• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Characterization of Compounds Containing 1,2,3-Triazole via Click Reaction and Ag(I) Complex①

    2019-01-05 09:34:32LIWenSiFENGShengYu
    結(jié)構化學 2018年12期

    LI Wen-Si FENG Sheng-Yu

    ?

    Synthesis and Characterization of Compounds Containing 1,2,3-TriazoleClick Reaction and Ag(I) Complex①

    LI Wen-Si FENG Sheng-Yu②

    (250100)

    In this work, 1,4-bis(4-phenyl-1,2,3-triazole)benzene, 1,3-bis(4-phenyl-1,2,3-tria- zole)propane, bis(1-phenyl-1,2,3-triazole)-methylphenylsilane, and 1-ally-4-phenyl-1,2,3-triazole have been designed and synthesized via Click reaction. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR) were used to confirm the compounds’ structures. The effect of silicon atom on the optical properties has also been studied. The UV-vis absorption wavelength of silicon-containing compound is about. 10 nm red-shifted when compared with that of other three compounds. The fluorescence emission bands of the compounds in CHCl3solutions were observed around440 nm. And the luminescent coordina- tion compound, namely [AgL1·NO3·3H2O]n, based on the ligand 1-allyl-4-phenyl-1,2,3-triazole has been prepared. In addition, this complex exhibits a 1D chain structure. The crystal structure has been determined by single-crystal X-ray diffraction, and the optical properties have been investigated byfluorescence spectrum. In summary, our work may provide new materials with luminescent property which is potentially useful in material fields.

    Click reaction, silicon-containing 1,2,3-triazole compounds, crystal structure;

    1 INTRODUCTION

    In recent years, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has been widely acknowledged for different purposes, varying from traditional organic synthesis to excellent materials[1, 2]. In 2001, Sharpless reported the reaction of azido compounds and high active alkyne, which is fast, reliable and steady[3, 4].Then Sharpless[5]also found the catalyzed effect of Cu(I) on the reaction of inactive alkyne and azido compounds, and came up with the conception of "Click chemistry". The Click reaction possesses characteristics as follows: mild reaction conditions, simple operations, fast reactive rate, high yield, single configuration products and immune from the effects of oxygen, water and other factors[4].And now, the Click reaction has appealed to more and more researchers because of its 1,2,3- triazolyl unit. Different kinds of ligands containing silicon atoms or 1,2,3-triazolyl units have received much attention owing to their specific and selective properties. With the development of technology, it has been demonstrated that CuAAC method can be used to generate a functionalized 1,2,3-triazole Click ring in excellent yields due to its wide applications in both material and pharmaceutical chemical industry.

    Nowadays, luminescent metal-organic frameworks have continued to engender great interest due to their potential applications in molecular recognition, selective gas adsorption and gas storage[6-9]. In the meantime, designed synthesis containing 1,2,3-tria- zolyl ring organic ligands and relevant coordination compounds has also attracted researchers’ interest. Previously, most researchers have focused on the coordination of N3 located in 1,2,3-triazolyl ring and metal ions[10-14]. However, people now have moved on to the coordination of N2 located in the 1,2,3- triazolyl ring and metal ions[15-17]. The 1,2,3-triazole prepared by CuAAC Click reaction has provided us an effective method to construct more novel com- plexes and supramolecular functional systems.

    It’s known to all that Ag+is a good candidate especially in the purposeful construction of lumine- scent metal-organic frameworks owing to its fantastic coordination ability. Ag(?) complexes with their metal cations adopting10configuration have drawn more and more attention because of their stronger fluorescence properties and potential appli- cations as functional luminescent materials[18]. For instance, according to literatures some kinds of Ag(?) complexes can be employed as organic light- emitting diodes (OLEDs) and “turn-on” fluorescent sensors[19].Recently, a great number of novel ligands have been explored and then constructed into metal-organic frameworks via coordination bonds or supramolecular interactions such as hydrogen bonds and-stacking.

    This paper reports a series of compounds con- taining 1,2,3-triazolyl units prepared via Click reac- tion and their optical properties have been investi- gated by means of ultraviolet and fluorescence spec- tra. The absorption maximum of phenyl units of C3 is around 285 nm, and there is 5 to 10 nm red-shift compared to other compounds prepared in this work. This result could be ascribed to the silicon atom’s influence on the electrondelocalization.

    As is well-known, Ag+is readily able to coor- dinate to two or six ligands. For further study, the author has constructed a novel complex, namely, [AgL1·NO3·3H2O]n, which has not been reported yet. Two ligands bridge each other through the Ag(I) ions center and lead to a 1D chain structure. In order to obtain more information about optical properties of this complex, luminescent property has been inves- tigated, which indicates strong fluorescent emissions.

    2 EXPERIMENTAL

    2. 1 General

    Anhydrous tetrahydrofuran (THF) and diethyl ether (Et2O) were freshly distilled over sodium and benzophenone before use. 1,4-Diazidobenzene was prepared according to the reported procedure[16].1,3-Diazidopropane, 1-azidobenzene and 3-azidopro- pene were prepared by modifying the reported procedure[17]. Diethynylmethylphenylsilane was prepared from reported papers elsewhere[18, 19]. Trimethylsilylacetylene and other chemicals were purchased from Aldrich and used as received unless otherwise noted[20].

