• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Characterization of Compounds Containing 1,2,3-Triazole via Click Reaction and Ag(I) Complex①

    2019-01-05 09:34:32LIWenSiFENGShengYu
    結(jié)構化學 2018年12期

    LI Wen-Si FENG Sheng-Yu

    ?

    Synthesis and Characterization of Compounds Containing 1,2,3-TriazoleClick Reaction and Ag(I) Complex①

    LI Wen-Si FENG Sheng-Yu②

    (250100)

    In this work, 1,4-bis(4-phenyl-1,2,3-triazole)benzene, 1,3-bis(4-phenyl-1,2,3-tria- zole)propane, bis(1-phenyl-1,2,3-triazole)-methylphenylsilane, and 1-ally-4-phenyl-1,2,3-triazole have been designed and synthesized via Click reaction. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR) were used to confirm the compounds’ structures. The effect of silicon atom on the optical properties has also been studied. The UV-vis absorption wavelength of silicon-containing compound is about. 10 nm red-shifted when compared with that of other three compounds. The fluorescence emission bands of the compounds in CHCl3solutions were observed around440 nm. And the luminescent coordina- tion compound, namely [AgL1·NO3·3H2O]n, based on the ligand 1-allyl-4-phenyl-1,2,3-triazole has been prepared. In addition, this complex exhibits a 1D chain structure. The crystal structure has been determined by single-crystal X-ray diffraction, and the optical properties have been investigated byfluorescence spectrum. In summary, our work may provide new materials with luminescent property which is potentially useful in material fields.

    Click reaction, silicon-containing 1,2,3-triazole compounds, crystal structure;

    1 INTRODUCTION

    In recent years, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has been widely acknowledged for different purposes, varying from traditional organic synthesis to excellent materials[1, 2]. In 2001, Sharpless reported the reaction of azido compounds and high active alkyne, which is fast, reliable and steady[3, 4].Then Sharpless[5]also found the catalyzed effect of Cu(I) on the reaction of inactive alkyne and azido compounds, and came up with the conception of "Click chemistry". The Click reaction possesses characteristics as follows: mild reaction conditions, simple operations, fast reactive rate, high yield, single configuration products and immune from the effects of oxygen, water and other factors[4].And now, the Click reaction has appealed to more and more researchers because of its 1,2,3- triazolyl unit. Different kinds of ligands containing silicon atoms or 1,2,3-triazolyl units have received much attention owing to their specific and selective properties. With the development of technology, it has been demonstrated that CuAAC method can be used to generate a functionalized 1,2,3-triazole Click ring in excellent yields due to its wide applications in both material and pharmaceutical chemical industry.

    Nowadays, luminescent metal-organic frameworks have continued to engender great interest due to their potential applications in molecular recognition, selective gas adsorption and gas storage[6-9]. In the meantime, designed synthesis containing 1,2,3-tria- zolyl ring organic ligands and relevant coordination compounds has also attracted researchers’ interest. Previously, most researchers have focused on the coordination of N3 located in 1,2,3-triazolyl ring and metal ions[10-14]. However, people now have moved on to the coordination of N2 located in the 1,2,3- triazolyl ring and metal ions[15-17]. The 1,2,3-triazole prepared by CuAAC Click reaction has provided us an effective method to construct more novel com- plexes and supramolecular functional systems.

    It’s known to all that Ag+is a good candidate especially in the purposeful construction of lumine- scent metal-organic frameworks owing to its fantastic coordination ability. Ag(?) complexes with their metal cations adopting10configuration have drawn more and more attention because of their stronger fluorescence properties and potential appli- cations as functional luminescent materials[18]. For instance, according to literatures some kinds of Ag(?) complexes can be employed as organic light- emitting diodes (OLEDs) and “turn-on” fluorescent sensors[19].Recently, a great number of novel ligands have been explored and then constructed into metal-organic frameworks via coordination bonds or supramolecular interactions such as hydrogen bonds and-stacking.

    This paper reports a series of compounds con- taining 1,2,3-triazolyl units prepared via Click reac- tion and their optical properties have been investi- gated by means of ultraviolet and fluorescence spec- tra. The absorption maximum of phenyl units of C3 is around 285 nm, and there is 5 to 10 nm red-shift compared to other compounds prepared in this work. This result could be ascribed to the silicon atom’s influence on the electrondelocalization.

    As is well-known, Ag+is readily able to coor- dinate to two or six ligands. For further study, the author has constructed a novel complex, namely, [AgL1·NO3·3H2O]n, which has not been reported yet. Two ligands bridge each other through the Ag(I) ions center and lead to a 1D chain structure. In order to obtain more information about optical properties of this complex, luminescent property has been inves- tigated, which indicates strong fluorescent emissions.

    2 EXPERIMENTAL

    2. 1 General

    Anhydrous tetrahydrofuran (THF) and diethyl ether (Et2O) were freshly distilled over sodium and benzophenone before use. 1,4-Diazidobenzene was prepared according to the reported procedure[16].1,3-Diazidopropane, 1-azidobenzene and 3-azidopro- pene were prepared by modifying the reported procedure[17]. Diethynylmethylphenylsilane was prepared from reported papers elsewhere[18, 19]. Trimethylsilylacetylene and other chemicals were purchased from Aldrich and used as received unless otherwise noted[20].

