• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of a NovelImidazole Ionic Liquid Modified Mesoporous Silica SBA15 for Selective Separation and Determination of Inorganic Arsenic in Rice①

    2019-01-05 08:09:06CHENTunWeiZHENWenBoYANZhiMingLINHeTongCHENGuoYingCHENShoJun
    結(jié)構(gòu)化學(xué) 2018年12期

    CHEN Tun-Wei ZHEN Wen-Bo YAN Zhi-Ming LIN He-Tong CHEN Guo-Ying CHEN Sho-Jun

    ?

    Synthesis of a NovelImidazole Ionic Liquid Modified Mesoporous Silica SBA15 for Selective Separation and Determination of Inorganic Arsenic in Rice①

    CHEN Tuan-WeiaZHEN Wen-BoaYAN Zhi-MingaLIN He-TongaCHEN Guo-YingbCHEN Shao-Juna

    a(350002)b(19038)

    A novel 1-methylimidazole ionic liquid modified SBA15 mesoporous silica (1-MIIL@SBA15) was synthesized and applied to selective separation of inorganic arsenic (iAs) in rice by dispersive solid phase extraction (DSPE), followed by hydride generation-atomicfluorescence spectrometric(HG-AFS) quantification. The prepared sorbent was characterized by FTIR, FESEM, BET and Zeta potential. Key parameters of adsorption and desorption in DSPE wereoptimized using standard reference material 1568b rice flour. Under optimal conditions, the limit of detection was 8.776 ng/kg, relative standard deviation was ≤2.0%, and recoveries of iAs were in the 92.3~94.4% range.This method was successfully applied to the determination of iAs in rice. Under acidic condition, the electrostatic interaction between the positively charged 1-MIIL@SBA15 and anionic iAs played an important role in selective iAs separation, rendering this method suitable for iAs analysis.

    SBA15, ionic liquid, inorganic arsenic, dispersive solid phase extraction, hydride generation-atomic fluorescence spectrometric (HG-AFS);

    1 INTRODUCTION

    Arsenic (As), recognized as a global pollutant and non-threshold carcinogen, isassociated with both cancer (lungs, liver, bladder, skin,etc.) and non-cancer (keratosis,cardiovascular disease, diabetes, etc) health impacts[1-4]. Toxicity of inorganic arsenic (iAs, including arsenite (AsIII) and arsenate (AsV)) is much higher than its organic counterparts[5,6]; so, the focus of regulatory monitoring is shifting from total arsenic to iAs, making speciation critical in food safety monitoring.

    Rice is the dietary staple for half of human population, especially in Asia. Typically grown in anaerobic flooded soil, unfortunately, rice is more vulnerable to arsenic in sub-soil and irrigation water than other terrestrial crops, leading to much higher iAs accumulation[7,8].To protect public health from chronic iAs exposure via rice consumption, the Codex Alimentarius Committee (CAC) on contami- nants in food set iAs maximum level (ML) in polished rice at 200 ng/g in 2014[9]. China and South Korea have also set iAs ML in polished rice at 200 and 150 ng/g, respectively[10]. European Union has established iAs MLs at 200 ng/g for polished rice, 250 ng/g for parboiled rice, and 100 ng/g for the rice destined for foods for young children and infants[11].In 2016, US FDA proposed an actionlevel of iAs in rice for the infant foods at 100 ng/g[12]. However, sensitive, accurate and reliable determination of iAs in rice samples is still difficult due to low-level presence and complexmatrix.

    Conventional separation by high performance liquid chromatography (HPLC) using strong anion exchange sorbent suffers from high cost and low sample throughout[13,14].Thus, non-chromatographic approaches such as liquid-liquid extraction, cloud point extraction, and solid phase extraction (SPE) were developed for iAs separation to gain simplicity, cost, and time advantages[15,16]. Dispersive SPE (DSPE) is an attractive technique with rapid opera- tion, high recovery, and large enrichment factor[17]. Up to now, a variety of adsorbents[18-26]such as ion exchange resin, metal organic frameworks (MOFs), carbon-based materials, metal oxides, and meso- porous materials have been used for the adsorption of arsenic from water and biological samples. Amongst these,ordered mesoporous silicas, espe- cially SBA-15, have gainedsignificant attention due to their large specific surface area,uniform internal pore structure, controllable pore size, andframework stability[27].However, low selectivity disqualifies these adsorbents for iAs separation; modification with selective functional groups is recommended. Fortunately, imidazolateionic liquids (IILs) with surface cationic imidazolegroups have been demonstrated to enhance selectivity via electrostatic interaction[28-30]. Based on the fact that iAs existed as H2AsO4?, HAsO42?, and H2As2O32?, we propose imidazole modified SBA15 as an effective DSPE adsorbent for selective iAs separation.

    In this work, 1-methylimidazole ionic liquid func-tionalized SBA15 mesoporous silica (1-MIIL@SBA15) was synthesized for iAs separa- tion from rice, followed by hydride-generation atomic fluorescence spectrometric(HG-AFS) quan- tification. To the best of our knowledge, this is the first report on the use of 1-MIIL@SBA15 sorbent in arsenic speciation. Characterizations of the adsor- bent and related technical issues were discussed in detail.