    FT-IR spectra were recorded with a Bruker Tensor27 spectrophotometer.1H NMR and13C NMR spectra were measured using CDCl3and DMSO-d6as solvents on a Bruker AVANCE-300 NMR Spec- trometer. UV-vis absorption and fluorescence spectra were analyzed with UV-7502PC and ISS K2-Digital spectrophotometers, respectively. Fluorescence quantum yields were measured using quinine sulfate in 0.1 N H2SO4(Ф = 54.6%) as standard. TGA was carried out under nitrogen flow at a heating rate of 10 ℃/min on a MettlerToledo SDTA-854 TGA system.

    2. 2 Preparation of compounds containing 1,2,3-triazolyl units Preparation of C1

    C1 was prepared according to the reported pro- cedure[18]. Data for C1: pale yellow solid (Yield = 48%);1H NMR (in DMSO-d6) 9.47 (s, 2H), 7.97(d, 4H), 7.53 (d, 4H), 7.3 (m, 6H); FT-IR (KBr plate) 3126(=CH-N), 3058, 1518, 845, 821cm-1. Anal. Calcd. (%) for C22H16N6: C, 72.53; H, 4.40; N, 23.07. Found (%): C, 72.61; H, 4.41; N, 22.98.

    Preparation of C2

    1,3-Diazidopropane (1 mmol, 0.126 g), phenyl- acetylene (2 mmol, 0.204 g), CuSO4(2mol%, 0.0032 g), sodium ascorbate (10 mol%, 0.0176 g) and water/TBA were stirred for 24 h at 70 ℃. Then the mixture was poured into EtOAc and washed with H2O, and dried over MgSO4, filtered and distilled under reduced pressure. Then the crude product was purified and gave a pale yellow solid (Yield: 35%).1H NMR (in DMSO-d6) 7.9 (s, 2H, C=CH), 7.49 (d, 4H, ArH), 7.34 (d, 4H, ArH), 7.2 (s, 4H, ArH), 3.76(s, 2H, CH2), 2.3(d, 2H, CH2); FT-IR (KBr plate) 3128(=CH-N), 1538, 1268, 768 cm-1. Anal. Calcd. (%) for C19H18N6: C, 69.09; H, 5.45; N, 25.45. Found (%): C, 69.22; H, 5.51; N, 24.27%.

    Preparation of C3

    The mixture of diethynylmethylphenylsilane (2 mmol, 0.34 g), 1-azidobenzene (2 mmol, 0.244 g), CuI (0.0191 g, 5 mol%), pyridine (0.5 mL) and DMF (5 mL) was stirred for 24 h at 60 ℃ in the dark. Then the mixture obtained was extracted by EtOAc and washed with H2O, then dried over MgSO4, filtered and distilled under reduced pressure. The crude product was purified by a silica gel column (PE:EtOAc = 3:2) to give C3 as a pale yellow solid (Yield: 31%).1H NMR (in DMSO-d6) 8.49 (s, 2H, C=CH), 7.58 (d, 4H, ArH), 7.46 (d, 4H, ArH), 7.2 (s, 10H, ArH), 0.46(s, 6H, CH3); FT-IR (KBr plate) 3125(=CH-N), 3061, 2961, 1260(Si-CH3), 758 cm-1. Anal. Calcd. (%) for C30H22N6: C, 77.25; H, 4.72; N, 18.03. Found (%): C, 77.06; H, 4.81; N, 18.13%.

    Preparation of C4

    3-Azidopropene (0.166 g, 2 mmol), phenylacety- lene (2 mmol, 0.204 g), CuSO4(2 mol%, 0.0064 g), sodium ascorbate (10 mol%, 0.0352 g), and water/TBA were stirred for 24 h at 65 ℃. Then the mixture was poured into EtOAc and washed with H2O, and dried over MgSO4, filtered and distilled under reduced pressure. Then the crude product was purified by a silica gel column (PE:EtOAc = 3:2) and gave a pale yellow solid (Yield: 51%).1H NMR (in DMSO-d6) 8.65(s, 1H), 7.87 (d, 2H), 7.45(d, 2H), 7.35 (s, 1H), 6.12 (s, 1H), 5.275 (d, 2H), 5.07(d, 2H); FT-IR (KBr plate) 3132(=CH-N), 3100, 2414 cm-1. Anal. Calcd. (%) for C11H11N3: C, 71.35; H, 5.95; N, 22.7. Found (%): C, 71.20; H, 5.765; N, 21.43.

    2. 3 Preparation of [AgL1·NO3·3H2O]n

    C4 (0.04 mmol, 7.4 mg) dissolved in CH2Cl2(4 mL) was spread in the under layer of colorimetric tube. Then CH2Cl2(2 mL) and CH3OH (2 mL) were added in order as buffer layer in the middle of the tube. At last, AgNO3(0.08 mmol, 13.6 mg) dissolved in CH3OH (4 mL) was spread above the buffer layer. The tube was placed in the dark place and colorless crystal was produced in the tube after two weeks (Yield = 67.5%). Anal. Calcd. (%) for C11H17AgN5O6: C, 33.1; H, 4.26; N, 17.5. Found (%): C, 33.2; H, 4.27; N, 17.3.