    FT-IR spectra were recorded with a Bruker Tensor27 spectrophotometer.1H NMR and13C NMR spectra were measured using CDCl3and DMSO-d6as solvents on a Bruker AVANCE-300 NMR Spec- trometer. UV-vis absorption and fluorescence spectra were analyzed with UV-7502PC and ISS K2-Digital spectrophotometers, respectively. Fluorescence quantum yields were measured using quinine sulfate in 0.1 N H2SO4(Ф = 54.6%) as standard. TGA was carried out under nitrogen flow at a heating rate of 10 ℃/min on a MettlerToledo SDTA-854 TGA system.

    2. 2 Preparation of compounds containing 1,2,3-triazolyl units Preparation of C1

    C1 was prepared according to the reported pro- cedure[18]. Data for C1: pale yellow solid (Yield = 48%);1H NMR (in DMSO-d6) 9.47 (s, 2H), 7.97(d, 4H), 7.53 (d, 4H), 7.3 (m, 6H); FT-IR (KBr plate) 3126(=CH-N), 3058, 1518, 845, 821cm-1. Anal. Calcd. (%) for C22H16N6: C, 72.53; H, 4.40; N, 23.07. Found (%): C, 72.61; H, 4.41; N, 22.98.

    Preparation of C2

    1,3-Diazidopropane (1 mmol, 0.126 g), phenyl- acetylene (2 mmol, 0.204 g), CuSO4(2mol%, 0.0032 g), sodium ascorbate (10 mol%, 0.0176 g) and water/TBA were stirred for 24 h at 70 ℃. Then the mixture was poured into EtOAc and washed with H2O, and dried over MgSO4, filtered and distilled under reduced pressure. Then the crude product was purified and gave a pale yellow solid (Yield: 35%).1H NMR (in DMSO-d6) 7.9 (s, 2H, C=CH), 7.49 (d, 4H, ArH), 7.34 (d, 4H, ArH), 7.2 (s, 4H, ArH), 3.76(s, 2H, CH2), 2.3(d, 2H, CH2); FT-IR (KBr plate) 3128(=CH-N), 1538, 1268, 768 cm-1. Anal. Calcd. (%) for C19H18N6: C, 69.09; H, 5.45; N, 25.45. Found (%): C, 69.22; H, 5.51; N, 24.27%.

    Preparation of C3

    The mixture of diethynylmethylphenylsilane (2 mmol, 0.34 g), 1-azidobenzene (2 mmol, 0.244 g), CuI (0.0191 g, 5 mol%), pyridine (0.5 mL) and DMF (5 mL) was stirred for 24 h at 60 ℃ in the dark. Then the mixture obtained was extracted by EtOAc and washed with H2O, then dried over MgSO4, filtered and distilled under reduced pressure. The crude product was purified by a silica gel column (PE:EtOAc = 3:2) to give C3 as a pale yellow solid (Yield: 31%).1H NMR (in DMSO-d6) 8.49 (s, 2H, C=CH), 7.58 (d, 4H, ArH), 7.46 (d, 4H, ArH), 7.2 (s, 10H, ArH), 0.46(s, 6H, CH3); FT-IR (KBr plate) 3125(=CH-N), 3061, 2961, 1260(Si-CH3), 758 cm-1. Anal. Calcd. (%) for C30H22N6: C, 77.25; H, 4.72; N, 18.03. Found (%): C, 77.06; H, 4.81; N, 18.13%.

    Preparation of C4

    3-Azidopropene (0.166 g, 2 mmol), phenylacety- lene (2 mmol, 0.204 g), CuSO4(2 mol%, 0.0064 g), sodium ascorbate (10 mol%, 0.0352 g), and water/TBA were stirred for 24 h at 65 ℃. Then the mixture was poured into EtOAc and washed with H2O, and dried over MgSO4, filtered and distilled under reduced pressure. Then the crude product was purified by a silica gel column (PE:EtOAc = 3:2) and gave a pale yellow solid (Yield: 51%).1H NMR (in DMSO-d6) 8.65(s, 1H), 7.87 (d, 2H), 7.45(d, 2H), 7.35 (s, 1H), 6.12 (s, 1H), 5.275 (d, 2H), 5.07(d, 2H); FT-IR (KBr plate) 3132(=CH-N), 3100, 2414 cm-1. Anal. Calcd. (%) for C11H11N3: C, 71.35; H, 5.95; N, 22.7. Found (%): C, 71.20; H, 5.765; N, 21.43.

    2. 3 Preparation of [AgL1·NO3·3H2O]n

    C4 (0.04 mmol, 7.4 mg) dissolved in CH2Cl2(4 mL) was spread in the under layer of colorimetric tube. Then CH2Cl2(2 mL) and CH3OH (2 mL) were added in order as buffer layer in the middle of the tube. At last, AgNO3(0.08 mmol, 13.6 mg) dissolved in CH3OH (4 mL) was spread above the buffer layer. The tube was placed in the dark place and colorless crystal was produced in the tube after two weeks (Yield = 67.5%). Anal. Calcd. (%) for C11H17AgN5O6: C, 33.1; H, 4.26; N, 17.5. Found (%): C, 33.2; H, 4.27; N, 17.3.

