馬曉云 田琳琳 李代清 湯云昭
摘要:目的? 探究生物鐘節(jié)律紊亂對糖尿病肥胖小鼠(ob/ob)糖代謝及胰島素分泌的影響。方法? 選取同體重的6~8周齡C57BL/6及ob/ob小鼠各12只,隨機分為對照組(C57組)、糖尿病組(OB組)、對照組+生物鐘節(jié)律干擾組(C57+CSD組)、糖尿病組+生物鐘節(jié)律干擾組(OB+CSD組),每組6只。C57+CSD組和OB+CSD組小鼠分別置于高臺水環(huán)境下干擾其生物鐘節(jié)律。C57組和OB組小鼠分別置于標準飼養(yǎng)籠中,其生物鐘節(jié)律不受干擾,動物體重每天監(jiān)測1次。4周后行小鼠體內(nèi)腹腔注射葡萄糖耐量實驗(IPGTT,2 g/kg),分離實驗小鼠胰島行體外葡萄糖刺激胰島素分泌實驗(GSIS)。結果? C57、C57+CSD和OB組體重分別增長22.92%、0.42%和26.16%,而OB+CSD組下降0.17%。空腹血糖測定顯示:OB組與OB+CSD組血糖值水平高于C57組和C57+CSD組(P<0.05);IPGTT實驗顯示:OB組小鼠血糖峰值明顯后移,且在15、30、60、90 min的血糖均高于C57組(P<0.05);C57+CSD組小鼠各時間點血糖均高于C57組(P<0.05),OB+CSD組小鼠于120 min的血糖高于OB組(P<0.05);體內(nèi)、體外胰島素測定顯示:C57胰島素分泌低于OB組(P<0.05),C57+CSD組胰島素分泌低于C57組(P<0.05),OB+CSD組血清及體外胰島胰島素分泌低于OB組(P<0.05)。結論? 生物鐘節(jié)律是維護糖代謝穩(wěn)態(tài)的重要環(huán)節(jié),其紊亂可能導致正常及糖尿病小鼠胰島素分泌的減低。
關鍵詞:生物鐘節(jié)律;糖尿病;血糖;胰島素分泌
中圖分類號:R587.1? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標識碼:A? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DOI:10.3969/j.issn.1006-1959.2019.23.017
文章編號:1006-1959(2019)23-0061-04
Experimental Study on the Effects of Biological Clock Rhythm Disorder on Glucose Metabolism and Insulin Secretion in Diabetic Mellitus Mice
MA Xiao-yun,TIAN Lin-lin,LI Dai-qing,TANG Yun-zhao
(Tianjin Key Laboratory of Metabolic Diseases/National Health and Safety Commission Key Laboratory of Hormone and Development/Tianjin Medical University Zhu Xianyi Memorial Hospital/Tianjin Medical University,Tianjin 300134,China)
Abstract:Objective? To investigate the effects of biological clock rhythm disorder on glucose metabolism and insulin secretion in diabetic mellitus obese mice (ob/ob). Methods? 12 C57BL/6 and ob/ob mice, aged 6-8 weeks, were randomly divided into control group (C57 group), diabetic mellitus group (OB group), control group + biological clock rhythm interference group (C57+). CSD group), diabetes mellitus group + biological clock rhythm interference group (OB+CSD group), 6 in each group. The C57+CSD group and the OB+CSD group were each placed in a high-level water environment to interfere with their biological clock rhythm. C57 and OB mice were placed in standard cages, respectively, and their clock rhythms were undisturbed. Animal weight was monitored once a day. After 4 weeks, the mice were intraperitoneally injected with glucose tolerance test (IPGTT, 2g/kg), and the islet glucose-stimulated insulin secretion test (GSIS) was isolated from the mice. Results? The body weight of C57, C57+CSD and OB groups increased by 22.92%, 0.42% and 26.16%, respectively, while the OB+CSD group decreased by 0.17%. Fasting blood glucose measurement showed that the blood glucose level of OB group and OB+CSD group was higher than that of C57 group or C57+CSD group (P<0.05). The IPGTT experiment showed that the blood glucose peak of OB group was significantly shifted back,the blood glucose at 15, 30, 60, 90 min was higher than that in C57 group (P<0.05). The blood glucose in C57+CSD group was higher than that in C57 group (P<0.05). OB+CSD mice The blood glucose at 120 min was higher than that in OB group (P<0.05). In vivo and in vitro insulin assay showed that C57 insulin secretion was lower than that of OB group (P<0.05), and insulin secretion in C57+CSD group was lower than that of C57 group (P<0.05). The serum and in vitro insulin secretion of OB+CSD group was lower than that of OB group (P<0.05). Conclusion? The biological clock rhythm is an important link to maintain the homeostasis of glucose metabolism, and its disorder may lead to a decrease in insulin secretion in normal and diabetic mellitus mice.
