• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Structure, and Optical Limiting Properties of an Axial Substituted Bis(8-oxide quinoline)zirconium Phthalocyanine①

    2019-01-05 09:34:34YOUMingHuaFANGXinLINMeiJin
    結(jié)構(gòu)化學(xué) 2018年12期

    YOU Ming-Hua FANG Xin LIN Mei-Jin

    ?

    Synthesis, Structure, and Optical Limiting Properties of an Axial Substituted Bis(8-oxide quinoline)zirconium Phthalocyanine①

    YOU Ming-Huaa, bFANG XinbLIN Mei-Jinb②

    a(350002,)College of Chemistry, Fuzhou University, Fuzhou, China

    A novel bis(8-oxide quinoline)zironium phthalocyanine [(OQ)2ZrPc] with two 8-oxide quinolone anions at the same axial positions has been successfully synthesized and its chemical structure has been assigned by the1H NMR, MS and two-dimensional correlation infrared (2IR) spectroscopy as well as by single-crystal X-ray structural analysis. It possessed a moderately effective nonlinear absorption coefficientβof 6.69×10-14cm/GW at 532 nm in DMF solution, implying it is a promising candidate for nonlinear optical materials.

    phthalocyanines, zirconium complex, axial substitution, single-crystal structure, optical limiting properties;

    1 INTRODUCTION

    Organic optical limiting materials are an emer- ging class of active organic materials whose trans- mission is high when they are illuminated by low- intensity light but low when exposed to intense laser radiation[1-3].Because of their potential applications in the protection of optical sensors from high- intensity laser beams, the search for better organic optical limiting materials has become increasingly interesting. Some criteria necessary for large, posi- tive nonlinear absorption have been summarized, including a large excited state cross section, and a large difference between the ground and excited state absorption cross sections.A variety of organic materials have been found to fulfill these conditions in the visible region[4-6],for example, fullerenes,por- phyrins and asymmetrical conjugated systems[7-9].

    Phthalocyanines (Pcs) is an attractive class of porphyrin homologues with larger-electron conjugations, which have been demonstrated to be promising organic optical limiting materials[10-13]. However, comparison of nonlinear absorption coef- ficientsfor Pcs with and without axial substituents indicates that those with axial substituents,PcVO, PcTiO, PcAlF, PcGaCl, PcInCl,have large nonlinear absorption coefficients[14-18]. The main reason for this is that the axial substitution in phthalocyanine (Pc) complexeshas provoked relevant changes: (1) modification of the electronic structures of the Pc molecules by altering the-electronic distribution; (2) introduction of a dipole moment perpendicular to the Pc planes; (3) incorporation of new steric effects that alter the spatial relationships between neighboring molecules, thus altering the magnitude of the intermolecular interactions[19]. As a versatile class of the axial substituted Pcs, zirconium (IV, Zr) Pcs meet the above-mentioned criteria well. More importantly, due to the unique coordination patterns of Zr4+cations, up to four coordination sites are free for further coordination at the same axial position of the ZrPcs, and thus much larger room is left to regulate their optical limiting properties by the axial substituents in comparison with the reported Pcs with only one coordination site at the axial position. To our surprise, no related report is available.

    To compensate this leak, herein we report a novel axially substituted ZrPc with two 8-oxide quinolone anions at the same axial positions, (OQ)2ZrPc, and its chemical structure has been characterized by the1H NMR, mass spectral (MS) and two-dimensional correlation infrared (2-IR) spectroscopy as well as by single-crystal X-ray structural analysis. Owing to the introduction of two 8-oxide quinolone anions at the axial positions, the supramolecular interactions between the neighboring Pc molecules are remarkably weakened, particularly in solutions. The nonlinear optical properties of this unique complex have been studied by the open aperture-scan and normalized transmittance, which showed a modera- tely effective nonlinear absorption coefficienteffof 6.69 × 10-14cm/GW but a high transmittance of 78% at 532 nm in DMF solution, implying it is a promising candidate for nonlinear optical materials.

    2 EXPERIMENTAL

    2. 1 Materials and measurements

    Phtalonitrile (97%), 2-methylnaphthalene, 1- chloronaphthalene, 8-hydroxyquinoline (HOQ), and zirconium chloride (ZrCl4) were obtained from commercial suppliers. All chemicals and reagents were used as received unless otherwise stated. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400 spectrometer with working frequencies of 400 MHz. Chemical shifts are given in parts per million (ppm) and referred to TMS as internal standard.1H coupling constantsare given in Hertz (Hz). Mass spectrum was recor- ded on a Deca xp MAX ion trap mass spectrometer.Powder X-ray diffraction (PXRD) intensities were recorded on a Rigaku Mini Flex-II X-Ray diffractometer. The UV/Vis spectrum was recorded on a Perkins Elmer Lambda 900 spectrometer equipped with a PTP-1 Peltier temperature con- troller. The single-crystal diffraction data were collected on a Rigaku Saturn 724 CCD area detector diffractometer and the 2-IR correlation spectra were recorded on a Perkin-Elmer spectrum 2000 FT-IR spectrometer using KBr pellets, with the increasing temperature from 50 to 120 ℃at an interval of 10 ℃. The temperature variation was controlled by a portable programmable temperature controller (Model 50-886, Love Control Corporation). Two-dimensional IR correlation spectra were obtained by the treatment of a series of dynamic spectra with 2-IR correlation analysis software provided by Tsinghua University.