    2. 4 X-ray crystallography

    Diffraction intensities for the complex were collected on a Bruker SMART 1000 CCD diffrac- tometer with graphite-monochromatic Mo-radia- tion (= 0.7103 ?) by using the-2scan technique. The structure was solved by direct methods using the program SHELXS-97 and refined with full-matrix least-squares techniques using the program SHELXL-97. Continuously different Fourier trans- forms and corrections were assigned to all non-hy- drogen atoms. The organic hydrogen atoms of benzene rings were generated geometrically. The selected hydrogen bond lengths and bond angles for the complexes are listed in Table 1.

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis of compounds containing 1,2,3-triazolyl units via Click reaction

    It is known to all that the Cu(I) catalyst is very important in the Click reaction, and for clarity, we divide the obtaining methods of Cu(I) catalyst into A and B. As shown in Scheme 1, group of CuI, polar solvents, such as DMF and DMSO, and pyridine is one approach called method A; group of CuSO4, sodium ascorbate and water/TBA is the other approach called method B.

    Scheme 1. Syntheses of compounds containing 1,2,3-triazolyl units

    3. 2 Optical properties

    In Fig. S1, the absorption maximum wavelengths of all compounds show around 255 nm, attributed to-*electron transition of triazolyl units[18]. In addition, the absorption maximum of the phenyl unit of C3 is around 285 nm, and there is about 5 to 10 nm red-shift compared to those of other compounds. This result illuminates vacant 3-orbitals of silicon atoms have certain effects on the conjugation with adjacent π-conjugated systems. Thereby, the red-shift can be assigned to the electron delocalization of theelectron segments[19]. However, differences in the absorption of phenyl units between the silicon-con- taining compound and the compounds without silicon atoms are not obvious. This indicates that the silicon atom can influence the electron delocalization, but unfortunately, electronic transitions are not strong enough to connect the adjacent units.

    In Fig. S2, the fluorescence maxima of compounds are observed at the similar peaks440 nm when excited at 350 nm[18]. Owing to its more phenyl and 1,2,3-triazolyl units, the fluorescence intensity of C3 is stronger than that of other compounds. The author thinks this result should be assigned to two factors: one is that the silicon atom contributes an electronic communication, and the other is that-conjugation can effectively enhance the emission efficiency. The emission wavelength of C3 is about 5 nm blue-shift in comparison with those of other compounds, and this result indicates electron transitions between silicon atom and aromatic segments[18].

    In summary, the above results show that the silicon atoms have certain effects on the electronic com- munication with the adjacent-conjugated segments, nevertheless the influence is limited. Meanwhile, the fluorescence intensity was enhanced when there are more aromatic and 1,2,3-triazolyl units in the compounds due to the-conjugation.

    As shown in Fig. S3, at room temperature, upon excitation of solid samples of the ligand C4 and the Ag+complex (ex= 265 nm), the emission band maximum of C4 is at410 nm and that of the Ag+complex at400 nm, so there is blue-shift of about 10 nm for the Ag+complex. This cluster-based Ag(I) coordination complex increases the ligand conforma- tional rigidity, thereby reducing the non-radiative decay of the intraligand (-*) excited state. The preparation of this novel Ag(I) complex with 1,2,3- triazolyl unit can be an excellent method for obtai- ning more functional types of luminescent materials.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Complex 1

    Symmetry code: (i) ?x, ?y+1, ?z+2

    3. 3 Structure description

    As shown in Fig. 1, the crystal structure of the complex forms a six-membered ring which is con- nected with two silver ions and four nitrogen atoms. The N(1)–N(3) and N(2)–N(3) bond lengths are 1.311 and 1.332 ?, respectively. The neighboring 1,2,3-triazolyl units are coordinated to Ag(I) through more electron-rich nitrogen atoms. And centered on Ag(I), hexahedron spatial configuration was cons- tructed by two nitrogen and three oxygen atoms. The C–N bond lengths in triazole moiety are typical for triazole rings. For instance, the N(1)–C(8) and N(2)–C(12) both indicate a typical double bond character in 1.3424 and 1.3394 ?, respectively. In addition, the other C–C bond lengths fall in the normal range and it can be concluded that there are two kinds of hydrogen atoms from the bound water and hydrogen atoms at the carbon atoms.

    According to Tables 1 and 2, the combination ability of Ag(I) with N3 is stronger due to the bond length ranging from 2.28 to 2.29 ?, with the average to be 2.285 ?. In comparison, the combination ability of Ag(I) with N2 is weaker owing to the bond length varying from 2.3216 to 2.3332 ?, averaged by 2.3274 ?. Therefore, the coordination ability of N3 is much better than that of N2. In addition, according to the data, there is a deviation of 15.54obetween the angle of N×××Ag×××N and the angle of barycenter and two vertexes of standard regular tetrahedron. In Fig. 2, two ligands combined with two Ag atoms have constructed an Ag ion dimer. It is indicated that the nearest Ag×××Ag distance is 5.2900 ?, which is longer than the sum of the van der Waals radii of two Ag atoms (3.56 ?)[1-5]. Therefore, no stabilizing interac- tions exist between Ag···Ag.