Key words:Biological clock rhythm;Diabetes mellitus;Blood sugar;Insulin secretion
糖尿病(diabetes mellitus,DM)是由多種環(huán)境因素和多基因遺傳因素共同參與并相互作用引起的一組代謝異常綜合征,臨床上以長期高血糖為主要特征[1]。隨著社會經(jīng)濟的發(fā)展,城市化生活的普及,老齡化進程的加快,2型糖尿病(T2DM)患者數(shù)量迅速增加[2]。我國現(xiàn)有糖尿病人數(shù)高達1億,且患病人數(shù)正不斷攀升,患病人群呈年輕化趨勢[3]。2型糖尿病發(fā)病的兩個基本環(huán)節(jié)是β細胞功能缺陷以及胰島素抵抗,但引起兩個基本病理生理改變的機制尚不明確。流行病學證據(jù)表明,多種代謝性疾病的發(fā)生都與生物鐘的晝夜節(jié)律紊亂相關[4],其中2型糖尿病尤為明顯。有研究顯示[5],睡眠不當、輪班工作等晝夜節(jié)律改變者發(fā)生糖尿病、肥胖以及心血管疾病的風險增加。同時糖尿病的許多并發(fā)癥,包括急性冠脈綜合征、脂代謝紊亂及自主神經(jīng)功能失調(diào)等均體現(xiàn)出明顯的晝夜節(jié)律改變,另外晝夜節(jié)律的紊亂與糖尿病的血糖控制密切相關[6]。進化論觀點認為,人類在長期的進化過程中,體內(nèi)早已形成了復雜而精確的晝夜節(jié)律調(diào)控網(wǎng)絡,但工作時間延長、夜班工作及睡眠不足等現(xiàn)代的生活方式以不同的方式對這一網(wǎng)絡產(chǎn)生影響,必定會影響代謝功能[7]。因此探究晝夜節(jié)律和糖代謝之間的相關性,對于2型糖尿病的治療和控制具有深遠意義。本研究借助OB/OB小鼠糖尿病動物模型,檢測生物鐘節(jié)律紊亂對糖尿病小鼠血糖控制及胰島素分泌的影響。
1材料與方法
1.1材料? C57BL/6J小鼠和OB/OB小鼠購自北京華阜康生物科技股份有限公司。膠原酶購自Sigma公司,TRIzol購自賽默飛世爾科技公司,Hanks液購自上?;ど镉邢薰?,胰島素ELISA試劑盒購自Media公司,電子天平購自北京Sartorius公司,各規(guī)格細胞培養(yǎng)板和離心管購自美國Corning公司,各規(guī)格移液器和槍頭購自賽默飛世爾科技公司,ACCU-CHEK? Performa卓越型血糖儀購自德國羅氏公司,LEICA L2型體視顯微鏡購自德國Leica公司,微波爐購自格蘭仕微波爐電器有限公司,酶聯(lián)免疫檢測儀購自美國Bio-Rad 公司。
1.2方法
1.2.1分組及處理? 選取同體重6~8周齡的健康、雄性SPF級C57BL/6及ob/ob小鼠,各12只,隨機分為空白對照組(C57組)、糖尿病模型組(OB組)、空白睡眠節(jié)律干擾組(C57+CSD組)、模型睡眠節(jié)律干擾組(OB+CSD組),每組6只。采用改良多平臺水環(huán)境法,其中C57+CSD組和OB+CSD組小鼠分別置于含水的睡眠剝奪籠(籠內(nèi)圓形平臺直徑3 cm,高5.0 cm),小鼠放于籠內(nèi)平臺之上,小鼠入睡時因肌肉松弛掉入平臺外的水中,干擾其正常睡眠節(jié)律。干預時間為每天早7∶00至晚19∶00,共12 h,余時間置于正?;\中。正式實驗干擾時間為4周,實驗開始前連續(xù)3 d,將小鼠放置于實驗條件下適應1 h。C57組和OB組小鼠置于正常籠中,實驗環(huán)境與睡眠節(jié)律干擾組相同。
1.2.2小鼠體重稱量? 每日觀察小鼠一般狀況。每周于固定時間點用電子天平稱量小鼠體重并記錄。
1.2.3腹腔葡萄糖耐量實驗? 實驗期限結束后,各實驗組小鼠禁食12 h,按照2 g/kg的劑量向小驗鼠腹腔注射葡萄糖,分別于0、15、30、60、120 min測定并記錄血糖值。