    2 EXPERIMENTAL

    2. 1 Chemicals and reagents

    AsV, AsIII, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) standard stock solutions (1000 mg/Lin 1 mol/L HNO3) were purchased from National Standard Materials Research Center (Beijing, China) and diluted prior to use. SBA15 ordered mesoporous silica was obtained from Xianfeng Nanomaterial Technology (Nanjing, China). All the other analytical grade chemicals were supplied by Sinopharm Chemical Regent (Shanghai, China). All the solutions were prepared using deionized water (DIW) with a resistivity of 18.2 MΩ·cm from a TM-D24UV water system (Millipore, Bedford, MA, USA). The standard reference material (SRM) 1568b rice flour (certified value of inorganic arsenic 92±10g/kg) was provided by National Institute of Standard and Technologies (NIST, Boulder, CO, USA).

    2. 2 Synthesis of 1-methylimidazolium ionic liquid modified SBA15 (1-MIIL@SBA15)

    The synthesis was conducted according to the report by Yuan[31]with some modifications. A typical procedure is: 2.0 g SBA15 was dispersed in 50 mL of dried toluene to which 3.0 mL of 3-chloro- propyltriethoxysilane (CPTES) was added, followed by reflux at 120 °C for 24 h under N2atmosphere. After cooling to room temperature, the reaction solution was extracted to dichloromethane by Soxhlet extraction for 24 h and dried at 70 °C over- night in a vacuum oven to obtain the precursor (CPTES/SBA15). Next, 2.0 g CPTES/SBA15 was suspended in 50 mL of dried toluene to which 3.0 mL of 1-methylimidazole (1-MI) was added, followed by reflux at 120 °C for 24 h under N2atmosphere. After cooling to room temperature and centrifugation, the resulting sorbent was washed sequentially with toluene, absolute ethanol, and methanol, and finally desiccated at 70 °C overnight in a vacuum oven to obtain solid sorbent, designated as 1-MIIL@SBA15, to be kept in a desiccator. Fig. 1 illustrates the schematic diagram of the synthesis procedure of 1-MIIL@SBA15.

    Fig. 1. Schematic diagram of the synthesis procedure of 1-MIIL@SBA15

    2. 3 Selective adsorption experiment

    Abatchselective adsorption experiment was carried out with 5 mg 1-MIIL@SBA15 and 5 mL of AsV, MMA, DMA aqueous solutions at desired pH and concentrations. The aqueous solutions were adjusted to desired pH using 1 mol/L HCl or NaOH. The adsorption process was aided with ultrasonic agitation at room temperature to achieve adsorption equilibrium (in the case of adsorption isotherms). After centrifugation at 10000 rpm for 15 min, 1.6 mL of supernatants was transferred to 10 mL volumetric flask, to which 0.4 mL of 50 g/L thiourea-50g/L ascorbic acid and 2 mL of 10%HCl were added, and allowed to stand at room temperature for30 min. Finally, the content was analyzed by HG-AFS. The adsorption efficiency (%) and adsorptioncapacity (q,g/g) were calculated with the following equations:

    %= (1–C/C)×100 (1)

    q= (CC)/, (2)

    whereCandCarethe initial and equilibrium concentrations of arsenic solution (g/L),is thevolume (L), andis the amount of adsorbent (g).

    At the same time, the adsorption of AsVby native SBA15 served as control.

    2. 4 Sample preparation

    Eighteen rice samples of different varieties (polished rice, brown rice, glutinous rice and rice flour) were collected from local markets in Fuzhou, China. After being washed three times with DIW, rice grains were dried at 60 °C in an oven to constant weight and then milled using a small mill into fine powders. Microwave assisted acid digestion was conducted following our previous report[16]with some minor modifications. Briefly, aliquots of 0.25 g (±0.005 g) rice flour were weighed into 100 mL microwave vessels, 10 mL of 0.06 mol/L HNO3-3%H2O2was added, then the vessels were sealed and digestion was performed using a MarsX Express (Anton Paar, Austria) microwave reaction system at 95℃for 30 min. The contents were allowed to cool to room temperature, and then filtered through 0.22m polytetrafluoroethylene (PEFE) membrane filter (Jinteng, Tianjin, China).

    2. 5 DSPE procedure

    Fifty mg 1-MIIL@SBA15 was added to adjust the pH value of the rice extract. The suspension was mixed under ultrasonic agitation at room tempera- ture for 20 min, and then centrifuged at 10000 rpm for 5 min. After centrifugation, the solid phase was mixed with 5 mL of 1.0 mol/L HCl and subjected to ultrasonic agitation for 5 min. After centrifuge at 10000×for 10 min, 1.6 mL of supernatant was transferred to 10 mL volumetric flask, then 0.4 mL of 50 g/L thiourea-50g/L ascorbic acid and 2 mL of 10%HCl were added, and finally the mixture was allowed to stand at room temperature for30 min to reduce AsVto AsIII. The recoveries (%R) were calculated with the following equation:

    %R=C/C×100 (3)

    whereCandCare the detection value and the certified value of inorganic arsenic in the SRM1568b rice flour, respectively.