    Fig. 1. Molecular structure of the complex

    Fig. 2. Packing diagram performs a 1D structure, with water molecules omitted for clarity

    3. 4 Thermal properties

    Fig. S4 shows thermal stability of the Ag+complex at a heating rate of 10 ℃/min under N2atmosphere. The Ag+complex exhibits normal heat-resistant pro- perties. There is a weight loss of about 6.9% ascribed to the removal of H2O from 27 to 100 ℃ compared to the theoretical value of 5.3%because the complex has some solvents. Then the product keeps the weight constant until 198 ℃ and then a fast weight loss occurs, which is obviously attributed to the break of the complex framework. Comparing the theoretical (27.1%) and actual (27.4%)[18]values indicates that the residue is elemental silver.

    4 CONCLUSION

    The author has synthesized a series of compounds containing 1,2,3-triazole and prepared the Ag(I) complex based on the ligand C4. Then optical pro- perties of the compounds and the complex have been investigated through ultraviolet and fluorescence spectra. By contrast of the optical properties of com- pound containing silicon atom and compounds without silicon atoms, the effect of silicon atom on the electronic communication has been displayed. Studies of the Ag(I) complex have also been explo- red by different measurements. Other compounds containing silicon atoms and 1,2,3-triazolyl units prepared via Click reaction are currently explored in progress for the potential applications in materials fields.

    (1) Zhao, H.; Zhu, Y. Q.; Feng, C. One novel Mn(II) complex with 1-substituted-1H-1,2,3-triazole-4-carboxylic acid: crystal structure, fluorescence and Hirshfeld surface analysis.. 2017, 36, 66–72.

    (2) Huo, L. N.; Chen, R.; Liao, Y. F.; Liu, H. G.; Li, P. Y.; Lu, R. M.; Zhong, Z. G. Synthesis, crystal structure and biological evaluation of acridine-1,2,3-triazole derivatives.2016, 35, 698–704.

    (3) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions.2001, 40, 2004–2021.

    (4) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes.2002, 41, 2596–2599.

    (5) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks.2002, 41, 1053–1057.

    (6) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. New three-dimensional lanthanide-alkali-heterometallic frameworks constructed from isonicotinic acid: synthesis, structures and properties..2014, 25, 581–590.

    (7) Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A. M. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions.2014, 3289–3306.

    (8) Schulze, B.; Schubert, U. S. Beyond click chemistry-supramolecular interactions of 1,2,3-triazoles.2014, 43, 2522–2571.

    (9) Huisgen, R. In 1,3-dipolar cycloaddition chemistry.1984, 1–176.

    (10) Zheng, Z. B.; Wu, R. T.; Li, J. K.; Sun, Y. F. Hydrothermal syntheses and structural characterization of four complexes with in situ formation of 1,2,3-triazole-4-carboxylate ligand.2009, 928, 78–84.

    (11) Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery.2003,24, 1128–1137.

    (12) Kharb, R.; Sharma, P. C.; Yar, M. S. Pharmacological significance of triazole scaffold.2011,26, 1–21.

    (13) Shanmugavelan, P.; Nagarajan, S.; Sathishkumar, M.; Ponnuswamy, A.; Yogeeswari, P.; Sriram, D. Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of mycobacterium tuberculosis.2011,24, 7273–7276.

    (14) Torn?e, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.2002,67, 3057–3064.

    (15) Stefani, H. A.; Vasconcelos, S. N.; Manarin, F.; Leal, D. M.; Souza, F. B.; Madureira, L. S.; Zukerman-Schpector, J.; Eberlin, M. N.; Godoi, M. N.; de Souza Galaverna, R. Synthesis of 5-organotellanyl-1-1,2,3-triazoles: functionalization of the 5-position Scaffold by the sonogashira cross-coupling reaction.2013,18, 3780–3785.

    (16) Ahmed, M. N.; Hameed, S.; Yasin, K. A.; Arshad, I.; Ihsan-ul-Haq.; Tahir, M. N. Synthesis, crystal structure and antimicrobial activity of ethyl 2-(1-cyclohexyl-4-phenyl-1-1,2,3-triazol-5-yl)-2-oxoacetate.2014,33, 1666–1672.

    (17) Ye, L. N.; Wu, C. Z.; Guo, W.; Xie, Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties.. 2006, 45, 4738–4740.

    (18) Wang, Y.; Wang, D.; Xu, C.; Wang, R.; Han, J.; Feng, S. Y. Click polymerization: synthesis of novel σ-π conjugated organosilicon polymers.2011, 696, 3000–3005.

    (19) Fletcher, J. T.; Bumgarner, B. J.; Engels, N. D.; Skoglund, D. A. Multidentate 1,2,3-triazole-containing chelators from tandem deprotection/Click reactions of (trimethylsilyl)alkynes and comparison of their ruthenium(II) complexes.2008, 27, 5430–5433.

    (20) Takagi, K.; Kakiuchi, H.; Yuki, Y.; Suzuki, M. Synthesis and optical properties of fluorene-based polymers incorporating organosilicon unit.():2007, 45, 4786–4794.