    2. 2 Synthesis of (OQ)2ZrPc

    To a 1-chloronaphthalene (14 mL) solution of phtalonitrile (6.41 g, 50.0 mmol) and 2-methyl- naphthalene (1.77 g, 12.5 mmol), 2.92 g ZrCl4(12.5 mmol) was added and the mixture was reacted under 220 ℃ for about 5 h. After the solution cooled down to 50 ℃, the solid separated out from the solution was collected by filtration and then washed with benzene (~500 mL) and methanol (~500 mL) repeatedly until the color of the washing solvent changed to light blue. After being dried under 80 ℃, dark blue powder (2.37 g, 65.4%) was obtained as Cl2ZrPc. The sample was used without further characterizations. Around 0.02 g blue solid obtained (0.069 mmol) and 0.39 g HOQ (2.69 mmol) were dissolved in tetrahydrofuran (THF, 20 mL) and stirred for 6 hours under room temperature, and then the solution was filtrated. After the THF solvent was slowly evaporated under room temperature, dark blue small single crystals appeared in the solution. After filtration and drying under 40 ℃, 0.022 g crystalline (OQ)2ZrPc (62.7%) was obtained.1H NMR (400 MHz, CDCl3), ppm: 9.39~9.36 (q, 4H), 9.14~9.11 (q, 4H), 8.31~8.29 (q, 4H), 8.05~8.03 (q, 4H), 7.47 (d, 2H), 7.23 (t, 4H), 7.04 (t, 4H), 5.72 (d, 2H). MS (ESI): 913.2 (100%, M + 23), 1804.6 (60%, 2M + 23), 1820.2 (65%, 2M++ 2H2O).

    2. 3 Structure determination

    Crystal data for (OQ)2ZrPc were collected using a Rigaku-AFC7 equipped with a Rigaku Saturn CCD area-detector system and multi-layer mirror monochromated Moradiation (= 0.71073 ?) at 173 K under a cold nitrogen stream. The frame data were integrated and absorption correction using a Rigaku CrystalClear program package. All calculations were performed with the SHELXTL-97 program package[20], and the structure was solved by direct methods and refined by full-matrix least-squares against2. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms of organic ligands were generated theoretically onto the specific atoms.

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis and characterizations

    As deposited in Scheme 1, dichloro ZrPc (Cl2ZrPc) was prepared according the reported procedure with minor modification[21, 22]. Due to the high reactive of ZrCl4, to avoid the potential hydrolysis, high-boiling solvent 1-chloronaphtha- lene was used during the synthesis of Cl2ZrPc. Moreover, in this step, the addition of 2-methylna- phthalene is to avoid the possible chlorination of benzene ring because the generation of free chlorine radical during the tetramization of phthalonitrile forms Pc macrocycle, which can be quenched by this easy-chlorinated reagent. The chlorinated 2-methylnaphthalene is easily removed from reaction mixture by filtration and washed with benzene and methanol solvents. Subsequently, the substitution of the two chlorine atoms in Cl2ZrPc by 8-hydroxyquinoline resulted in the target compound (OQ)2ZrPc in a yield of 62.7%. This isolated complex with additional axial substituents is soluble in most organic solvents (THF, toluene, chloroform and other).

    Scheme 1. Synthesis of (OQ)2ZrPc

    The chemical structure of (OQ)2ZrPc has been assigned by1H NMR, MS and two-dimensional correlation infrared (2-IR, for details, see the following section) spectroscopy as well as by single-crystal and powder X-ray diffraction analysis.Single crystals of (OQ)2ZrPc suitable for X-ray diffraction analyses were obtained by dissolving the pure (OQ)2ZrPc in a solvent mixture (THF/ethanol = 90:10 by volume), followed by slow evaporation of the solvents within several days. The obtained crystal has been characterized by single-crystal X-ray analysis at 153 K, which unequivocally con- firm the asymmetrically structure of (OQ)2ZrPc with two deprotonated 8-hydroxyquinoline moieties at one axial side (Fig. 1a). The purity of crystalline materials generated was also investigated by powder X-ray diffraction (Fig. 1b). The later study revealed a single phase for which a good fit between the simulated and observed patterns was observed for (OQ)2ZrPc, further confirming its high purity of this unique organic compound.

    As shown in Fig. 1a, in each (OQ)2ZrPc molecule, the central Zr4+cation adopts a square antiprism coordination geometry filled by four inner N atoms from one Pc ligand through Zr?N bonds (dZr?N= 2.29~2.31 ?), as well as two N and two O atoms from two deprotonated 8-hydroxyquinoline ligands through Zr?N (dZr?N= 2.40~2.43 ?) and Zr?O bonds (dZr?N= 2.11~2.13 ?), respectively. Due to the bond lengths between Zr4+and four inner N atoms of Pc ligand (2.29~2.31 ?) much larger than the half distances between two opposite inner N atoms ((3.89~3.91 ?)/2 ≈ 1.95 ?), the Pc skeleton adopts a dome-like distortion with the dihedral angles between the opposite isoindole units of 14.87° and 20.29°, respectively. Alternatively, the size of Zr4+cation is larger than the inner hole of the four isoindole N atoms of Pc ligand, and thus situated outside the plane of four inner N atoms with a distance of 1.22 ?. Compared to the common Zr?N bonds in the reported ZrPcs (dZr?N≈ 2.20 ?)[23],those in this work are slightly increased, which might be attributed to the introduction of 8-oxide quinolone anions at the axial positions, indirectly confirming the impact of the axial ligands on theelectronic distributions. Also owing to the introduction of axial ligands, the neighboring two Pc molecules are slightly slipped and coupled into Pc pairs through···interactions with an overlap of only one isoindole unit and a distance of 3.56 ? (Figs. 1c~1d), slightly larger than the thickness value of common aromatic system (3.50 ?)[22].However, in the crystal, the neighboring two Pc pairs are perpendicularly interconnected by weak C?H···hydrogen bonds to form a three-dimen- sional structure with voids filled by the disordered THF solvent molecules.