    2. 4 X-ray crystallography

    Diffraction intensities for the complex were collected on a Bruker SMART 1000 CCD diffrac- tometer with graphite-monochromatic Mo-radia- tion (= 0.7103 ?) by using the-2scan technique. The structure was solved by direct methods using the program SHELXS-97 and refined with full-matrix least-squares techniques using the program SHELXL-97. Continuously different Fourier trans- forms and corrections were assigned to all non-hy- drogen atoms. The organic hydrogen atoms of benzene rings were generated geometrically. The selected hydrogen bond lengths and bond angles for the complexes are listed in Table 1.

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis of compounds containing 1,2,3-triazolyl units via Click reaction

    It is known to all that the Cu(I) catalyst is very important in the Click reaction, and for clarity, we divide the obtaining methods of Cu(I) catalyst into A and B. As shown in Scheme 1, group of CuI, polar solvents, such as DMF and DMSO, and pyridine is one approach called method A; group of CuSO4, sodium ascorbate and water/TBA is the other approach called method B.

    Scheme 1. Syntheses of compounds containing 1,2,3-triazolyl units

    3. 2 Optical properties

    In Fig. S1, the absorption maximum wavelengths of all compounds show around 255 nm, attributed to-*electron transition of triazolyl units[18]. In addition, the absorption maximum of the phenyl unit of C3 is around 285 nm, and there is about 5 to 10 nm red-shift compared to those of other compounds. This result illuminates vacant 3-orbitals of silicon atoms have certain effects on the conjugation with adjacent π-conjugated systems. Thereby, the red-shift can be assigned to the electron delocalization of theelectron segments[19]. However, differences in the absorption of phenyl units between the silicon-con- taining compound and the compounds without silicon atoms are not obvious. This indicates that the silicon atom can influence the electron delocalization, but unfortunately, electronic transitions are not strong enough to connect the adjacent units.

    In Fig. S2, the fluorescence maxima of compounds are observed at the similar peaks440 nm when excited at 350 nm[18]. Owing to its more phenyl and 1,2,3-triazolyl units, the fluorescence intensity of C3 is stronger than that of other compounds. The author thinks this result should be assigned to two factors: one is that the silicon atom contributes an electronic communication, and the other is that-conjugation can effectively enhance the emission efficiency. The emission wavelength of C3 is about 5 nm blue-shift in comparison with those of other compounds, and this result indicates electron transitions between silicon atom and aromatic segments[18].

    In summary, the above results show that the silicon atoms have certain effects on the electronic com- munication with the adjacent-conjugated segments, nevertheless the influence is limited. Meanwhile, the fluorescence intensity was enhanced when there are more aromatic and 1,2,3-triazolyl units in the compounds due to the-conjugation.

    As shown in Fig. S3, at room temperature, upon excitation of solid samples of the ligand C4 and the Ag+complex (ex= 265 nm), the emission band maximum of C4 is at410 nm and that of the Ag+complex at400 nm, so there is blue-shift of about 10 nm for the Ag+complex. This cluster-based Ag(I) coordination complex increases the ligand conforma- tional rigidity, thereby reducing the non-radiative decay of the intraligand (-*) excited state. The preparation of this novel Ag(I) complex with 1,2,3- triazolyl unit can be an excellent method for obtai- ning more functional types of luminescent materials.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Complex 1

    Symmetry code: (i) ?x, ?y+1, ?z+2

    3. 3 Structure description

    As shown in Fig. 1, the crystal structure of the complex forms a six-membered ring which is con- nected with two silver ions and four nitrogen atoms. The N(1)–N(3) and N(2)–N(3) bond lengths are 1.311 and 1.332 ?, respectively. The neighboring 1,2,3-triazolyl units are coordinated to Ag(I) through more electron-rich nitrogen atoms. And centered on Ag(I), hexahedron spatial configuration was cons- tructed by two nitrogen and three oxygen atoms. The C–N bond lengths in triazole moiety are typical for triazole rings. For instance, the N(1)–C(8) and N(2)–C(12) both indicate a typical double bond character in 1.3424 and 1.3394 ?, respectively. In addition, the other C–C bond lengths fall in the normal range and it can be concluded that there are two kinds of hydrogen atoms from the bound water and hydrogen atoms at the carbon atoms.

    According to Tables 1 and 2, the combination ability of Ag(I) with N3 is stronger due to the bond length ranging from 2.28 to 2.29 ?, with the average to be 2.285 ?. In comparison, the combination ability of Ag(I) with N2 is weaker owing to the bond length varying from 2.3216 to 2.3332 ?, averaged by 2.3274 ?. Therefore, the coordination ability of N3 is much better than that of N2. In addition, according to the data, there is a deviation of 15.54obetween the angle of N×××Ag×××N and the angle of barycenter and two vertexes of standard regular tetrahedron. In Fig. 2, two ligands combined with two Ag atoms have constructed an Ag ion dimer. It is indicated that the nearest Ag×××Ag distance is 5.2900 ?, which is longer than the sum of the van der Waals radii of two Ag atoms (3.56 ?)[1-5]. Therefore, no stabilizing interac- tions exist between Ag···Ag.