    21 February 2018;

    30 May 2018 (CCDC 1842462)

    ① This work was supported by the National Natural Science Foundation of China (No. 21274080)

    . E-mail: fsy@sdu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1999

    丰满少妇做爰视频| 婷婷色综合大香蕉| 亚洲国产看品久久| 亚洲视频免费观看视频| 纵有疾风起免费观看全集完整版| 人人妻人人澡人人看| 中文字幕色久视频| 91九色精品人成在线观看| 悠悠久久av| 欧美黑人精品巨大| 伊人亚洲综合成人网| 欧美精品一区二区大全| 国产成人精品久久久久久| 岛国毛片在线播放| 国产免费一区二区三区四区乱码| 午夜福利视频精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区国产一区二区| 亚洲专区国产一区二区| a 毛片基地| 一本久久精品| a级毛片在线看网站| 99re6热这里在线精品视频| 国产又爽黄色视频| 国产高清视频在线播放一区 | 亚洲五月婷婷丁香| 久久女婷五月综合色啪小说| 欧美激情极品国产一区二区三区| 男女免费视频国产| 美女大奶头黄色视频| 亚洲免费av在线视频| 男男h啪啪无遮挡| 老司机影院成人| 一边摸一边抽搐一进一出视频| 亚洲自偷自拍图片 自拍| 久久久久精品国产欧美久久久 | 亚洲成色77777| 国产精品香港三级国产av潘金莲 | 波多野结衣一区麻豆| 男女免费视频国产| 国产爽快片一区二区三区| 天天躁日日躁夜夜躁夜夜| 丝袜美足系列| 啦啦啦啦在线视频资源| 欧美黑人精品巨大| 黄色视频不卡| 美女高潮到喷水免费观看| 韩国精品一区二区三区| 国产黄色视频一区二区在线观看| 天天躁日日躁夜夜躁夜夜| 久久久久精品国产欧美久久久 | 在线观看免费午夜福利视频| 亚洲av片天天在线观看| 亚洲少妇的诱惑av| 欧美日韩综合久久久久久| 久久精品亚洲av国产电影网| 视频在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 麻豆av在线久日| 久久久亚洲精品成人影院| 国产一区二区激情短视频 | 丝袜在线中文字幕| 亚洲成人免费电影在线观看 | 成人亚洲欧美一区二区av| 每晚都被弄得嗷嗷叫到高潮| 美国免费a级毛片| 夜夜骑夜夜射夜夜干| 美国免费a级毛片| 在现免费观看毛片| 日韩免费高清中文字幕av| 亚洲av片天天在线观看| 不卡av一区二区三区| 一本久久精品| 亚洲av片天天在线观看| 国产成人av激情在线播放| 久久人人爽av亚洲精品天堂| av在线播放精品| 麻豆乱淫一区二区| 嫩草影视91久久| 欧美av亚洲av综合av国产av| 亚洲专区国产一区二区| a 毛片基地| 日日夜夜操网爽| 亚洲国产中文字幕在线视频| 亚洲成国产人片在线观看| 国产精品三级大全| 久久精品久久久久久久性| 男女午夜视频在线观看| 波多野结衣av一区二区av| 国产精品一区二区精品视频观看| 一区二区三区乱码不卡18| 午夜激情av网站| 久久久久久久大尺度免费视频| 亚洲成av片中文字幕在线观看| 亚洲av欧美aⅴ国产| 精品熟女少妇八av免费久了| 女警被强在线播放| 十分钟在线观看高清视频www| 欧美xxⅹ黑人| 人人妻人人澡人人爽人人夜夜| 人人妻人人爽人人添夜夜欢视频| 国产精品二区激情视频| 黄色视频不卡| 中文欧美无线码| 国产成人一区二区三区免费视频网站 | 亚洲成人免费电影在线观看 | 麻豆av在线久日| 亚洲精品国产色婷婷电影| 在线观看www视频免费| 男女床上黄色一级片免费看| 男女之事视频高清在线观看 | 在线观看免费日韩欧美大片| 精品国产乱码久久久久久男人| 午夜福利免费观看在线| 欧美日韩亚洲综合一区二区三区_| 99精国产麻豆久久婷婷| 男女下面插进去视频免费观看| 成年动漫av网址| 波多野结衣av一区二区av| 国产xxxxx性猛交| 日韩精品免费视频一区二区三区| 久久天堂一区二区三区四区| a级片在线免费高清观看视频| 99热全是精品| 一级黄片播放器| 好男人视频免费观看在线| 国产成人免费无遮挡视频| 欧美日韩国产mv在线观看视频| 极品少妇高潮喷水抽搐| 99国产精品一区二区蜜桃av | 女人被躁到高潮嗷嗷叫费观| 老司机影院成人| 美女福利国产在线| 美国免费a级毛片| 国产老妇伦熟女老妇高清| 精品少妇一区二区三区视频日本电影| www.