    Fig. 1. Molecular structure (a) and powder XRD (b) of (OQ)2ZrPc, as well as the close pair of the neighboring two of (OQ)2ZrPc with two different views (c, d). For clarity, H atoms and THF solvent molecules are omitted in (c) and (d), and the two axial 8-oxide quinolone anions are also omitted in (d)

    3. 2 Thermally perturbed 2D-IR correlation spectral properties

    The weak intermolecular interactions in the solid-state (OQ)2ZrPc are also reflected in thermally perturbed two-dimensional correlation infrared (2-IR) spectroscopic studies[24, 25]. As shown in Fig. 2, at the low wavenumber region (900~1600 cm-1) in the synchronous spectrum (Fig. 2a), three correlations at 1334, 1488, and 1507 cm-1along the diagonal line in the range of 900~1600 cm-1were observed, which can be assigned to the stretching and deformation of isoindole moieties of Pc rings, as well as the vibrations of OQ and Pc rings, respectively[26-28]. Due to the increased measure temperature, all these characteristic peaks observed are somewhat shifted to the high-wavenumber region. Moreover, two negative plots at (1334, 1488 cm-1) and (1488, 1507 cm-1) were observed, indicating that the reverse direction of the intensity variations of peak 1488 cm-1both to peaks 1334 and 1507 cm-1. However, in asynchronous spectrum (Fig. 2a), the positive cross-peaks at (1334, 1488 cm-1) and (1334, 1507 cm-1) have been detected. Considering the intense breathing vibrations for the aromatic rings of OQ but medium for those of Pc at around 1500 cm-1, those at 1488 and 1507 cm-1are supposed to be resulted from the vibrations of OQ. Accordingly, these two positive cross-peaks are ascribed to the thermal perturbation of OQ rings. Similarly, at the high wavenumber region (2600~3400cm-1) in the synchronous spectrum (Fig. 2b), the broad and strong peaks at the ranges of 2800~3000and 3000~3200 cm-1indicate the vibration of C?H···hydrogen bonds between THF and the aromatic rings. Considering the weak supramo- lecular interactions revealed in the single-crystal structure and 2-IR spectroscopic studies, in order to avoid aggregation, the optical limiting properties of (OQ)2ZrPc have been studied in solutions, which is substantiated by the following UV-Vis absorption spectroscopic investigations.

    Fig. 2. Thermally perturbed 2D synchronous (left) and asynchronous (right) IR correlation spectra of (OQ)2ZrPc at 900~1600 cm-1(a) and 2600~3400 cm-1(b) under 50~120 ℃

    3. 3 UV-Vis absorption properties

    The UV-Vis absorption properties of (OQ)2ZrPc have been studied both in dimethylformamide (DMF) and crystalline state. As shown in Fig. 3, in DMF at 10-4mol·L-1, two pronounced absorption bands, namely the intense Q-band with an absorp- tion maximum at 682 nm and a shoulder at 615 nm in visible region, as well as B band with an absorption maximum at 345 nm in UV region, were observed, which are assigned to the-transition of Pcs. Due to the incorporation of two 8-oxide quinoline (OQ-) at the axial positions, the absorp- tion maximum of (OQ)2ZrPc is shifted hypsochro- mically by 2~6 nm in comparison to those of the ZrPc with two chlorine (absorption maximum at688 nm[9]) or two-diketonates at axial positions (absorption maximum at684 nm[29]). However, in crystalline state, the absorption maximum of (OQ)2ZrPc is 606 nm, which is much blue-shifted in comparison to that in DMF, accompanied by two shoulder bands at 655 and 735 nm, which are supposed to be attributed to the elimination of solvent effect, as well as the exciton effect evoked from slipped-stacking of Pc molecules. Compared with these two spectroscopic properties, almost no aggregation species of (OQ)2ZrPc were observed in DMF solution of 10-4mol·L-1.

    Fig. 3. UV-Vis absorption of (OQ)2ZrPc in DMF (solid line, 10-4mol·L-1) and in crystalline state (dashed-dotted line) at room temperature

    3. 4 Optical limiting properties

    Based on the above studies, (OQ)2ZrPc is anticipated to be a potential candidate for the optical limiting materials. Thus, a DMF solution of (OQ)2ZrPc with a concentration of 10-4mol·L-1has been recorded on the standard open-aperture-scan technique using 8 ns Gaussian pulses from a Q-switched Nd:YAG laser at 532 nm, with a pulse repetition rate of 1 Hz. The beam was spatially filtered to remove the higher order modes and focused with a 30 cm focal length lens and the energy of single pulse was 40, 110, 210, 319 and 455 μJ. As shown in Fig. 4a, the-scan profiles of the title compound in the open-aperture configura- tion exhibit that at each of the excitation energy, the concentrated solution of (OQ)2ZrPc shows a decreasing transmission as the focal position is approached and incident frequence increases, implying that (OQ)2ZrPc has a positive nonlinear absorption coefficient, and behaves as a “reverse saturable absorber” for nanosecond pulses at 532 nm.The effective nonlinear absorption coefficientwas estimated to be 6.69 × 10-14cm/GW, which is close to the common axial substituted metallo- phthalocyanines[30-32]. The normalized transmittance of (OQ)2ZrPc in DMF versus the input frequency at 532 nm with the linear transmittance of 78% is presented in Fig. 4b, which exhibits the trans- mittance remains constant at low input frequencies but begins to decrease when the frequency exceeds ~0.1 J×cm?2. This frequency-dependent transmittance feature is a typical optical limiting response.