    2. 6 Instrumentation

    The microstructural images of 1-MIIL@SBA15 were observed by field emission scanning electron microscopy (FESEM) using an S4800 microscope (Hitachi, Tokyo, Japan) with accelerating voltage set at 10 KV. Fourier transform infrared (FTIR) spec- trum was collected on a Nicolet 6700 spectrometer (Waltham, Massachusetts, USA) in the 4000~400 cm-1frequency range with 4 cm-1resolution. The N2adsorption-desorption isotherms of SBA15 and 1-MIIL@SBA15 were measured using an ASAP2020micromeritics analyzer (Micromeritics,Georgia, USA) at 77 K with samples previouslydegassed at 300 °C for 48 h to determine the Brunauer-Emmett-Teller (BET) specific surface area(m2/g) and total pore volume (m3/g). Zeta potential was measured using a Zeta potential analyzer (Malvern, UK). Triplicate measurements were taken for each sample; quantification was based on peak height using a 3100 atomic fluorescence spectro- meter (Haiguang, Beijing, China). The major AFS parameters were set as follows according to the manufacturer’srecommendations: total primary current at 50.0 mA, detection wavelength at 193.7 nm, Argon flow rate at 800 mL/min, air flow rate at 300 mL/min. A standard curve was constructed daily.

    3 RESULTS AND DISCUSSION

    3. 1 Characterization of 1-MIIL@SBA15

    FTIR was employed to confirm the successful introduction of methylimidazole groups onto the surface of SBA15 mesoporous silica, where native SBA15 was used as reference material. The FTIR spectra of the 1-MIIL@SBA15 and SBA15 are depicted in Fig. 2A. The adsorption bands at 960 cm-1are attributed to the O–H stretching vibration of the surface silanol groups; vibration of 1-MIIL@SBA15 was weakerSBA15 because some O–H groups were coupled toimidazolyl groups. The adsorption band at 2928 cm-1isascribed to C–H vibration of imidazole, and the band at 1573 cm-1corresponds to the stretching of C–C and C–N groups[31,32]. Overall,the FTIR spectra proved successful coupling of 1-MIIL onto the surface of SBA15. The morphologies of SBA15 and 1-MIIL@SBA15 were studied by FESEM. The FESEM images revealed that the pore size was slightly decreased due to 1-MIIL filling, but the uniform mesoporous structure of SBA15 was still intact (Fig. 2B).

    Furthermore, the porous structures of SBA15 and 1-MIIL@SBA15 were confirmed by N2adsorp- tion/desorption isotherms. As shown in Fig. 2C, the isothermal hysteresisof SBA15 and 1-MIIL@SBA15 appeared in the 0.6~0.8 relative pressure (/0) range in the IV type adsorp- tion/desorptionisotherm, which was characteristic of highly ordered mesoporous materials[33].The BET specific surface areas and total pore volume of 1-MIIL@SBA15 were calculated to be 391.4 and 0.68 cm3/g, respectively, based on the BET equation for adsorption isotherm. Compared to native SBA15 (BET specific surface area 781.7 m2/g and pore volume 1.18 cm3/g), the reduction of BET specific surface area and pore volume of 1-MIIL@SBA15 was due to 1-MIIL filling in the pore channel of SBA15, in good agreement with the results of FTIR and FESEM.Moreover, the zeta potential of 1-MIIL@SBA15pH (Fig. 2D) indicated that the material carried positive charges (28.6~36.8 mV) at pH up to 11.5, the isoelectric point (IP) of the 1-MIIL@SBA15.

    Fig.2. Characterizations of SBA15 and 1-MIIL@SBA15. (A) FTIR spectra of SBA15(a) and 1-MIIL@SBA15(b); (B) FESEM images ofSBA15 (a)~(b) and1-MIIL@SBA15 (c)~(d); (C) N2adsorption-desorption isotherms of the SBA15 and 1-MIIL@SBA15; (D) Zeta potential of 1-MIIL@SBA15

    3. 2 Selective adsorption behaviors

    To understand the adsorption capacity of iAs on the adsorbent, the adsorption efficiency of 20g/L AsVon 5 mg native SBA15 and 1-MIIL@SBA15 was firstly compared at pH 6 after adsorption for 15 min (Fig.3). As could be seen, no adsorption occurred on native SBA15(3%) but high adsorption on 1-MIIL@SBA15 (95%). These contrasting adsorption behaviors of AsVcould be attributed to adsorption of anionic AsVspecies (H2AsO4?and HAsO42?) on cationic imidazole groups on 1-MIIL@SBA15 surface, rendering 1-MIIL@SBA15 an effective iAs adsorbent.

    Solution pH affects both the surface charge of the adsorbent and iAs adsorption[28]. To better unders- tand the interaction of iAs adsorption at different pH, adsorption efficiencies of 20g/L AsV, MMA, and DMA on 1-MIIL@SBA15 were studied in the pH 2~13 range (Fig. 4). In Fig. 4A, adsorption efficiency of AsV, MMA and DMA increases in the pH 2~11range then decreases drastically beyond pH 11. The adsorption efficiency of AsVincreased rapidly from 10% at pH 2 to 85% at pH 3. With pKa=2.3, AsVexisted in neutral form below pH 2.3, resulting in no electrostatic interaction[16]. In the pH 4~11 range, AsVcarries negative charge (H2AsO4?and HAsO42?), while 1-MIIL@SBA15 carries positive charge (IP =11.5). The strong electrostatic interaction was therefore responsible for the high adsorption efficiencies (>95%). Beyond pH 11.5, 1-MIIL@SBA15 carries negative charge; electro- static repulsion caused adsorption efficiency to decrease drastically (<7%).