自偷自拍.com| 黄频高清免费视频| 久久久国产一区二区| 亚洲国产欧美在线一区| 国产精品一国产av| 欧美精品一区二区免费开放| 国产一区亚洲一区在线观看| 99久久综合免费| 91成人精品电影| 性色av乱码一区二区三区2| 亚洲精品自拍成人| 久久中文字幕一级| 波多野结衣av一区二区av| 亚洲少妇的诱惑av| 精品亚洲成国产av| 午夜福利一区二区在线看| xxxhd国产人妻xxx| 亚洲成国产人片在线观看| 午夜日韩欧美国产| 亚洲综合色网址| 中国国产av一级| 高清不卡的av网站| 国产亚洲av高清不卡| 涩涩av久久男人的天堂| 少妇粗大呻吟视频| av天堂在线播放| 日本黄色日本黄色录像| 久久久久久久久久久久大奶| 十分钟在线观看高清视频www| 十分钟在线观看高清视频www| 如日韩欧美国产精品一区二区三区| 国产成人影院久久av| 中国美女看黄片| 日韩伦理黄色片| 一级毛片电影观看| 高清av免费在线| 青青草视频在线视频观看| 欧美 亚洲 国产 日韩一| 国产日韩欧美在线精品| 国产亚洲精品久久久久5区| 亚洲精品日韩在线中文字幕| 母亲3免费完整高清在线观看| 1024视频免费在线观看| 免费看十八禁软件| 精品国产乱码久久久久久小说| 色综合欧美亚洲国产小说| 国产av国产精品国产| 青青草视频在线视频观看| 丁香六月欧美| 一本大道久久a久久精品| 悠悠久久av| 欧美人与善性xxx| 久久人妻熟女aⅴ| 国产成人91sexporn| 国产免费视频播放在线视频| 五月天丁香电影| 日本欧美国产在线视频| 热re99久久精品国产66热6| 女人高潮潮喷娇喘18禁视频| 十八禁高潮呻吟视频| 两个人免费观看高清视频| 亚洲精品美女久久久久99蜜臀 | 国产高清国产精品国产三级| 下体分泌物呈黄色| 亚洲少妇的诱惑av| 精品一区二区三卡| 在线精品无人区一区二区三| 亚洲欧美一区二区三区黑人| 国产欧美日韩综合在线一区二区| 中文字幕色久视频| 久久99热这里只频精品6学生| 午夜激情av网站| www日本在线高清视频| 亚洲欧美中文字幕日韩二区| 国产日韩欧美亚洲二区| 宅男免费午夜| 日本午夜av视频| 高清不卡的av网站| 久久精品久久久久久久性| 国产精品香港三级国产av潘金莲 | 久久久久久久久久久久大奶| 一级,二级,三级黄色视频| 视频区图区小说| 激情五月婷婷亚洲| a级毛片黄视频| 亚洲成人免费av在线播放| 捣出白浆h1v1| 亚洲国产精品一区二区三区在线| 亚洲黑人精品在线| 一区在线观看完整版| 色婷婷av一区二区三区视频| 午夜免费观看性视频| 久久久精品免费免费高清| 一级毛片黄色毛片免费观看视频| 可以免费在线观看a视频的电影网站| 中文字幕高清在线视频| 午夜福利视频精品| 夜夜骑夜夜射夜夜干| 黄网站色视频无遮挡免费观看| 在线观看免费视频网站a站| 一级毛片 在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲 国产 在线| 国产伦理片在线播放av一区| 十八禁网站网址无遮挡| 亚洲一码二码三码区别大吗| 日本午夜av视频| xxxhd国产人妻xxx| 国产精品免费视频内射| 亚洲专区中文字幕在线| 国产一区二区激情短视频 | 亚洲国产欧美在线一区| 日本欧美国产在线视频| 乱人伦中国视频| 女性生殖器流出的白浆| 久久人妻熟女aⅴ| 国产熟女午夜一区二区三区| 伦理电影免费视频| 一本大道久久a久久精品| 国产爽快片一区二区三区| 成年人免费黄色播放视频| 欧美日韩成人在线一区二区| 美女国产高潮福利片在线看| 久久鲁丝午夜福利片| 国产欧美日韩综合在线一区二区| 黄色a级毛片大全视频| 精品高清国产在线一区| 久久人人爽人人片av| 一个人免费看片子| 夫妻性生交免费视频一级片| 久久九九热精品免费| 极品人妻少妇av视频| 精品少妇内射三级| 免费少妇av软件| 国产黄频视频在线观看| 午夜免费鲁丝| 亚洲欧美精品综合一区二区三区| 国产又色又爽无遮挡免| 性高湖久久久久久久久免费观看| 一级,二级,三级黄色视频| 男女边吃奶边做爰视频| 午夜激情av网站| 国产免费又黄又爽又色| 国产福利在线免费观看视频| svipshipincom国产片| 侵犯人妻中文字幕一二三四区| 久久女婷五月综合色啪小说| 亚洲国产欧美在线一区| 99国产精品一区二区三区| 亚洲欧美色中文字幕在线| 五月开心婷婷网| 一级片免费观看大全| 国产一区亚洲一区在线观看| 国产免费视频播放在线视频| 超碰97精品在线观看| 欧美激情 高清一区二区三区| 男人操女人黄网站| 丝袜脚勾引网站| 视频区欧美日本亚洲| 黄色片一级片一级黄色片| 久久精品久久精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 久久久久久久国产电影| 18禁国产床啪视频网站| 国产精品偷伦视频观看了| 国产男人的电影天堂91| 亚洲国产欧美网| av天堂在线播放| 你懂的网址亚洲精品在线观看| 精品一区二区三区av网在线观看 | 亚洲 欧美一区二区三区| 成年av动漫网址| 丝袜美腿诱惑在线| 色综合欧美亚洲国产小说| 久热爱精品视频在线9| 人妻 亚洲 视频| 黄频高清免费视频| 女警被强在线播放| 大片免费播放器 马上看| 在线观看www视频免费| 深夜精品福利| 中文字幕人妻熟女乱码| 夜夜骑夜夜射夜夜干| 蜜桃在线观看..