国视频| 七月丁香在线播放| 一级爰片在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品二区激情视频| 综合色丁香网| 久久鲁丝午夜福利片| 在线观看免费高清a一片| 亚洲人成77777在线视频| 一本久久精品| 亚洲七黄色美女视频| 97人妻天天添夜夜摸| 久久久久久久久久久久大奶| 一级a爱视频在线免费观看| 欧美精品一区二区免费开放| 男人舔女人的私密视频| 亚洲综合色网址| 一本一本久久a久久精品综合妖精| 青青草视频在线视频观看| 欧美激情极品国产一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲av日韩在线播放| 亚洲精品第二区|