    To further investigate the AsVadsorption effi- ciency and the interference of organic arsenic species, the pH value was fine tuned to 3.0, 3.2, 3.4, 3.6, 3.8 and 4.0(Fig. 4B). The adsorption effi- ciencies of AsV, MMA and DMA were 95%, 14% and 5.3%, respectivelyat pH 3.4; on the other hand, higher than 30% adsorption efficiency of DMA was obtained at pH >3.4. So, pH3.4 was selected as the optimal for iAs adsorption.

    Fig. 3. Comparison of the adsorption efficiency of AsV(20 μg/L) between SBA15 and 1-MIIL@SBA15 after adsorption at pH6 for 15 min at room temperature

    Fig. 4. Effect of solution pH on the adsorption efficiencies of AsV, MMA, and DMA on 1-MIIL@SBA15. (A) pH range from 2 to 13; (B) pH at 3.0, 3.2, 3.4, 3.6, 3.8 and 4.0

    3. 3 Adsorption kinetic

    The time-dependent adsorption of AsVon 1-MIIL@SBA15 in Fig. 5 demonstrated that the adsorption equilibriums of AsVwas achieved within 25 min. And two known kinetic models including pseudo-first-order rate and pseudo-second-order rate fittings were applied to the behavior of the adsorptiontime. The relevant kinetic equations and parameters are represented in Table 1. It could be seen that the pseudo-second-order model (2=0.9997) fits better than pseudo-first-order model (2=0.9780); meanwhile, the experimental equilibrium adsorption (e=28.6g/g) is much closer to that of the pseudo-second order model (e=29.0g/g).

    Table1. Kinetic Model Parameters for the Adsorption of iAs on 1-MIIL@SBA15

    Fig. 5. Time-dependent adsorption of AsVon 5 mg 1-MIIL@SBA15 at different initial concentrations

    3. 4 Adsorption isotherms

    Two different models of adsorption isotherm, Langmuir and Freundilich models were used to interpret the relationship between the adsorbed amount of AsVand its equilibrium concentration in aqueous solution (Table 2). The Langmuir model is based on a monolayer sorption with homogeneous sorption energies, whereas the Freundilich model is based on multilayer sorptionand heterogeneous sorption energies[34]. In term of2values and experimental data, the sorption of AsVfollowed the Langmuir model (2=0.9965), indicating a mono- layer adsorption process. The maximum adsorption capacity (q) of 1-MIIL@SBA15 to AsVwas 231.48g/g. On the other hand, the 1/n <1 (0.6972) indicated high adsorption intensity[34].

    Table 2. Langmuir and Freundlich Parameters for the Adsorption of iAs on 1-MIIL@SBA15

    3. 5 Optimization of DSPE procedure

    In order to obtain quantitative recoveries of iAs with good sensitivity and precision in rice sample, key analytical parameters for DSPE procedure such as amount of adsorbent, adsorption time, con- centration and volume of elution solvent were optimized.

    Adsorbent amount and adsorption time were cru- cial factors that affect extraction efficiency[35].Firstly, amounts of 1-MIIL@SBA15 in the range of 3.0~60 mg were studied based on iAs recovery (Fig.6A). It was found that >82% recovery was obtained using 50 mg 1-MIIL@SBA15; higher amount of adsorbent had no significant effect, likely due to higher degree of difficulty to elute iAsfrom a larger amount of adsorbent. In the final protocol, 50 mg of 1-MIIL@SBA15 was used. Secondly, the influence of adsorption time on iAsrecovery was investigated at 10, 15, 20, 25, 30, 35 and 40 min. As shown in Fig.6B, quantitative iAs recoveries (>85%) were achieved at 20 min, then reached a plateau beyond 20 min. Therefore, 20 min was set in the final protocol.

    Fig. 6. Effect of adsorption conditions on the recovery of inorganic arsenic content in SRM1568b rice flour(A) adsorbent amount; (B) adsorption time

    A suitable eluent is required for quantitativeelution[36],which was possible only when AsVcarried zero net charge at low pH; thus, strong acid HCl was selected as an eluent[16], and elution conditions were investigated (Fig. 7). The recovery of iAs increases with increase in the concentration in 0.5~1 mol/L, then reaches a plateau (93%) in the 1~1.5 mol/L range (Fig. 7A). So, 1.0 mol/L HCl was chosen as the optimal eluent concentration. The effect of HCl volume on iAs recovery was further investigated in the 4~8 mL range (Fig.7B), no significant effect on iAs recovery was observed; beyond 6 mL, decreased iAs recovery was likely caused by dilution. Therefore, 5 mL of HCl was used in the subsequent experiments. Finally, the effect of elution time on the iAs recovery was studied in the 1~15 min range. The results showthat iAs recovery reaches 93.1% when the elution time increased to 5 min, beyond which elution time had hardly any effect on recovery(Fig.7C). Thus, 5 min elution time was set in the final protocol.

    In order to evaluate the reusability of 1- MIIL@SBA15 adsorbent, the used adsorbent was dipped into 1 mol/L HCl for 30 min, and then rinsed with DIWseveral times before the next cycle. As shown in Fig. 8, no obvious change was observed in iAs recovery after 5 cycles.