| 男女边吃奶边做爰视频| 好男人电影高清在线观看| 久久99一区二区三区| 久久ye,这里只有精品| 高清欧美精品videossex| 亚洲少妇的诱惑av| 成在线人永久免费视频| 亚洲国产av新网站| 欧美日韩国产mv在线观看视频| 韩国精品一区二区三区| 亚洲国产精品999| 亚洲美女黄色视频免费看| 国产成人啪精品午夜网站| 亚洲午夜精品一区,二区,三区| 久久精品熟女亚洲av麻豆精品| 久久天躁狠狠躁夜夜2o2o | 国产精品.久久久| 一边亲一边摸免费视频| 亚洲精品第二区| 亚洲精品一二三| 欧美亚洲 丝袜 人妻 在线| 国产成人欧美在线观看 | 美女福利国产在线| 极品少妇高潮喷水抽搐| 黄频高清免费视频| 国产成人91sexporn| 一区二区三区四区激情视频| 午夜精品国产一区二区电影| 久久人人97超碰香蕉20202| 你懂的网址亚洲精品在线观看| 热re99久久国产66热| 午夜福利,免费看| 国产精品二区激情视频| 亚洲国产欧美一区二区综合| 又粗又硬又长又爽又黄的视频| 黄色怎么调成土黄色| 一二三四在线观看免费中文在| 亚洲国产毛片av蜜桃av| 熟女av电影| 性少妇av在线| 久久人人爽人人片av| 久久国产精品大桥未久av| www.精华液| 国产精品久久久久久精品古装| 日韩,欧美,国产一区二区三区| 久久99精品国语久久久| 欧美日韩视频高清一区二区三区二| 国产亚洲av高清不卡| 国产成人一区二区在线| 国产欧美日韩综合在线一区二区| 男人爽女人下面视频在线观看| 一区二区日韩欧美中文字幕| 久久九九热精品免费| 免费av中文字幕在线| 一级黄片播放器| 人妻一区二区av| 日韩制服骚丝袜av| 黄网站色视频无遮挡免费观看| 男的添女的下面高潮视频| 高清欧美精品videossex| 精品少妇黑人巨大在线播放| e午夜精品久久久久久久| 一二三四在线观看免费中文在| 新久久久久国产一级毛片| 老司机影院毛片| 最新在线观看一区二区三区 | 国产欧美日韩一区二区三区在线| 亚洲人成77777在线视频| 国产男女内射视频| 久久精品久久久久久久性| 人妻一区二区av| 精品久久久久久电影网| 欧美 亚洲 国产 日韩一| 91麻豆精品激情在线观看国产 | 大香蕉久久成人网| 精品少妇内射三级| 国产男女内射视频| 高清不卡的av网站| 欧美在线黄色| 99精品久久久久人妻精品| 九色亚洲精品在线播放| 十八禁人妻一区二区| 亚洲精品在线美女| 亚洲欧洲国产日韩| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品无人区| 黑人欧美特级aaaaaa片| 999精品在线视频| 亚洲九九香蕉| 亚洲欧洲日产国产| 晚上一个人看的免费电影| 90打野战视频偷拍视频| 777米奇影视久久| 亚洲精品在线美女| 欧美在线一区亚洲| 人妻人人澡人人爽人人| 日本a在线网址| 成年人午夜在线观看视频| 欧美在线一区亚洲| 又黄又粗又硬又大视频| 19禁男女啪啪无遮挡网站| 日韩中文字幕视频在线看片| 超碰成人久久| 黄片小视频在线播放| 少妇人妻 视频| 亚洲欧美一区二区三区国产| 亚洲av日韩精品久久久久久密 | 国产精品一区二区免费欧美 | 国产91精品成人一区二区三区 | 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 午夜老司机福利片| 国产精品国产三级国产专区5o| 免费女性裸体啪啪无遮挡网站| 夫妻午夜视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美精品自产自拍| 一级毛片女人18水好多 | 欧美精品一区二区免费开放| 9热在线视频观看99| 老汉色av国产亚洲站长工具| 色综合欧美亚洲国产小说| 国产成人欧美| 久久久久久久久久久久大奶| 精品国产国语对白av| 久久久国产精品麻豆| 最近手机中文字幕大全| 亚洲激情五月婷婷啪啪| 少妇粗大呻吟视频| 国产色视频综合| 久久国产精品影院| 性色av乱码一区二区三区2| 国产成人免费无遮挡视频| 最近最新中文字幕大全免费视频 | 国产精品一区二区精品视频观看| 亚洲精品美女久久久久99蜜臀 | 精品人妻一区二区三区麻豆| 亚洲一区二区三区欧美精品| 少妇猛男粗大的猛烈进出视频| 国产精品久久久av美女十八| 国产极品粉嫩免费观看在线| 啦啦啦啦在线视频资源| 这个男人来自地球电影免费观看| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 欧美日韩黄片免| 电影成人av| 日本欧美国产在线视频| 亚洲国产日韩一区二区| www.