1.2.4 ELISA法測定血清胰島素含量? 向胰島素ELISA試劑板內(nèi)依次加入10 μl的血清樣品與標準品,然后向各檢測孔加100 μl的抗體的稀釋液,室溫孵育2 h;棄去板內(nèi)液體,各孔內(nèi)加入350 μl洗滌液,反復清洗5次;向各檢測孔加入200 μl顯色液,室溫避光靜置20 min;每孔依次加入50 μl終止液,振蕩5 s,酶標儀下測定OD450處吸光度值并繪制標準曲線,計算血清中胰島素濃度。
1.2.5小鼠胰島的分離? 小鼠禁食12 h后,用40 g/L的水合氯醛腹腔注射麻醉,仰臥位固定于操作臺上,75%的酒精消毒胸腹部皮膚,沿腹正中線打開腹腔。結扎胰腺導管口十二指腸端,破心處死小鼠,用頭皮針于近肝門處穿刺膽總管,隨后向胰腺內(nèi)灌注1 g/L膠原酶3~5 ml,待胰腺完全膨脹后,快速剪下胰腺組織放在離心管內(nèi),剪去多余脂肪組織和周圍血管,37℃水浴15~20 min。隨后向離心管內(nèi)加入4℃預冷的Hanks液40 ml,終止消化。快速晃動離心管至胰腺呈泥沙狀,冰浴10 min,吸棄約30 ml的上層液體,再次加入4℃預冷的Hanks液,洗滌5次。體視鏡下挑選形態(tài)光滑的胰島以備用。
1.2.6葡萄糖刺激離體胰島胰島素分泌實驗? 取大小形態(tài)相近的新鮮圓形胰島,培養(yǎng)于12孔板,置于37℃培養(yǎng)箱培養(yǎng)過夜,將胰島按實驗分組每孔5個移至96孔板,分別用2.5 mmol/L低糖孵育液和? ?25 mmol/L高糖培養(yǎng)液,于37℃細胞培養(yǎng)箱孵育胰島1 h,收集各孔低糖(或高糖)培養(yǎng)液至EP管中,于4℃預冷高速離心機3000 rpm離心10 min,收集500 μl上層上清液至新的EP管中,參照胰島素ELISA試劑盒說明書檢測上清液胰島素分泌水平。
1.3統(tǒng)計學分析? 采用SPSS 20.0對結果進行統(tǒng)計學分析,計量資料以(x±s)表示,組間比較采用單因素方差分析,P<0.05為差異有統(tǒng)計學意義。
2結果
2.1生物鐘節(jié)律紊亂對小鼠體重的影響? 生物鐘節(jié)律紊亂4周后,C57組小鼠體重增加22.92%,C57+CSD組小鼠體重增加0.42%;而OB組小鼠體重增加26.16%,OB+CSD組小鼠體重減低0.17%。C57+CSD組、OB組、OB+CSD組小鼠體重增加均減少,而OB+CSD組體重下降更明顯(P<0.05),見圖1。
2.2生物鐘節(jié)律紊亂對小鼠糖耐量的影響? IPGTT結果顯示,C57組小鼠各時間點血糖均在正常范圍內(nèi);與C57組相比,C57+CSD組小鼠在30 min時間點血糖值明顯升高(P<0.05);OB組小鼠較C57組小鼠血糖峰值后移,且在15、30、60、90、120 min時間點血糖均升高(P<0.05);與OB組比較,OB+CSD組小鼠在15、30、60、90、120 min時間點血糖明顯升高,見圖2。
2.3生物鐘節(jié)律紊亂對小鼠空腹血清胰島素分泌的影響? 空腹血清胰島素值結果顯示,C57組與C57+CSD組小鼠空腹胰島素水平比較,差異無統(tǒng)計學意義(P>0.05);OB組與OB+CSD組小鼠空腹胰島素水平比較,差異無統(tǒng)計學意義(P>0.05),見圖3。
2.4生物鐘節(jié)律紊亂對離體胰島葡萄糖刺激胰島素分泌的影響? 離體胰島分別經(jīng)2.5 mmol/L低糖、? ?25 mmol/L高糖培養(yǎng)基刺激后,上清液胰島素檢測結果顯示:經(jīng)低糖或高糖刺激后:OB組與OB+CSD組胰島素分泌水平高于C57組或C57+CSD組,差異有統(tǒng)計學意義(P<0.05);經(jīng)高糖刺激后:與C57組相比,C57+CSD組離體胰島胰島素分泌減低,差異有統(tǒng)計學意義(P<0.05);經(jīng)高糖刺激后:與OB組相比,OB+CSD組離體胰島胰島素分泌減低,差異有統(tǒng)計學意義(P<0.05),見圖4。