    Fig. 1. Molecular structure of the complex

    Fig. 2. Packing diagram performs a 1D structure, with water molecules omitted for clarity

    3. 4 Thermal properties

    Fig. S4 shows thermal stability of the Ag+complex at a heating rate of 10 ℃/min under N2atmosphere. The Ag+complex exhibits normal heat-resistant pro- perties. There is a weight loss of about 6.9% ascribed to the removal of H2O from 27 to 100 ℃ compared to the theoretical value of 5.3%because the complex has some solvents. Then the product keeps the weight constant until 198 ℃ and then a fast weight loss occurs, which is obviously attributed to the break of the complex framework. Comparing the theoretical (27.1%) and actual (27.4%)[18]values indicates that the residue is elemental silver.

    4 CONCLUSION

    The author has synthesized a series of compounds containing 1,2,3-triazole and prepared the Ag(I) complex based on the ligand C4. Then optical pro- perties of the compounds and the complex have been investigated through ultraviolet and fluorescence spectra. By contrast of the optical properties of com- pound containing silicon atom and compounds without silicon atoms, the effect of silicon atom on the electronic communication has been displayed. Studies of the Ag(I) complex have also been explo- red by different measurements. Other compounds containing silicon atoms and 1,2,3-triazolyl units prepared via Click reaction are currently explored in progress for the potential applications in materials fields.

    (1) Zhao, H.; Zhu, Y. Q.; Feng, C. One novel Mn(II) complex with 1-substituted-1H-1,2,3-triazole-4-carboxylic acid: crystal structure, fluorescence and Hirshfeld surface analysis.. 2017, 36, 66–72.

    (2) Huo, L. N.; Chen, R.; Liao, Y. F.; Liu, H. G.; Li, P. Y.; Lu, R. M.; Zhong, Z. G. Synthesis, crystal structure and biological evaluation of acridine-1,2,3-triazole derivatives.2016, 35, 698–704.

    (3) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions.2001, 40, 2004–2021.

    (4) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes.2002, 41, 2596–2599.

    (5) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks.2002, 41, 1053–1057.

    (6) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. New three-dimensional lanthanide-alkali-heterometallic frameworks constructed from isonicotinic acid: synthesis, structures and properties..2014, 25, 581–590.

    (7) Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A. M. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions.2014, 3289–3306.

    (8) Schulze, B.; Schubert, U. S. Beyond click chemistry-supramolecular interactions of 1,2,3-triazoles.2014, 43, 2522–2571.

    (9) Huisgen, R. In 1,3-dipolar cycloaddition chemistry.1984, 1–176.

    (10) Zheng, Z. B.; Wu, R. T.; Li, J. K.; Sun, Y. F. Hydrothermal syntheses and structural characterization of four complexes with in situ formation of 1,2,3-triazole-4-carboxylate ligand.2009, 928, 78–84.

    (11) Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery.2003,24, 1128–1137.

    (12) Kharb, R.; Sharma, P. C.; Yar, M. S. Pharmacological significance of triazole scaffold.2011,26, 1–21.

    (13) Shanmugavelan, P.; Nagarajan, S.; Sathishkumar, M.; Ponnuswamy, A.; Yogeeswari, P.; Sriram, D. Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of mycobacterium tuberculosis.2011,24, 7273–7276.

    (14) Torn?e, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.2002,67, 3057–3064.

    (15) Stefani, H. A.; Vasconcelos, S. N.; Manarin, F.; Leal, D. M.; Souza, F. B.; Madureira, L. S.; Zukerman-Schpector, J.; Eberlin, M. N.; Godoi, M. N.; de Souza Galaverna, R. Synthesis of 5-organotellanyl-1-1,2,3-triazoles: functionalization of the 5-position Scaffold by the sonogashira cross-coupling reaction.2013,18, 3780–3785.

    (16) Ahmed, M. N.; Hameed, S.; Yasin, K. A.; Arshad, I.; Ihsan-ul-Haq.; Tahir, M. N. Synthesis, crystal structure and antimicrobial activity of ethyl 2-(1-cyclohexyl-4-phenyl-1-1,2,3-triazol-5-yl)-2-oxoacetate.2014,33, 1666–1672.

    (17) Ye, L. N.; Wu, C. Z.; Guo, W.; Xie, Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties.. 2006, 45, 4738–4740.

    (18) Wang, Y.; Wang, D.; Xu, C.; Wang, R.; Han, J.; Feng, S. Y. Click polymerization: synthesis of novel σ-π conjugated organosilicon polymers.2011, 696, 3000–3005.

    (19) Fletcher, J. T.; Bumgarner, B. J.; Engels, N. D.; Skoglund, D. A. Multidentate 1,2,3-triazole-containing chelators from tandem deprotection/Click reactions of (trimethylsilyl)alkynes and comparison of their ruthenium(II) complexes.2008, 27, 5430–5433.

    (20) Takagi, K.; Kakiuchi, H.; Yuki, Y.; Suzuki, M. Synthesis and optical properties of fluorene-based polymers incorporating organosilicon unit.():2007, 45, 4786–4794.