    3. 6 Analytical performance

    The method accuracy was verified by spike-reco- very studies. SRM 1568b rice flour was spiked with 70, 100, 130g/L AsV, and the calibration curve was obtained with a linear equation=137.5991+17.7836, and2=0.9991. The analytical merits are summarized in Table3; the recoveries were acceptable in the 92.3~94.4% range; the relative standard deviation (RSD) was 1.5~2.0%, demons- trating reliability and freedom from matrix effects.The limit of detection (LOD) and limit of quanti- fication (LOQ) were 8.776and 26.3 ng/kg, respec- tively, calculated from 3based on 11 blank measurements[16].In short, the developed method using 1-MIIL@SBA15 as adsorbent showed high sensitivity was proved by the much lower LODs and LOQs compared with traditional and recently reported methods for the determination of inorganic arsenic in foods[28,36-38].

    Table 3. Analytical Figures of Merit of the Method(n=3)

    Fig. 7. Effect of desorption conditions on the recovery of inorganic arsenic content in SRM1568b rice flour.

    (A) concentration of HCl; (B) elution time; (C) volume of HCl

    Fig. 8. Effect of reuse times of 1-MIIL@SBA15 adsorbent on recovery of inorganic arsenic in SRM1568b rice flour

    3. 7 Rice sample analysis

    This method was applied to iAs determination in rice (Table 4). The contents of iAs in rice samples were in the range of 67~190g/kg; while those for brown rice (150~190g/kg) are higher than the corresponding values for the white rice(96~116g/kg) because of higher iAs distribution in aleurone layer, in consistence with previous reports[16,39-43]. The results of SRM 1568b are in good agreement with the certified values, validating this method for iAs determination in rice.

    Table 4. Analytical Results for iAs in Real Rice Samples

    4 CONCLUSION

    In this work, 1-MIIL@SBA15 was successfully synthesized as a DSPE adsorbent and applied to iAs separation from rice matrix. This DSPE metho- dology gained selectivity, sensitivity, operation, and cost advantages. The resulting DSPE-HG-AFS methodology proved an effective alternative for HPLC-ICP-MS for quantification of iAs in rice. This study also demonstrated a real-world application of mesoporous materials.

    (1) Cubadda, F.; Jackson, B. P.; Cottingham, K. L.; Van Horne, Y. O.; Kurzius-Spencer, M. Human exposure to dietary inorganic arsenic and other arsenic species: state of knowledge, gaps and uncertainties.2017, 579, 1228–1239.

    (2) Smith, A. H.; Ercumen, A.; Yuan, Y.; Steinmaus, C. M. Increased lung cancer risks are similar whether arsenic is ingested or inhaled.2009, 19, 343–348.

    (3) Cheng, Y. Y.; Huang, N. C.; Chang, Y. T.; Sung, J. M.; Shen, K. H.; Tsai, C. C.; Guo, H. R. Associations between arsenic in drinking water and the progression of chronic kidney disease: a nationwide study in Taiwan.2017, 321, 432–439.

    (4) Rasheed, H.; Kay, P.; Slack, R.; Gong, Y. Y. Arsenic species in wheat, raw and cooked rice: exposure and associated health implications.2018, 634, 366–373.

    (5) Llorente-Mirandes, T.; Rubio, R.; Lopez-Sanchez, J. F. Inorganic arsenic determination in food: areview of analytical proposals and quality assessment over the last six years.2017, 71, 25–69.

    (6) Qu, H. O.; Mudalige, T. K.; Linder, S. W. Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry: enzyme-assisted water-phase microwave digestion.2015, 63, 3153–3160.

    (7) Islama, S.; Rahman, M. M.; Islam, M. R.; Naidu, R. Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk.2016, 96, 139–155.

    (8) Amaral, C. D. B.; Nobrega, J. A.; Nogueira, A. R. A. Sample preparation for arsenic speciation in terrestrial plants-a review.2013, 115, 291–299.

    (9) Commission, C. A. The report of the eighth session of the Codex Committee on contaminants in foods.,2014.

    (10) Jung, M. Y.; Kang, J. H.; Jung, H. J.; Ma, S. Y. Inorganic arsenic contents in ready-to-eat rice products and various Korean rice determined by a highly sensitive gas chromatography-tandem mass spectrometry.2018, 240, 1179–1183.

    (11) Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, M.; Musil, S.; Dedina, J. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.2017, 175, 406–412.

    (12) Shibata, T.; Meng, C.; Umoren, J.; West, H. Risk assessment of arsenic in rice cereal and other dietary sources for infants and toddlers in the US.2016, 13.

    (13) Chen, S. Y.; Yuan, B. A.; Xu, J. J.; Chen, G. T.; Hu, Q. H.; Zhao, L. Y. Simultaneous separation and determination of six arsenic species in Shiitake () mushrooms: method development and applications.2018, 262, 134–141.

    (14) Choi, J. Y.; Khan, N.; Nho, E. Y.; Choi, H.; Park, K. S.; Cho, M. J.; Youn, H. J.; Kim, K. S. Speciation of arsenic in rice by high-performance liquid chromatography-inductively coupled plasma mass spectrometry.2016, 49, 1926–1937.

    (15) Lai, G. X.; Chen, G. Y.; Chen, T. W. Speciation of As-III and As-V in fruit juices by dispersive liquid-liquid microextraction and hydride generation-atomic fluorescence spectrometry.2016, 190, 158–163.