3討論
隨著全球經(jīng)濟的快速發(fā)展,生活節(jié)奏的加快,越來越多的人出現(xiàn)睡眠不足、睡眠質量下降等睡眠問題[8]。研究表明,不規(guī)律的生活方式,如睡眠不當、輪班工作等可使晝夜節(jié)律改變,進而導致2型糖尿病、肥胖和代謝障礙等疾病的發(fā)生[9,10]。持續(xù)性高血糖及胰島素絕對或相對缺乏為2型糖尿病的主要特? ? 征[11],其中胰島素分泌在白天分泌較多,而在夜間相對減低,由晝夜節(jié)律系統(tǒng)調(diào)節(jié)[12],在整個“睡眠-覺醒”周期中葡萄糖耐量和胰島素分泌具有內(nèi)在節(jié)律性[13]。研究表明,晝夜節(jié)律時鐘基因在胰島素分泌以及糖代謝過程中發(fā)揮重要作用,內(nèi)源性晝夜節(jié)律的紊亂可能導致2型糖尿病的發(fā)生[14]。
為探究生物鐘節(jié)律紊亂在糖代謝中的作用,本研究通過經(jīng)典水平臺法構建小鼠睡眠節(jié)律紊? 亂模型,旨在探討睡眠節(jié)律紊亂對正常及糖尿病 小鼠糖代謝以及胰島功能的影響。本研究中所用到的OB/OB小鼠發(fā)生了瘦素基因(ob)純合突變,表現(xiàn)為肥胖、多食、高血糖、胰島素抵抗等,被推薦作為研究2型糖尿病的良好動物模型[15]。本研究中用C57BL/6小鼠作為OB/OB糖尿病小鼠的對照組。從體重結果可以看出,C57組與OB組小鼠體重明顯增加,C57+CSD組體重增加并不明顯,而OB+CSD組體重則減低。說明睡眠紊亂可導致體重的減低,導致體重減低的原因之一可能是睡眠限制 增加了大鼠的能量消耗。與睡眠狀態(tài)相比,醒著的狀態(tài)會導致更多的能量消耗以及交感神經(jīng)自主神經(jīng)活動增加[16-18]。另一方面,可能是睡眠剝奪小鼠在實驗過程中承受更多的壓力反應,有研究表明,? 睡眠限制可引起壓力應激進而導致體重減 輕[19,20]。OB組與OB+CSD組血糖值含量明顯高于C57組或C57+CSD組,但是在空腹狀態(tài)下,CSD并沒導致血糖的升高。與之相反的結果體現(xiàn)在IPGTT實驗,高糖刺激之下,C57+CSD組血糖在30min時明顯高于對照組,OB+CSD組在30、60、90、120 min血糖均高于其OB對照組,表明睡眠剝奪導致的生物節(jié)律紊亂造成了大鼠糖代謝的紊亂。胰島素測定與血糖紊亂相呼應,空腹狀態(tài)下,C57組與C57+CSD組胰島素水平比較,OB組與OB+CDS組胰島素水平比較,差異均無統(tǒng)計學意義(P>0.05),但是在離體胰島高糖刺激實驗中,C57及ob/ob小鼠經(jīng)睡眠紊亂剝奪后,胰島分泌均被抑制,分泌值較對照組明顯下降。
綜上所述,胰島素分泌與生物鐘節(jié)律存在著 密切的關系,是維持血糖的生理穩(wěn)態(tài)的關鍵因素 之一。當正常的生物鐘節(jié)律破壞后,胰島分泌功能受限導致糖代謝紊亂,其中的分子機制需要進一步探索。
參考文獻:
[1]Aldawi N,Darwiche G,Abusnana S,et al.Initial increase in glucose variability during Ramadan fasting in non-insulin-treated patients with diabetes type 2 using continuous glucose monitoring[J].Libyan J Med,2019,14(1):1535747.