    21 February 2018;

    30 May 2018 (CCDC 1842462)

    ① This work was supported by the National Natural Science Foundation of China (No. 21274080)

    . E-mail: fsy@sdu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1999

    99精品久久久久人妻精品| 另类亚洲欧美激情| 如日韩欧美国产精品一区二区三区| 国产精品 国内视频| 久久久久视频综合| 久久久精品国产亚洲av高清涩受| 精品午夜福利视频在线观看一区| 一级片'在线观看视频| 午夜精品在线福利| 操出白浆在线播放| 十八禁网站免费在线| 久久国产乱子伦精品免费另类| 成年动漫av网址| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 夜夜爽天天搞| 又大又爽又粗| 亚洲av欧美aⅴ国产| 香蕉国产在线看| 99re6热这里在线精品视频| 女性生殖器流出的白浆| 精品国产一区二区三区久久久樱花| а√天堂www在线а√下载 | 国产精品二区激情视频| 999精品在线视频| a级毛片黄视频| 国产99白浆流出| 韩国av一区二区三区四区| 精品久久久精品久久久| 一二三四在线观看免费中文在| 欧美av亚洲av综合av国产av| 亚洲成人国产一区在线观看| 精品国产美女av久久久久小说| 可以免费在线观看a视频的电影网站| 纯流量卡能插随身wifi吗| 黄色怎么调成土黄色| bbb黄色大片| 久久ye,这里只有精品| 欧美人与性动交α欧美精品济南到| 91国产中文字幕| 最近最新免费中文字幕在线| 99香蕉大伊视频| 人妻 亚洲 视频| 精品卡一卡二卡四卡免费| 国产高清国产精品国产三级| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩综合在线一区二区| 人妻久久中文字幕网| 国产成人免费观看mmmm| 大型av网站在线播放| 男女床上黄色一级片免费看| 91字幕亚洲| 看免费av毛片| 国产欧美日韩综合在线一区二区| 人成视频在线观看免费观看| 久久久久久人人人人人| 在线观看午夜福利视频| 国产又色又爽无遮挡免费看| 777米奇影视久久| 国产免费av片在线观看野外av| 身体一侧抽搐| 国产精品1区2区在线观看. | 精品午夜福利视频在线观看一区| 精品久久久久久电影网| 久久国产精品大桥未久av| 一边摸一边抽搐一进一出视频| 国产亚洲精品一区二区www | 黑人操中国人逼视频| 人人妻人人澡人人看| 最新的欧美精品一区二区| 久久精品国产亚洲av高清一级| 亚洲精品成人av观看孕妇| 男女下面插进去视频免费观看| 国产一区二区激情短视频| 精品亚洲成国产av| 免费看a级黄色片| 免费日韩欧美在线观看| 亚洲成国产人片在线观看| 国产高清激情床上av| 在线观看午夜福利视频| 精品亚洲成国产av| 精品熟女少妇八av免费久了| 亚洲精品久久午夜乱码| 成年女人毛片免费观看观看9 | 韩国精品一区二区三区| 国产激情欧美一区二区| 久久国产精品人妻蜜桃| 国产国语露脸激情在线看| 国产精品av久久久久免费| 高清av免费在线| 99re在线观看精品视频| 窝窝影院91人妻| 国产精品永久免费网站| 最近最新中文字幕大全电影3 | 久久久久久久国产电影| 久久久久久久国产电影| 免费黄频网站在线观看国产| 国产在线观看jvid| 少妇 在线观看| 午夜两性在线视频| 亚洲欧洲精品一区二区精品久久久| 波多野结衣av一区二区av| 精品久久久久久久久久免费视频 | videos熟女内射| 新久久久久国产一级毛片| 国产野战对白在线观看| 777久久人妻少妇嫩草av网站| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久人人人人人| 精品久久久久久久久久免费视频 | 亚洲avbb在线观看| 国产有黄有色有爽视频| 国产单亲对白刺激| 亚洲五月天丁香| 人妻 亚洲 视频| 亚洲欧美精品综合一区二区三区| 日日夜夜操网爽| 国产精品一区二区免费欧美| 久久精品国产亚洲av高清一级| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一小说 | 91成年电影在线观看| 久久久久国产一级毛片高清牌| 交换朋友夫妻互换小说| 另类亚洲欧美激情| 丝袜美足系列| 免费av中文字幕在线| 久久国产精品人妻蜜桃| 国产人伦9x9x在线观看| 男女高潮啪啪啪动态图| 成人三级做爰电影| 一夜夜www| 免费观看人在逋| 满18在线观看网站| 青草久久国产| 青草久久国产| 很黄的视频免费| 亚洲免费av在线视频| 