    Fig. 4. Typical open aperture-scan traces of the DMF solution of (OQ)2ZrPc (10-4mol·L-1) with a pulse intensity of0= 37, 110, and 319 uJ at 532 nm (a) and its normalized transmittance as a function of the input frequency at 532 nm (b)

    4 CONCLUSION

    In summary, we have reported a novel ZrPc bearing two 8-oxide quinoline anions at the same axial side. Due to the introduction of two 8-oxide quinolone anions at the axial positions, the nonlinear optical properties of this unique complex studied by the open aperture-scan and normalized transmittance showed that it possessed a moderately effective nonlinear absorption coefficienteffof 6.69 × 10-14cm/GW at 532 nm in DMF solution, implying it is a promising candidate for optical limiting materials.

    (1) Nalwa, H. S. Organic materials for nonlinear optics.1993, 5, 341–358.

    (2) Bredas, J. L.; Adant, C.; Tackx, P.; Persoons, A.Third-order nonlinear optical response in organic materials: theoretical and experimental aspects.1994, 94, 243–278.

    (3) Spangler, C. W.Recent development in the design of organic materials for optical power limiting.1999, 9, 2013–2020.

    (4) Smilowitz, L.; McBranch, D.; Klimov, V.; Robinson, J. M.; Koskelo, A.; Grigorova, M.; Mattes, B. R.; Wang, H.; Wudl, F. Enhanced optical limiting in derivatized fullerenes.1996, 21, 922–924.

    (5) Sun, Y. P.; Riggs, J. E.; Liu, B.Optical limiting properties of [60]fullerene derivatives.1997, 9, 1268–1272.

    (6) Tutt, L. W.; Boggess, T. F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials.1993, 17, 299–338.

    (7) Liu, Z. B.; Tian, J. G.; Guo, Z.; Ren, D. M.; Du, F.; Zheng, J. Y.; Chen, Y. S. Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes.2008, 20, 511–515.

    (8) Calvete, M.; Yang, G. Y.; Hanack, M.Porphyrins and phthalocyanines as materials for optical limiting.2004, 141, 231–243.

    (9) Du, Y.; Dong, N.; Zhang, M.; Zhu, K.; Na, R.; Zhang, S.; Sun, N.; Wang, G.; Wang, J.Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting.2017, 19, 2252–2260.

    (10) Hanack, M.; Schneider, T.; Barthel, M.; Shirk,J. S.; Flom, S. R.; Pong, R. G. S. Indium phthalocyanines and naphthalocyanines for optical limiting.2001, 219, 235–258.

    (11) Chen, Y.; Hanack, M.; Arakic, Y.; Ito, O.Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting.2005, 34, 517–529.

    (12) Chen, Y.; Gao, L.; Feng, M.; Gu, L.; He, N.; Wang, J.; Araki, Y.; Blau, W. J.; Ito, O. Photophysical and optical limiting properties of axially modified phthalocyanines.2009, 6, 55–65.

    (13) Dini, D.; Calvete, J. F. M.; Hanack, M.Nonlinear optical materials for the smart filtering of optical radiation.2016, 116, 13043–13233.

    (14) Shirk, J. S.; Pong, R. G. S.; Bartoli, F. J.; Snow, A. W.Optical limiter using a lead phthalocyanine.1993, 63, 1880–1882.

    (15) Shirk, J. S.; Pong, R. G. S.; Flom, S. R.; Bartoli, F. J.; Boyle, M. E.; Snow, A. W.Lead phthalocyanine reverse saturable absorption optical limiters.1996,5, 701–707.

    (16) Managa, M.; Khene, S.; Britton, J.; Martynov, A. G.; Gorbunova, Y. G.; Tsivadze, A. Y.; Nyokong, T. Photophysics and NLO properties of Ga(III) and In(III) phthalocyaninates bearing diethyleneglycol chains.2018, 22, 137–148.

    (17) Wang, T.; Wang, X.; Zhang, J.; Wang, C.;Shao, J.; Jiang, Z.; Zhang, Y. Synthesis, structure and third-order optical nonlinearities of hyperbranched metal phthalocyanines containing imide units.2018, 154, 75–81.

    (18) Perry, J. W.; Mansour, K.; Lee, I. Y. S.; Wu, X. L.; Bedworth, P. V.; Chen, C. T.; Ng, D.; Marder, S. R.; Miles, P.; Wada, T.; Tian, M.; Sasabe, H.Organic optical limiter with a strong nonlinear absorptive response.1996, 273, 1533–1536.

    (19) Shirk, J. S.; Pong, R. G. S.; Flom, S. R.; Heckmann, H.; Hanack, M.Effect of axial substitution on the optical limiting properties of indium phthalocyanines.2000, 104, 1438–1449.

    (20) Sheldrick, G. M.. University of G?ttingen, Germany 1997.

    (21) Tomachynski, L. A.; Tretyakova, I. N.; Chernii, V. Y.; Volkov, S. V.; Kowalska, M.; Legendziewicz, J.; Gerasymchuk, Y. S.; Radzki, S.Synthesis and spectral properties of Zr(IV) and Hf(IV) phthalocyanines with-diketonates as axial ligands.2008, 361, 2569–2581.

    (22) Gorsch, M.; Franken, A.; Sievertsen, S.; Homborg, H. Zirconiumphthalocyanine: darstellung und eigenschaften chloridhaltiger phthalocyanine des drei-und vierwertigen zirconiums; kristallstruktur von-di(triphenylphosphin)iminium-tri(chloro)phthalocyaninato(2-)zirconat(IV)- di(dichlormethan).1995, 621, 607–616.

    (23) Hunter, C. A.; Sanders, J. K. M. The nature of-interactions.1990, 112, 5525–5534.

    (24) Chen, Y.; Shen, X.; Zhang, H.; Huang, C.; Cao, Y.; Sun, R. The structure and two-dimensional correlation infrared spectroscopy study of a new 2polyoxomolybdate complex containing-octamolybdate linked up by potassium ions: (4,4?-Hbpy)2(K2Mo8O26).2006, 40, 142–147.