    (16) Chen, G. Y.; Chen, T. W. SPE speciation of inorganic arsenic in rice followed by hydride-generation atomic fluorescence spectrometric quantification.2014, 119, 202–206.

    (17) Khaligh, A.; Mousavi, H. Z.; Shirkhanloo, H.; Rashidi, A. Speciation and determination of inorganic arsenic species in water and biological samples by ultrasound assisted-dispersive-micro-solid phase extraction on carboxylated nanoporous graphene coupled with flow injection-hydride generation atomic absorption spectrometry.2015, 5, 93347–93359.

    (18) Ben Issa, N.; Rajakovic-Ognjanovic, V. N.; Marinkovic, A. D.; Rajakovic, L. V. Separation and determination of arsenic species in water by selective exchange and hybrid resins.2011, 706, 191–198.

    (19) Abbaszadeh, A.; Tadjarodi, A. Speciation analysis of inorganic arsenic in food and water samples by electrothermal atomic absorption spectrometry after magnetic solid phase extraction by a novel MOF-199/modified magnetite nanoparticle composite.2016, 6, 113727–113736.

    (20) Guivar, J. A. R.; Bustamante, A.; Gonzalez, J. C.; Sanches, E. A.; Morales, M. A.; Raez, J. M.; Lopez-Munoz, M. J.; Arencibia, A. Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content.2018, 454, 87–100.

    (21) Rashid, M.; Sterbinsky, G. E.; Pinilla, M. A. G.; Cai, Y.; O'Shea, K. E. Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles.2018, 122, 13540–13547.

    (22) Wen, S. P.; Zhu, X. S. Speciation of inorganic arsenic(III) and arsenic(V) by a facile dual-cloud point extraction coupled with inductively plasma-optical emission spectrometry.2018, 181, 265–270.

    (23) Huong, P. T. L.; Tu, N.; Lan, H.; Thang, L. H.; Quy, N. V.; Tuan, P. A.; Dinh, N. X.; Phan, V. N.; Le, A. T. Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(V) ions from aqueous solution.2018, 8, 12376–12389.

    (24) (24)Perez-Moreno, F.; Prieto-Garcia, F.; Rojas-Hernandez, A.; Marmolejo-Santillan, Y.; Salinas-Rodriguez, E.; Patino-Cardona, F. Study of arsenic removal with ionic exchange resins in drinking water from Zimapan, Hidalgo State, Mexico.2006, 42, 391–395.

    (25) Cai, J. H.; Wang, X. Y.; Zhou, Y.; Jiang, L.; Wang, C. R. Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal-organic framework MIL-100(Fe).2016, 18, 10864–10867.

    (26) Zou, Z. R.; Wang, S. L.; Jia, J.; Xu, F. J.; Long, Z.; Hou, X. D. Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration.2016, 124, 578–583.

    (27) Kim, S.; Park, S.; Han, Y.; Choi, J.; Park, J. Adsorption of Co(II) and Mn(II) ions on mesoporous silica SBA15 functionalized with amine groups.2014, 55, 1494–1499.

    (28) Shirkhanloo, H.; Ghazaghi, M.; Rashidi, A.; Vahid, A. Arsenic speciation based on amine-functionalized bimodal mesoporous silica nanoparticles by ultrasound assisted-dispersive solid-liquid multiple phase microextraction.2017, 130, 137–146.

    (29) Wang, X.; Li, G.; Row, K. H. Graphene and graphene oxide mModified by deep eutectic solvents and ionic liquids supported on silica as adsorbents for solid-phase extraction.2017, 38, 251–257.

    (30) Grijalba, A. C.; Escudero, L. B.; Wuilloud, R. G. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry.2015, 110, 118–123.

    (31) Yuan, C. Y.; Huang, Z. W.; Chen, J. Basic ionic liquid supported on mesoporous SBA-15: an efficient heterogeneous catalyst forepoxidation of olefins with H2O2as oxidant.2012, 24, 56–60.

    (32) Zhang, J.; Zhao, G. F.; Popovic, Z.; Lu, Y.; Liu, Y. Pd-porphyrin functionalized ionic liquid-modified mesoporous SBA-15: an efficient and recyclable catalyst for solvent-free Heck reaction.2010, 45, 1648–1653.

    (33) Zhao, L. Y.; Wang, S. C.; Wu, Y.; Hou, Q. F.; Wang, Y.; Jiang, S. M. Salicylidene Schiff base assembled with mesoporous silica SBA-15 as hybrid materials for molecular logic function.2007, 111, 18387–18391.

    (34) Kumar, S. R.; Jayavignesh, V.; Selvakumar, R.; Swaminathan, K.; Ponpandian, N. Facile synthesis of yeast cross-linked Fe3O4nanoadsorbents for efficient removal of aquatic environment contaminated with As(V).2016, 484, 183–195.

    (35) Yan, Z. M.; Wu, M.; Hu, B. Q.; Yao, M. N.; Zhang, L.; Lu, Q. M.; Pang, J. Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples.2018, 1542, 19–27.

    (36) Magoda, C.; Nomngongo, P. N.; Mabuba, N. Magnetic iron-cobalt/silica nanocomposite as adsorbent in micro solid-phase extraction for preconcentration of arsenic in environmental samples.2016, 128, 242–247.