久久久精品国产亚洲av高清涩受| 女人精品久久久久毛片| 日韩一卡2卡3卡4卡2021年| 99热网站在线观看| 三级毛片av免费| 亚洲人成伊人成综合网2020| 久久久久国产一级毛片高清牌| 成人18禁高潮啪啪吃奶动态图| 久久人人爽av亚洲精品天堂| 国产在线精品亚洲第一网站| av一本久久久久| av福利片在线| 国产精品影院久久| 一级a爱视频在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 国产真人三级小视频在线观看| 在线国产一区二区在线| 一级a爱片免费观看的视频| 丝瓜视频免费看黄片| 国产成人欧美| 国产精品乱码一区二三区的特点 | 久久精品亚洲av国产电影网| 男人舔女人的私密视频| 精品无人区乱码1区二区| 视频在线观看一区二区三区| 黄色视频,在线免费观看| 在线永久观看黄色视频| 999久久久国产精品视频| 变态另类成人亚洲欧美熟女 | 欧美一级毛片孕妇| 日韩精品免费视频一区二区三区| 精品卡一卡二卡四卡免费| 午夜91福利影院| 黄色毛片三级朝国网站| 久久精品亚洲熟妇少妇任你| 97人妻天天添夜夜摸| 午夜免费鲁丝| 亚洲中文字幕日韩| 亚洲va日本ⅴa欧美va伊人久久| 香蕉久久夜色| 午夜91福利影院| 又黄又爽又免费观看的视频| 女人被躁到高潮嗷嗷叫费观| 自线自在国产av| 十八禁高潮呻吟视频| 午夜精品国产一区二区电影| 日韩制服丝袜自拍偷拍| 成人国产一区最新在线观看| 欧美乱码精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 成年女人毛片免费观看观看9 | 亚洲精品美女久久久久99蜜臀| 免费在线观看黄色视频的| 日韩欧美国产一区二区入口| 91成人精品电影| av天堂久久9| 啪啪无遮挡十八禁网站| 亚洲精品美女久久av网站| 黄频高清免费视频| 国产成人免费观看mmmm| 最近最新中文字幕大全电影3 | 精品熟女少妇八av免费久了| 如日韩欧美国产精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲性夜色夜夜综合| 日本五十路高清| 宅男免费午夜| 国产成人精品无人区| 精品人妻1区二区| 天天躁夜夜躁狠狠躁躁| 人妻 亚洲 视频| 99国产精品一区二区蜜桃av | 婷婷成人精品国产| 露出奶头的视频| 亚洲一区高清亚洲精品| 国产成人精品久久二区二区免费| 精品福利观看| 777久久人妻少妇嫩草av网站| 国产欧美日韩一区二区三| 黄片大片在线免费观看| 美女高潮到喷水免费观看| 99国产精品一区二区蜜桃av | 欧美精品av麻豆av| 在线永久观看黄色视频| 亚洲第一av免费看| 欧美黑人精品巨大| 欧美激情 高清一区二区三区| 亚洲成av片中文字幕在线观看| 母亲3免费完整高清在线观看| 夜夜爽天天搞| 国产成人一区二区三区免费视频网站| 美女视频免费永久观看网站| 日韩欧美一区视频在线观看| 九色亚洲精品在线播放| 国产精品一区二区精品视频观看| 成人国产一区最新在线观看| 国产精品免费一区二区三区在线 | 黄色成人免费大全| 午夜福利影视在线免费观看| 亚洲av成人不卡在线观看播放网| 精品久久久久久,| 欧美黑人欧美精品刺激| 亚洲精品粉嫩美女一区| 亚洲av成人一区二区三| 视频区图区小说| 亚洲国产中文字幕在线视频| 成人18禁在线播放| 精品午夜福利视频在线观看一区| 看片在线看免费视频| 亚洲午夜理论影院| 午夜日韩欧美国产| 黄色片一级片一级黄色片| 国产成人精品在线电影| 久久久国产精品麻豆| 十八禁网站免费在线| 国产成人av教育| 多毛熟女@视频| 热re99久久国产66热| 新久久久久国产一级毛片| 久久精品国产亚洲av香蕉五月 | 欧美黑人精品巨大| 国产不卡一卡二| 国产有黄有色有爽视频| 久9热在线精品视频| 成熟少妇高潮喷水视频| 亚洲欧美日韩另类电影网站| 婷婷精品国产亚洲av在线 | 亚洲五月天丁香| 亚洲人成伊人成综合网2020| 黑人猛操日本美女一级片| 手机成人av网站| 男人舔女人的私密视频| 深夜精品福利| 国产欧美日韩综合在线一区二区| 高清在线国产一区| 视频区图区小说| 亚洲人成伊人成综合网2020| 在线看a的网站| 成人手机av| 18禁裸乳无遮挡免费网站照片 | 热99re8久久精品国产| 欧美日韩一级在线毛片| 亚洲综合色网址| 亚洲色图av天堂| 亚洲精品在线观看二区| 国产真人三级小视频在线观看| 精品免费久久久久久久清纯 | 国产免费男女视频| 丰满人妻熟妇乱又伦精品不卡| 国产成人影院久久av| 精品无人区乱码1区二区| 欧美日韩福利视频一区二区| 久久亚洲精品不卡| 精品人妻熟女毛片av久久网站| 香蕉国产在线看| 精品无人区乱码1区二区| 老司机福利观看| 国产亚洲欧美98| 老司机深夜福利视频在线观看| 