[2]Gonzalez L,Garrie K,Turner M.Type 2 diabetes-An autoinflammatory disease driven by metabolic stress[J].Biochim Biophys Acta Mol Basis Dis,2018,1864(11):3805-3823.
[3]Wang LM,Gao P,Zhang M,et al.Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013[J].Jama-Journal of the American Medical Association,2017,317(24):2515-2523.
[4]Wu T,ZhuGe F,Sun L,et al.Enhanced effect of daytime restricted feeding on the circadian rhythm of streptozotocin-induced type 2 diabetic rats [J].Am J Physiol Endocrinol Metab,2012,302(9):E1027-1035.
[5]Tang Y,Meng L,Li D,et al.Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus[J].Chin Med J(Engl),2014,127(20):3543-3547.
[6]Leproult R,Holmback U,Van Canter E.Circadian Misalignment Augments Markers of Insulin Resistance and Inflammation,Independently of Sleep Loss[J].Diabetes,2014,63(6):1860-1869.
[7]Asher G,Sassone-Corsi P.Time for Food:The Intimate Interplay between Nutrition,Metabolism, and the Circadian Clock [J].Cell,2015,161(1):84-92.
[8]Li M,Li X,Lu Y.Obstructive Sleep Apnea Syndrome and Metabolic Diseases[J].Endocrinology,2018,159(7):2670-2675.
[9]Hein M,Lanquart J,Loas G,et al.Prevalence and Risk Factors of Type 2 Diabetes in Major Depression:A Study on 703 Individuals Referred for Sleep Examinations[J].Psychosomatics,2018,59(2):144-157.
[10]Paschos GK,F(xiàn)itzGerald GA.Circadian clocks and vascular function [J].Circ Res,2010,106(5):833-841.
[11]Hida M,Anno T,Kawasaki F,et al.A rare case of large pyosalpinx in an elderly patient with well-controlled type 2 diabetes mellitus:a case report[J].J Med Case Rep,2018,12(1):286.
[12]Bonnefond A,F(xiàn)roguel P.Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes:Still a Long Way to Go[J].Curr Diab Rep,2017,17(12):122.
[13]Kent B,McNicholas W,Ryan S.Insulin resistance,glucose intolerance and diabetes mellitus in obstructive sleep apnoea[J].J Thorac Dis,2015,7(8):1343-1357.
[14]Forrestel A,Miedlich S,Yurcheshen M,et al.Chronomedicine and type 2 diabetes:shining some light on melatonin[J].Diabetologia,2017,60(5):808-822.
[15]Roh J,Lee J,Park S,et al.CRISPR-Cas9-mediated generation of obese and diabetic mouse models[J].Exp Nim,2018,67(2):229-237.
[16]Barf RP,Van Dijk G,Scheurink AJW,et al.Metabolic consequences of chronic sleep restriction in rats:Changes in body weight regulation and energy expenditure[J].Physiology&Behavior,2012,107(3):322-328.
[17]Jung CM,Melanson EL,F(xiàn)rydendall EJ,et al.Energy expenditure during sleep,sleep deprivation and sleep following sleep deprivation in adult humans[J].Journal of Physiology-London,2011,589(1):235-244.
[18]Sgoifo A,Buwalda B,Roos M,et al.Effects of sleep deprivation on cardiac autonomic and pituitary-adrenocortical stress reactivity in rats[J].Psychoneuroendocrinology,2006,31(2): 197-208.
[19]Pardon MC,Marsden CA.The long-term impact of stress on brain function:From adaptation to mental diseases[J].Neuroscience and Biobehavioral Reviews,2008,32(6):1071-1072.
[20]De Kloet ER,Joels M,Holsboer F.Stress and the brain:From adaptation to disease[J].Nature Reviews Neuroscience,2005,6(6):463-475.
收稿日期:2019-9-19;修回日期:2019-9-30
編輯/肖婷婷