    (37) Siangproh, W.; Chailapakul, O.; Songsrirote, K. Simple and fast colorimetric detection of inorganic arsenic selectively adsorbed onto ferrihydrite-coated silica gel using silver nanoplates.2016, 153, 197–202.

    (38) Fazelirad, H.; Taher, M. A. A study on the synthesis and application of magnetic nanosorbent for the simultaneous preconcentration and measurement of toxic metals in different real and standard samples.2017, 97, 23–28.

    (39) Lee, S. G.; Kim, D. H.; Lee, Y. S.; Cho, S. Y.; Chung, M. S.; Cho, M.; Kang, Y.; Kim, H.; Kim, D.; Lee, K. W. Monitoring of arsenic contents in domestic rice and human risk assessment for daily intake of inorganic arsenic in Korea.2018, 69, 25–32.

    (40) dos Santos, G. M.; Pozebon, D.; Cerveira, C.; de Moraes, D. P. Inorganic arsenic speciation in rice products using selective hydride generation and atomic absorption spectrometry (AAS).2017, 133, 265–271.

    (41) Signes-Pastor, A. J.; Carey, M.; Meharg, A. A. Inorganic arsenic in rice-based products for infants and young children.2016, 191, 128–134.

    (42) Yim, S. R.; Park, G. Y.; Lee, K. W.; Chung, M. S.; Shim, S. M. Determination of total arsenic content and arsenic speciation in different types of rice.2017, 26, 293–298.

    (43) Rahman, M. A.; Rahman, M. M.; Reichman, S. M.; Lim, R. P.; Naidu, R. Arsenic speciation in Australian-grown and imported rice on sale in Australia: implications for human health risk.2014, 62, 6016–6024.

    28 September 2018;

    6 November 2018

    ①Financially supported by the National Natural Science Foundation of China (No. 31701708), and the Outstanding Youth Foundation Project of Fujian Agriculture and Forestry University of China (No. xjq201710)

    Chen Shao-Jun, E-mail: fjzxcsj@163.com; Chen Guo-Ying, E-mail: guoying.chen@ars.usda.gov