热re99久久精品国产66热6| 丁香欧美五月| 久久人妻福利社区极品人妻图片| 91av网站免费观看| 老汉色∧v一级毛片| 男女午夜视频在线观看| 婷婷精品国产亚洲av在线 | 久久久久国产精品人妻aⅴ院 | 老汉色∧v一级毛片| 国产又色又爽无遮挡免费看| 精品人妻在线不人妻| 国产精品久久久人人做人人爽| 日本wwww免费看| 中出人妻视频一区二区| 人妻丰满熟妇av一区二区三区 | 国产1区2区3区精品| 成人永久免费在线观看视频| 欧美精品亚洲一区二区| 飞空精品影院首页| 女人高潮潮喷娇喘18禁视频| 日韩欧美一区视频在线观看| 免费高清在线观看日韩| 90打野战视频偷拍视频| 国产成人精品无人区| 最近最新免费中文字幕在线| 亚洲视频免费观看视频| 久久中文看片网| 宅男免费午夜| 欧美黑人精品巨大| 满18在线观看网站| 国产精品美女特级片免费视频播放器 | 最近最新免费中文字幕在线| 国产单亲对白刺激| 欧美 亚洲 国产 日韩一| 国产xxxxx性猛交| 人人妻人人爽人人添夜夜欢视频| 一区福利在线观看| 亚洲精华国产精华精| 91大片在线观看| 一进一出抽搐gif免费好疼 | 国产精品国产av在线观看| 视频区图区小说| 国产亚洲精品久久久久久毛片 | 人妻丰满熟妇av一区二区三区 | 天堂√8在线中文| 欧美另类亚洲清纯唯美| 久久久久久人人人人人| 亚洲av熟女| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩一区二区三区在线| 国产男女超爽视频在线观看| 高清av免费在线| 国产亚洲精品久久久久久毛片 | 国产99久久九九免费精品| 午夜福利视频在线观看免费| 18在线观看网站| 免费一级毛片在线播放高清视频 | 精品少妇久久久久久888优播| 乱人伦中国视频| 男女免费视频国产| 日韩有码中文字幕| av线在线观看网站| а√天堂www在线а√下载 | 不卡一级毛片| 日韩欧美免费精品| www.精华液| 不卡一级毛片| 久久久久久久精品吃奶| 久久天躁狠狠躁夜夜2o2o| 精品乱码久久久久久99久播| 久久午夜亚洲精品久久| 国产成人av教育| 嫩草影视91久久| 国产日韩欧美亚洲二区| 老鸭窝网址在线观看| 日韩欧美在线二视频 | 国产精品电影一区二区三区 | 满18在线观看网站| 成人三级做爰电影| 国产精品永久免费网站| 一本大道久久a久久精品| 久久香蕉精品热| 99re6热这里在线精品视频| 日本撒尿小便嘘嘘汇集6| 少妇猛男粗大的猛烈进出视频| 一区二区三区激情视频| 亚洲精品国产区一区二| 久久久水蜜桃国产精品网| 欧美色视频一区免费| 咕卡用的链子| 精品国产一区二区三区四区第35| 亚洲精品中文字幕一二三四区| 大码成人一级视频| 激情在线观看视频在线高清 | 黄色 视频免费看| 一进一出好大好爽视频| 极品教师在线免费播放| 丝袜人妻中文字幕| 多毛熟女@视频| 久热爱精品视频在线9| 欧美激情 高清一区二区三区| 一边摸一边抽搐一进一小说 | 亚洲欧美日韩高清在线视频| 久久久久久久国产电影| 久久久水蜜桃国产精品网| 操出白浆在线播放| 好看av亚洲va欧美ⅴa在| 亚洲国产精品sss在线观看 | 中文字幕色久视频| www.自偷自拍.com| 亚洲人成电影观看| 少妇猛男粗大的猛烈进出视频| 大型黄色视频在线免费观看| 18禁美女被吸乳视频| 热99re8久久精品国产| 国产亚洲精品一区二区www | 成在线人永久免费视频| 亚洲精品乱久久久久久| 女性被躁到高潮视频| 精品人妻在线不人妻| 亚洲国产精品sss在线观看 | 成人特级黄色片久久久久久久| 日韩三级视频一区二区三区| 久久九九热精品免费| 怎么达到女性高潮| 天天躁狠狠躁夜夜躁狠狠躁| 国产伦人伦偷精品视频| 国产成人啪精品午夜网站| 国产精品免费视频内射| 亚洲,欧美精品.| 女性生殖器流出的白浆| 很黄的视频免费| 亚洲精品成人av观看孕妇| 一本一本久久a久久精品综合妖精| 三级毛片av免费| 99国产精品一区二区三区| 亚洲第一av免费看| 制服诱惑二区| 一级毛片精品| 在线视频色国产色| 久久精品91无色码中文字幕| 高清在线国产一区| av中文乱码字幕在线| 狠狠婷婷综合久久久久久88av| 一区二区三区精品91| 国产1区2区3区精品| www.999成人在线观看| 少妇猛男粗大的猛烈进出视频| 宅男免费午夜| 91老司机精品| 精品人妻熟女毛片av久久网站| 久久人妻av系列| 欧美在线黄色| 国产精品欧美亚洲77777| 国产精品久久久av美女十八| 可以免费在线观看a视频的电影网站| 亚洲全国av大片| 久久午夜亚洲精品久久| 日韩制服丝袜自拍偷拍| 精品国产一区二区久久| 欧美成人午夜精品| 最近最新免费中文字幕在线| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av高清一级| 