    (25) Chen, Y.; Zhang, H.; Wang, X.; Huang, C.; Cao, Y.; Sun, R. Structure and two-dimensional correlation infrared spectroscopy study of two isomeric forms of the octamolybdate cluster.2006, 179, 1674–1680.

    (26) Zhang, X.; Zhang, Y.; Jiang, J. Towards clarifying the N–M vibrational nature of metallo-phthalocyanines: infrared spectrum of phthalocyanine magnesium complex: density functional calculations.2004, 60, 2195–2200.

    (27) Jiang, J.; Arnold, D. P.; Yu, H. Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes.1999, 18, 2129–2139.

    (28) Ar?c?, K.; Yurdakul, M.; Yurdakul, S. HF and DFT studies of the structure and vibrational spectra of 8-hydroxyquinoline and its mercury(II) halide complexes.2005, 61, 37–43.

    (29) Chernii, V. Y.; Bon, V. V.; Tretyakova, I. N.; Severinovskaya, O. V.; Volkov, S. V. Novel zirconium(IV) and hafnium(IV) phthalocyanines with dibenzoylmethane as out-of-plane ligand: Synthesis, X-ray structure and fluorescent properties.2012, 94, 187–194.

    (30) O’Flaherty, S. M.; Hold, S. V.; Cook, M. J.; Torres, T.; Chen, Y.; Hanack, M.; Blau, W. J. Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics.2003, 15, 19–32.

    (31) Chen, Y.; Fujitsuka, M.; O'Flaherty, S. M.; Hanack, M.; Ito, O.; Blau, W. J. Strong optical limiting of soluble axially substituted gallium and indium phthalocyanines.2003, 15, 899–902.

    (32) Chen, Y.; O'Flaherty, S.; Fujitsuka, M.; Hanack, M.; Subramanian, L. R.; Ito, O.; Blau, W. J. Synthesis, characterization, and optical-limiting properties of axially substituted gallium(III) naphthalocyanines.2002, 14, 5163–5168.

    15 July 2018;

    13 August 2018 (CCDC 1848514 for (OQ)2ZrPc)

    ① This work was supported by the Natural Science Foundation of Fujian Province (2018J01431 and 2018J01690) as well as Research?Foundation?of?Education?Bureau?of?Fujian Province (JT180813)

    . Prof. Lin Mei-Jin, for the research interests, see homepage: http://supramol.fzu.edu.cn; E-mail: meijin_lin@fzu.edu.cn