精华液| 精品人妻一区二区三区麻豆| 后天国语完整版免费观看| 男人爽女人下面视频在线观看| 久久天堂一区二区三区四区| 国产极品粉嫩免费观看在线| 一级a爱视频在线免费观看| 视频区欧美日本亚洲| 看免费av毛片| 一二三四社区在线视频社区8| 精品高清国产在线一区| 天天操日日干夜夜撸| 妹子高潮喷水视频| 十分钟在线观看高清视频www| 两个人免费观看高清视频| xxxhd国产人妻xxx| 黄色一级大片看看| 黄片播放在线免费| 午夜福利一区二区在线看| 国产精品免费大片| av在线app专区| 最黄视频免费看| 亚洲av综合色区一区| 亚洲精品自拍成人| 成年人午夜在线观看视频| 国产亚洲精品久久久久5区| 日日夜夜操网爽| 尾随美女入室| 欧美日韩亚洲国产一区二区在线观看 | 操美女的视频在线观看| 亚洲av在线观看美女高潮| 国产一区二区在线观看av| 日本五十路高清| 桃花免费在线播放| av在线app专区| 视频区图区小说| 丝袜在线中文字幕| 免费高清在线观看视频在线观看| 色婷婷久久久亚洲欧美| 99国产综合亚洲精品| 久久国产亚洲av麻豆专区| 一本一本久久a久久精品综合妖精| 欧美黄色淫秽网站| 欧美成人精品欧美一级黄| 国产成人精品久久久久久| 日本av手机在线免费观看| 亚洲精品美女久久久久99蜜臀 | 久久亚洲国产成人精品v| 日日夜夜操网爽| 国产在线免费精品| 久久 成人 亚洲| 十八禁网站网址无遮挡| 在线观看国产h片| 精品视频人人做人人爽| 日韩伦理黄色片| 黄网站色视频无遮挡免费观看| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 亚洲七黄色美女视频| 亚洲专区国产一区二区| 国产一区二区在线观看av| av在线老鸭窝| av又黄又爽大尺度在线免费看| 亚洲国产毛片av蜜桃av| 中文字幕色久视频| 91成人精品电影| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久精品古装| 18在线观看网站| 精品少妇一区二区三区视频日本电影| 一级片免费观看大全| 日韩 亚洲 欧美在线| 波多野结衣一区麻豆| 国产又爽黄色视频| 国产片内射在线| 午夜福利,免费看| 校园人妻丝袜中文字幕| 国产成人一区二区在线| 国产人伦9x9x在线观看| 国产免费又黄又爽又色| 一级毛片 在线播放| 午夜福利视频在线观看免费| 桃花免费在线播放| 波多野结衣av一区二区av| 少妇的丰满在线观看| 精品一品国产午夜福利视频| 久久 成人 亚洲| 男的添女的下面高潮视频| 欧美成人午夜精品| 如日韩欧美国产精品一区二区三区| 精品国产超薄肉色丝袜足j| 日本av免费视频播放| 亚洲精品在线美女| 视频在线观看一区二区三区| 手机成人av网站| 肉色欧美久久久久久久蜜桃| 欧美人与性动交α欧美软件| 精品福利永久在线观看| 亚洲欧美一区二区三区国产| 国产麻豆69| 国产欧美日韩一区二区三 | 久9热在线精品视频| 好男人电影高清在线观看| 日韩制服骚丝袜av| 亚洲精品一区蜜桃| 久久久精品国产亚洲av高清涩受| 成年av动漫网址| 日韩制服骚丝袜av| 男女午夜视频在线观看| xxx大片免费视频| 两个人免费观看高清视频| 在线观看免费高清a一片| 又大又爽又粗| 少妇精品久久久久久久| 天堂8中文在线网| 五月开心婷婷网| 国产精品熟女久久久久浪| 老鸭窝网址在线观看| 亚洲成人免费电影在线观看 | 亚洲欧美中文字幕日韩二区| 国产精品 国内视频| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 水蜜桃什么品种好| 亚洲一区二区三区欧美精品| 午夜两性在线视频| 久久精品亚洲av国产电影网| 成年av动漫网址| 少妇人妻久久综合中文| 国产精品麻豆人妻色哟哟久久| 一边亲一边摸免费视频| 赤兔流量卡办理| 久久影院123| 久久久久精品人妻al黑| 亚洲成人手机| 国产免费福利视频在线观看| 下体分泌物呈黄色| 汤姆久久久久久久影院中文字幕| 另类精品久久| 精品久久久久久电影网| 欧美97在线视频| 一级毛片女人18水好多 | 婷婷色av中文字幕| 国产亚洲午夜精品一区二区久久| 人人妻人人爽人人添夜夜欢视频| 国产免费一区二区三区四区乱码|