怎么达到女性高潮| 啦啦啦 在线观看视频| 9色porny在线观看| 一个人免费在线观看的高清视频| 亚洲国产欧美网| 狠狠婷婷综合久久久久久88av| 精品久久久精品久久久| 丝袜美腿诱惑在线| 在线观看免费高清a一片| 免费高清在线观看日韩| 亚洲av片天天在线观看| 19禁男女啪啪无遮挡网站| 看免费av毛片| 80岁老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 在线观看一区二区三区激情| 成人国语在线视频| 午夜福利乱码中文字幕| 亚洲精品国产色婷婷电影| 国产免费av片在线观看野外av| 欧美中文综合在线视频| 国产野战对白在线观看| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| av超薄肉色丝袜交足视频| 精品国产亚洲在线| 久久天躁狠狠躁夜夜2o2o| 欧美 日韩 精品 国产| 国产精品.久久久| 99久久99久久久精品蜜桃| 大香蕉久久网| 精品国产国语对白av| 在线天堂中文资源库| 丰满迷人的少妇在线观看| 国产一区二区三区综合在线观看| 亚洲情色 制服丝袜| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频| 久久久久精品人妻al黑| 国产成+人综合+亚洲专区| 国产欧美亚洲国产| 黑人操中国人逼视频| 亚洲av电影在线进入| 正在播放国产对白刺激| 大香蕉久久网| 亚洲av成人一区二区三| 久久99一区二区三区| 一本大道久久a久久精品| 欧美日韩成人在线一区二区| 亚洲精品中文字幕在线视频| 男人操女人黄网站| 亚洲欧美日韩另类电影网站| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线 | 黄色成人免费大全| 一级片免费观看大全| 丰满饥渴人妻一区二区三| 久久精品亚洲av国产电影网| 三上悠亚av全集在线观看| 欧美日韩福利视频一区二区| 久久人人97超碰香蕉20202| 大码成人一级视频| 天天影视国产精品| 亚洲免费av在线视频| 日本黄色视频三级网站网址 | 亚洲精品美女久久av网站| 国产精品成人在线| 久99久视频精品免费| 一二三四在线观看免费中文在| 亚洲一码二码三码区别大吗| 亚洲国产欧美网| 两个人免费观看高清视频| 色尼玛亚洲综合影院| 99国产极品粉嫩在线观看| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 国产精品久久视频播放| 国产精品国产高清国产av | 亚洲一码二码三码区别大吗| 看黄色毛片网站| 久久中文看片网| 女人精品久久久久毛片| 中文字幕精品免费在线观看视频| 捣出白浆h1v1| 中文字幕另类日韩欧美亚洲嫩草| 人妻久久中文字幕网| 国产精品亚洲一级av第二区| 天堂动漫精品| 高清av免费在线| 18禁观看日本| 如日韩欧美国产精品一区二区三区| 手机成人av网站| 日韩熟女老妇一区二区性免费视频| 色综合欧美亚洲国产小说| 亚洲欧美色中文字幕在线| 一级作爱视频免费观看| 亚洲中文字幕日韩| 男人的好看免费观看在线视频 | 欧美黄色片欧美黄色片| 丰满人妻熟妇乱又伦精品不卡| 国产三级黄色录像| 男男h啪啪无遮挡| 免费观看人在逋| 女性被躁到高潮视频| 久久午夜亚洲精品久久| 丝瓜视频免费看黄片| 99热网站在线观看| 搡老岳熟女国产| 午夜久久久在线观看| 久久久水蜜桃国产精品网| 精品高清国产在线一区| 国产成人影院久久av| 国产精品影院久久| 很黄的视频免费| 18禁国产床啪视频网站| 久久 成人 亚洲| 亚洲欧美一区二区三区黑人| 亚洲精品一卡2卡三卡4卡5卡| 久99久视频精品免费| 亚洲专区中文字幕在线| 18禁黄网站禁片午夜丰满| 国产深夜福利视频在线观看| 欧美日韩福利视频一区二区| 波多野结衣av一区二区av| 久久人妻av系列| 18禁国产床啪视频网站| 91精品国产国语对白视频| 欧美日韩中文字幕国产精品一区二区三区 | 一级,二级,三级黄色视频| 天堂俺去俺来也www色官网| 最新在线观看一区二区三区| 久久精品aⅴ一区二区三区四区| 91老司机精品| 天堂动漫精品| 99久久99久久久精品蜜桃| 亚洲av日韩在线播放| 超碰97精品在线观看| 免费不卡黄色视频| 国产一区在线观看成人免费| 中文字幕人妻熟女乱码| 久久国产精品男人的天堂亚洲| 高清在线国产一区| 1024香蕉在线观看| 免费一级毛片在线播放高清视频 | www.999成人在线观看| 一边摸一边抽搐一进一出视频| 人人妻人人澡人人看| 亚洲成人国产一区在线观看| 欧美 亚洲 国产 日韩一| 精品熟女少妇八av免费久了| 欧美午夜高清在线| 91九色精品人成在线观看| 波多野结衣一区麻豆| 亚洲国产看品久久|