    10.14102/j.cnki.0254–5861.2011–2132

    国产成人91sexporn| 欧美zozozo另类| 美女内射精品一级片tv| 中文字幕制服av| 久久久欧美国产精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲天堂av无毛| 亚洲欧洲日产国产| 色婷婷久久久亚洲欧美| av黄色大香蕉| 成人免费观看视频高清| 亚洲真实伦在线观看| 亚洲内射少妇av| 精品久久久精品久久久| 尤物成人国产欧美一区二区三区| 黄色一级大片看看| 视频区图区小说| 一级毛片久久久久久久久女| 日本黄色片子视频| 亚洲欧美成人精品一区二区| 国内少妇人妻偷人精品xxx网站| 观看av在线不卡| av免费观看日本| av在线蜜桃| 韩国高清视频一区二区三区| 亚洲av免费高清在线观看| 日本一二三区视频观看| 国产成人a∨麻豆精品| 97热精品久久久久久| 人人妻人人添人人爽欧美一区卜 | 在现免费观看毛片| 国产一区二区在线观看日韩| 精品熟女少妇av免费看| 国产有黄有色有爽视频| 波野结衣二区三区在线| 黄色日韩在线| 午夜福利在线观看免费完整高清在| 亚洲一区二区三区欧美精品| 在线观看免费日韩欧美大片 | 中文在线观看免费www的网站| 亚洲美女搞黄在线观看| 国产精品免费大片| 又粗又硬又长又爽又黄的视频| 国产男人的电影天堂91| 又粗又硬又长又爽又黄的视频| 九色成人免费人妻av| 久久久精品94久久精品| 欧美zozozo另类| 高清欧美精品videossex| 亚洲欧美一区二区三区国产| 久久久久久久国产电影| av在线app专区| 少妇的逼水好多| 岛国毛片在线播放| 成年美女黄网站色视频大全免费 | 成年免费大片在线观看| 久久精品国产亚洲av涩爱| av播播在线观看一区| 欧美性感艳星| 内地一区二区视频在线| 久久久久久久久久久免费av| 久久久久视频综合| 国内精品宾馆在线| 久久人人爽人人片av| 观看免费一级毛片| 97超碰精品成人国产| 中文资源天堂在线| 波野结衣二区三区在线| 久久久亚洲精品成人影院| 哪个播放器可以免费观看大片| 99久久中文字幕三级久久日本| 2018国产大陆天天弄谢| 综合色丁香网| 大香蕉97超碰在线| a级毛色黄片| av在线app专区| 蜜桃在线观看..| 欧美日韩综合久久久久久| 亚洲精品自拍成人| 亚洲欧美成人综合另类久久久| 国产国拍精品亚洲av在线观看| 一区二区三区四区激情视频| 欧美一区二区亚洲| 精品久久久久久久末码| 日韩 亚洲 欧美在线| 欧美 日韩 精品 国产| 蜜桃亚洲精品一区二区三区| 午夜免费男女啪啪视频观看| av免费观看日本| 黄色怎么调成土黄色| 国产精品嫩草影院av在线观看| 亚洲图色成人| 国产精品麻豆人妻色哟哟久久| 赤兔流量卡办理| 岛国毛片在线播放| 午夜福利网站1000一区二区三区| 成人黄色视频免费在线看| 日韩三级伦理在线观看| 国产高清国产精品国产三级 | 97超碰精品成人国产| 欧美日韩综合久久久久久| 亚洲精品,欧美精品| 一本—道久久a久久精品蜜桃钙片| 我要看日韩黄色一级片| 午夜免费鲁丝| 高清毛片免费看| 全区人妻精品视频| 又粗又硬又长又爽又黄的视频| 国产精品99久久99久久久不卡 | 亚洲av成人精品一区久久| 身体一侧抽搐| 18禁在线播放成人免费| videos熟女内射| 永久网站在线| 综合色丁香网| 国产色爽女视频免费观看| 我的老师免费观看完整版| av一本久久久久| 久久99热6这里只有精品| 久久久久国产网址| 亚洲自偷自拍三级| 亚洲av综合色区一区| 国产精品一区二区三区四区免费观看| 中国三级夫妇交换| 日韩一区二区三区影片| 看十八女毛片水多多多| 亚洲国产欧美人成| 亚洲av综合色区一区| 网址你懂的国产日韩在线| 久久久久精品久久久久真实原创| 亚洲美女黄色视频免费看| 夜夜爽夜夜爽视频| 久久久a久久爽久久v久久| 亚洲性久久影院| 人人妻人人澡人人爽人人夜夜| 亚洲精品自拍成人| 日韩大片免费观看网站| 噜噜噜噜噜久久久久久91| 国语对白做爰xxxⅹ性视频网站| 久久久久性生活片| 男人添女人高潮全过程视频| 色网站视频免费| 最黄视频免费看| 亚洲精品国产色婷婷电影| 国产精品嫩草影院av在线观看| 老熟女久久久| 久久精品国产亚洲av涩爱| 深夜a级毛片| 亚洲怡红院男人天堂| av又黄又爽大尺度在线免费看| 91精品国产九色| 国产日韩欧美在线精品| 乱码一卡2卡4卡精品| 欧美+日韩+精品| 国产精品一区二区性色av| av免费在线看不卡| 日本猛色少妇xxxxx猛交久久| 国产精品女同一区二区软件| 亚洲va在线va天堂va国产| 极品教师在线视频| 亚洲欧美成人精品一区二区| 大话2 男鬼变身卡| 精品一区二区免费观看| 精品少妇久久久久久888优播| 韩国高清视频一区二区三区| 欧美变态另类bdsm刘玥| 成人毛片a级毛片在线播放| 丰满人妻一区二区三区视频av| 少妇猛男粗大的猛烈进出视频| 亚洲精品456在线播放app| kizo精华| 高清黄色对白视频在线免费看 | 亚洲国产精品一区三区| 亚洲精品乱码久久久v下载方式| 1000部很黄的大片| av卡一久久| 日韩电影二区| 26uuu在线亚洲综合色| 日本欧美国产在线视频| 成人高潮视频无遮挡免费网站| 18禁裸乳无遮挡动漫免费视频| 少妇 在线观看| 女人久久www免费人成看片| 久久久国产一区二区| 婷婷色av中文字幕| 纵有疾风起免费观看全集完整版| 国产成人a∨麻豆精品| 成人一区二区视频在线观看| 亚洲欧美成人综合另类久久久| 久久久久精品性色| 黄色日韩在线| 观看美女的网站| videos熟女内射| 国产极品天堂在线| 大香蕉97超碰在线| 久久久久久久久久久免费av| 十分钟在线观看高清视频www | 亚洲怡红院男人天堂| 丰满少妇做爰视频| 亚洲国产精品国产精品| 欧美精品一区二区免费开放| 精品人妻熟女av久视频| 欧美区成人在线视频| 国产高清国产精品国产三级 | 麻豆国产97在线/欧美| 极品教师在线视频| 亚洲精品久久久久久婷婷小说| 精品久久久久久久末码| 麻豆成人av视频| 18禁裸乳无遮挡动漫免费视频| 少妇人妻精品综合一区二区| 97超碰精品成人国产| 亚洲成人中文字幕在线播放| 日本一二三区视频观看| av专区在线播放| 亚洲欧美一区二区三区黑人 | 菩萨蛮人人尽说江南好唐韦庄| 日韩中文字幕视频在线看片 | 久久久久国产网址| 日本与韩国留学比较| 久久影院123| 麻豆乱淫一区二区| 国产成人午夜福利电影在线观看| 欧美精品人与动牲交sv欧美| 久久久精品94久久精品| 国产 精品1| 国产午夜精品一二区理论片| 亚洲一区二区三区欧美精品| 国产一区二区在线观看日韩| 久久韩国三级中文字幕| 在线播放无遮挡| 久久99热这里只有精品18| 麻豆乱淫一区二区| 欧美精品一区二区大全| 春色校园在线视频观看| h日本视频在线播放| 男女国产视频网站| 精品视频人人做人人爽| 久久久久久伊人网av| 国产精品国产三级国产专区5o| 国产精品久久久久久久电影| 午夜福利视频精品| 久久毛片免费看一区二区三区| 久久99热这里只有精品18| 建设人人有责人人尽责人人享有的 | 黄色一级大片看看| 青青草视频在线视频观看| 亚洲第一av免费看| 成人国产av品久久久| 婷婷色综合www| 99国产精品免费福利视频| 欧美精品国产亚洲| 国产乱人偷精品视频| 免费观看av网站的网址| 久久热精品热| 99精国产麻豆久久婷婷| 亚洲成人中文字幕在线播放| 欧美性感艳星| 亚洲av不卡在线观看| 一个人看的www免费观看视频| 久久久成人免费电影| 精品一区二区三区视频在线| 色5月婷婷丁香| 少妇人妻 视频| 婷婷色综合www| 国产在线一区二区三区精| 国产中年淑女户外野战色| 国产成人a区在线观看| 亚洲成色77777| 色婷婷av一区二区三区视频| 日韩免费高清中文字幕av| 精品亚洲成a人片在线观看 | 亚洲国产精品一区三区| 丰满饥渴人妻一区二区三| 国产在线视频一区二区| 18禁黄网站禁片午夜丰满| 国语对白做爰xxxⅹ性视频网站| 欧美在线黄色| 天天躁夜夜躁狠狠久久av| av天堂久久9| 亚洲精品国产av蜜桃| 少妇裸体淫交视频免费看高清 | 91成人精品电影| 天天操日日干夜夜撸| 成人影院久久| 黄色 视频免费看| 国产免费现黄频在线看| 婷婷色综合大香蕉| a级毛片在线看网站| 成人影院久久| 晚上一个人看的免费电影| 99re6热这里在线精品视频| 日本色播在线视频| 久久久久久久精品精品| 久久人人97超碰香蕉20202| 国产精品av久久久久免费| 国产成人欧美在线观看 | 超碰97精品在线观看| 中文字幕人妻丝袜一区二区| 亚洲av成人精品一二三区| 亚洲精品日本国产第一区| 深夜精品福利| 菩萨蛮人人尽说江南好唐韦庄| a级毛片黄视频| 国产伦理片在线播放av一区| 久久精品久久久久久噜噜老黄| 一本大道久久a久久精品| 亚洲人成网站在线观看播放| 日本午夜av视频| 久热爱精品视频在线9| 男女免费视频国产| 亚洲精品国产av成人精品| 久久久国产精品麻豆| 日本av手机在线免费观看| 国产一卡二卡三卡精品| 亚洲精品国产色婷婷电影| 一区福利在线观看| 国产激情久久老熟女| 午夜影院在线不卡| 国产精品亚洲av一区麻豆| 伊人久久大香线蕉亚洲五| 久久精品亚洲av国产电影网| 精品国产超薄肉色丝袜足j| 久久久亚洲精品成人影院| www日本在线高清视频| 国产一区二区三区综合在线观看| 大码成人一级视频| 国产高清视频在线播放一区 | 最新的欧美精品一区二区| 日日夜夜操网爽| 波多野结衣av一区二区av| 色精品久久人妻99蜜桃| 99久久综合免费| 日韩电影二区| 亚洲av成人精品一二三区| 国产精品熟女久久久久浪| 国产精品国产av在线观看| 日本午夜av视频| 亚洲欧美清纯卡通| 亚洲久久久国产精品| 亚洲伊人久久精品综合| 亚洲三区欧美一区| 欧美xxⅹ黑人| 啦啦啦在线免费观看视频4| 国产成人系列免费观看| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美网| avwww免费| 亚洲熟女精品中文字幕| 美女国产高潮福利片在线看| 19禁男女啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 国产亚洲av片在线观看秒播厂| 国产欧美日韩综合在线一区二区| 国产无遮挡羞羞视频在线观看| 大香蕉久久成人网| 亚洲国产最新在线播放| 90打野战视频偷拍视频| 少妇猛男粗大的猛烈进出视频| 在线天堂中文资源库| 亚洲精品久久午夜乱码| 国产三级黄色录像| netflix在线观看网站| 波野结衣二区三区在线| 人妻人人澡人人爽人人| 亚洲九九香蕉| 99国产精品一区二区三区| 天堂中文最新版在线下载| 老司机深夜福利视频在线观看 | av又黄又爽大尺度在线免费看| 天天躁狠狠躁夜夜躁狠狠躁| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区激情| 色综合欧美亚洲国产小说| 日韩视频在线欧美| 夫妻午夜视频| 久久久欧美国产精品| 国产人伦9x9x在线观看| 在线精品无人区一区二区三| 日日摸夜夜添夜夜爱| 19禁男女啪啪无遮挡网站| 丁香六月欧美| 最近中文字幕2019免费版| 丰满少妇做爰视频| 男女免费视频国产| 一级a爱视频在线免费观看| 色精品久久人妻99蜜桃| 韩国高清视频一区二区三区| 婷婷色综合大香蕉| 国产在线一区二区三区精| 免费不卡黄色视频| 国产一区有黄有色的免费视频| 精品欧美一区二区三区在线| 久久久国产欧美日韩av| av福利片在线| 国产亚洲av高清不卡| 国产女主播在线喷水免费视频网站| 国产黄色免费在线视频| 中国国产av一级| 黑人巨大精品欧美一区二区蜜桃| 免费看十八禁软件| 欧美精品啪啪一区二区三区 | 久久久久国产精品人妻一区二区| videosex国产| 亚洲欧洲精品一区二区精品久久久| 国产深夜福利视频在线观看| 亚洲精品久久久久久婷婷小说| 老司机深夜福利视频在线观看 | 欧美日韩亚洲综合一区二区三区_| 亚洲av电影在线观看一区二区三区| 搡老岳熟女国产| 日本午夜av视频| 黄色视频在线播放观看不卡| 色94色欧美一区二区| 国产日韩一区二区三区精品不卡| 美女视频免费永久观看网站| 岛国毛片在线播放| 一区二区av电影网| 日韩免费高清中文字幕av| 精品一品国产午夜福利视频| 亚洲激情五月婷婷啪啪| 婷婷色综合www| 国产精品九九99| 国产精品 欧美亚洲| 极品少妇高潮喷水抽搐| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品古装| 满18在线观看网站| 又黄又粗又硬又大视频| 久久女婷五月综合色啪小说| 亚洲 欧美一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲免费av在线视频| 亚洲专区中文字幕在线| 美女主播在线视频| 亚洲精品中文字幕在线视频| 国产色视频综合| 国产精品一区二区精品视频观看| 国产成人精品无人区| 一本久久精品| 岛国毛片在线播放| 国产av国产精品国产| 人妻一区二区av| 可以免费在线观看a视频的电影网站| 久久人人97超碰香蕉20202| 99久久精品国产亚洲精品| 免费少妇av软件| 中文字幕最新亚洲高清| 看十八女毛片水多多多| 在现免费观看毛片| 久久性视频一级片| 日本五十路高清| 大码成人一级视频| 亚洲国产精品一区三区| 十八禁网站网址无遮挡| 一本综合久久免费| 亚洲av欧美aⅴ国产| 国产精品一二三区在线看| 在线观看免费午夜福利视频| 在线观看一区二区三区激情| 在线观看国产h片| 大香蕉久久网| 五月天丁香电影| 欧美亚洲 丝袜 人妻 在线| 热re99久久精品国产66热6| 久久这里只有精品19| 精品国产一区二区三区四区第35| 久久久久久久久免费视频了| 99精国产麻豆久久婷婷| 少妇 在线观看| 婷婷色综合大香蕉| 亚洲第一av免费看| 91老司机精品| 香蕉丝袜av| 亚洲五月色婷婷综合| 欧美日韩一级在线毛片| 国产真人三级小视频在线观看| 美女扒开内裤让男人捅视频| 久久久久精品人妻al黑| 夜夜骑夜夜射夜夜干| 久久天躁狠狠躁夜夜2o2o | 亚洲精品乱久久久久久| 18禁国产床啪视频网站| 男男h啪啪无遮挡| 99国产精品一区二区蜜桃av | 大码成人一级视频| 高清视频免费观看一区二区| 亚洲欧美清纯卡通| 大香蕉久久成人网| 新久久久久国产一级毛片| 国产精品三级大全| 亚洲中文av在线| 久久久久网色| 国产熟女午夜一区二区三区| 国产日韩欧美在线精品| 黄色怎么调成土黄色| 少妇裸体淫交视频免费看高清 | 国产在线观看jvid| 久久人人爽av亚洲精品天堂| 亚洲九九香蕉| 韩国高清视频一区二区三区| 女人精品久久久久毛片| 欧美老熟妇乱子伦牲交| 一级毛片我不卡| 又大又爽又粗| 亚洲国产精品国产精品| 中文字幕最新亚洲高清| 色网站视频免费| 亚洲五月色婷婷综合| 国产麻豆69| 国产av一区二区精品久久| 丁香六月欧美| 母亲3免费完整高清在线观看| 午夜视频精品福利| 久久久国产一区二区| 日韩,欧美,国产一区二区三区| 欧美国产精品va在线观看不卡| 欧美成狂野欧美在线观看| 一个人免费看片子| 色视频在线一区二区三区| 亚洲九九香蕉| 啦啦啦啦在线视频资源| 各种免费的搞黄视频| 高清视频免费观看一区二区| 不卡av一区二区三区| 欧美日韩视频精品一区| 国产xxxxx性猛交| 精品一区二区三区av网在线观看 | 久久狼人影院| av在线播放精品| 国产免费福利视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品国产一区二区精华液| www.av在线官网国产| 国产精品久久久久久精品电影小说| 欧美日韩一级在线毛片| 日韩欧美一区视频在线观看| 99久久综合免费| 国产黄色免费在线视频| 国产亚洲av片在线观看秒播厂| 亚洲人成电影免费在线| 精品视频人人做人人爽| 美女福利国产在线| 国产黄色免费在线视频| 国产亚洲精品第一综合不卡| 久久人人爽av亚洲精品天堂| 国产免费福利视频在线观看| 中文字幕制服av| 欧美中文综合在线视频| 亚洲人成77777在线视频| 欧美成人午夜精品| 亚洲成国产人片在线观看| 精品少妇黑人巨大在线播放| a级毛片黄视频| 亚洲欧洲国产日韩| 1024香蕉在线观看| 我要看黄色一级片免费的| 一区在线观看完整版| 成年动漫av网址| 99久久综合免费| 超色免费av| 在线观看一区二区三区激情| 亚洲 欧美一区二区三区| av网站免费在线观看视频| 亚洲av成人不卡在线观看播放网 | 日韩中文字幕欧美一区二区 | 欧美人与善性xxx| 女性被躁到高潮视频| av福利片在线| 午夜免费男女啪啪视频观看| 国产在视频线精品| 婷婷色综合大香蕉| 国产精品久久久人人做人人爽| 天天躁日日躁夜夜躁夜夜| 制服诱惑二区| av天堂在线播放| 国产精品 欧美亚洲| 人人妻人人爽人人添夜夜欢视频| 国产1区2区3区精品| 亚洲av电影在线进入| 在线 av 中文字幕| 亚洲精品自拍成人| 波多野结衣av一区二区av| av国产精品久久久久影院| 日韩av不卡免费在线播放| 精品亚洲成国产av| 亚洲,一卡二卡三卡| 亚洲精品日韩在线中文字幕| 波多野结衣av一区二区av| 国精品久久久久久国模美| 久久精品成人免费网站| 亚洲成人免费av在线播放| 国产精品免费大片| 人妻一区二区av| 国产成人精品久久二区二区免费| 你懂的网址亚洲精品在线观看| 久久久久网色| 高清黄色对白视频在线免费看| 又紧又爽又黄一区二区| 香蕉国产在线看| 91成人精品电影| 久久ye,这里只有精品| 啦啦啦 在线观看视频| 在线观看免费高清a一片| 亚洲欧美精品自产自拍| 久热爱精品视频在线9| 麻豆国产av国片精品| 国产亚洲av片在线观看秒播厂| 夫妻午夜视频| 在线天堂中文资源库| 高清欧美精品videossex| 18在线观看网站| 亚洲av成人不卡在线观看播放网 |