    10.14102/j.cnki.0254-5861.2011-2201

    免费在线观看成人毛片| 国产成人影院久久av| 1024视频免费在线观看| 久久热在线av| 日日干狠狠操夜夜爽| 亚洲精品在线美女| 99精品久久久久人妻精品| 午夜福利一区二区在线看| 欧美不卡视频在线免费观看 | 亚洲国产欧美网| 夜夜夜夜夜久久久久| 久久久久久久精品吃奶| 免费高清视频大片| 国产主播在线观看一区二区| 国产私拍福利视频在线观看| 中文字幕人妻丝袜一区二区| 一个人免费在线观看的高清视频| 精品乱码久久久久久99久播| 露出奶头的视频| 免费高清在线观看日韩| 国产伦人伦偷精品视频| 国产精品av久久久久免费| 日韩 欧美 亚洲 中文字幕| 又黄又粗又硬又大视频| 制服人妻中文乱码| xxxwww97欧美| 国产成人一区二区三区免费视频网站| 欧美成人一区二区免费高清观看 | 一级毛片女人18水好多| 国产成人av教育| 国产午夜精品久久久久久| 成人欧美大片| 99在线视频只有这里精品首页| 亚洲无线在线观看| 久热这里只有精品99| 亚洲电影在线观看av| 免费在线观看影片大全网站| 亚洲精品一卡2卡三卡4卡5卡| 日韩中文字幕欧美一区二区| 女同久久另类99精品国产91| 99国产极品粉嫩在线观看| 男人舔女人下体高潮全视频| 国产精品自产拍在线观看55亚洲| 午夜福利视频1000在线观看| x7x7x7水蜜桃| 九色国产91popny在线| 中文亚洲av片在线观看爽| 欧美日韩黄片免| 1024手机看黄色片| 久久中文看片网| www.999成人在线观看| 欧美中文综合在线视频| 国产爱豆传媒在线观看 | 搞女人的毛片| 一边摸一边做爽爽视频免费| 亚洲片人在线观看| 久久香蕉国产精品| 99在线视频只有这里精品首页| 国产单亲对白刺激| 淫妇啪啪啪对白视频| 中文资源天堂在线| 999精品在线视频| 成人三级黄色视频| 成在线人永久免费视频| 成人手机av| 1024手机看黄色片| 两人在一起打扑克的视频| 91老司机精品| 女同久久另类99精品国产91| 男人舔女人下体高潮全视频| 国产精品自产拍在线观看55亚洲| 99精品久久久久人妻精品| 欧美另类亚洲清纯唯美| 国产精品亚洲美女久久久| 国产99白浆流出| 亚洲欧美日韩无卡精品| 久久久久久大精品| 99riav亚洲国产免费| 日韩一卡2卡3卡4卡2021年| 制服人妻中文乱码| 在线十欧美十亚洲十日本专区| 老熟妇仑乱视频hdxx| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av高清一级| 亚洲人成电影免费在线| 国产成人av激情在线播放| 国产免费男女视频| 婷婷精品国产亚洲av在线| 国产精品,欧美在线| 国内毛片毛片毛片毛片毛片| 国内精品久久久久久久电影| 免费一级毛片在线播放高清视频| 亚洲成人久久性| 国产爱豆传媒在线观看 | 一个人免费在线观看的高清视频| 一区二区三区精品91| 色综合欧美亚洲国产小说| 国产1区2区3区精品| 久久国产精品影院| 久久亚洲精品不卡| 大型av网站在线播放| 午夜老司机福利片| 亚洲男人的天堂狠狠| 在线观看舔阴道视频| 亚洲精品国产区一区二| 免费av毛片视频| 精品国产乱码久久久久久男人| 中亚洲国语对白在线视频| 日韩有码中文字幕| 国产99久久九九免费精品| 久久国产精品影院| 午夜免费观看网址| 午夜免费激情av| 日韩欧美免费精品| 亚洲精品久久成人aⅴ小说| 亚洲五月色婷婷综合| 中文字幕久久专区| 成年免费大片在线观看| 国产精品久久视频播放| 欧美激情极品国产一区二区三区| 亚洲国产精品999在线| 欧美一区二区精品小视频在线| 好看av亚洲va欧美ⅴa在| 法律面前人人平等表现在哪些方面| 中国美女看黄片| www.www免费av| 国产精品自产拍在线观看55亚洲| 亚洲五月婷婷丁香| √禁漫天堂资源中文www| 亚洲专区字幕在线| 久久久久亚洲av毛片大全| 99在线人妻在线中文字幕| 制服丝袜大香蕉在线| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区av网在线观看| 国产午夜福利久久久久久| 久热这里只有精品99| 日日干狠狠操夜夜爽| 亚洲欧美激情综合另类| 亚洲av成人一区二区三| 此物有八面人人有两片| 色播亚洲综合网| 成年女人毛片免费观看观看9| 黑人操中国人逼视频| 自线自在国产av| 国产一区二区在线av高清观看| 18禁裸乳无遮挡免费网站照片 | 亚洲五月色婷婷综合| 国产精品香港三级国产av潘金莲| 一级片免费观看大全| 免费看日本二区| 国产成+人综合+亚洲专区| 日韩欧美 国产精品| 美女高潮喷水抽搐中文字幕| 99久久久亚洲精品蜜臀av| 国产主播在线观看一区二区| 亚洲狠狠婷婷综合久久图片| 国产日本99.免费观看| 亚洲av片天天在线观看| 动漫黄色视频在线观看| 18禁国产床啪视频网站| 麻豆国产av国片精品| 久久热在线av| 老汉色∧v一级毛片| 欧美午夜高清在线| 人成视频在线观看免费观看| 日韩欧美在线二视频| 又黄又爽又免费观看的视频| av天堂在线播放| 亚洲av日韩精品久久久久久密| 99在线视频只有这里精品首页| 50天的宝宝边吃奶边哭怎么回事| 欧美+亚洲+日韩+国产| 久久久久久大精品| 桃色一区二区三区在线观看| 欧美日韩瑟瑟在线播放| 久久狼人影院| 99久久国产精品久久久| 国产精品亚洲美女久久久| 欧美av亚洲av综合av国产av| 精品免费久久久久久久清纯| 黄色丝袜av网址大全| 一边摸一边做爽爽视频免费| 女生性感内裤真人,穿戴方法视频| 国产极品粉嫩免费观看在线| 9191精品国产免费久久| 久久久久久久久久黄片| 欧美日韩福利视频一区二区| 精品国产国语对白av| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 中文资源天堂在线| 亚洲国产精品999在线| a在线观看视频网站| 制服人妻中文乱码| 12—13女人毛片做爰片一| 国产三级黄色录像| 亚洲成人久久爱视频| 人人妻人人看人人澡| 亚洲国产高清在线一区二区三 | 午夜老司机福利片| 中文字幕精品免费在线观看视频| 国产又爽黄色视频| 亚洲精华国产精华精| 两个人看的免费小视频| 国产熟女xx| 精品电影一区二区在线| 亚洲七黄色美女视频| 国产国语露脸激情在线看| 看片在线看免费视频| 亚洲av成人不卡在线观看播放网| 国产黄色小视频在线观看| 国产成人欧美在线观看| 又紧又爽又黄一区二区| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 色播在线永久视频| 日韩 欧美 亚洲 中文字幕| 男女视频在线观看网站免费 | 国产精品一区二区免费欧美| 一区二区三区高清视频在线| 久久亚洲真实| 欧美一级a爱片免费观看看 | 1024香蕉在线观看| 日韩有码中文字幕| 在线观看www视频免费| 久久久久久国产a免费观看| 国产视频内射| 日本成人三级电影网站| АⅤ资源中文在线天堂| 久久草成人影院| 777久久人妻少妇嫩草av网站| 一进一出好大好爽视频| 一本一本综合久久| 91九色精品人成在线观看| 亚洲国产精品999在线| 色播亚洲综合网| 黄片播放在线免费| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 亚洲第一电影网av| 日韩欧美 国产精品| 黄色视频,在线免费观看| 成人国语在线视频| 国产亚洲av高清不卡| av欧美777| 午夜免费激情av| 国产精品野战在线观看| 97人妻精品一区二区三区麻豆 | 脱女人内裤的视频| 国产av在哪里看| 国产高清有码在线观看视频 | 精品久久久久久久末码| 欧美久久黑人一区二区| 人人妻人人澡欧美一区二区| 国产精品久久视频播放| 一级毛片高清免费大全| 一a级毛片在线观看| 男人的好看免费观看在线视频 | 国产亚洲精品一区二区www| 亚洲国产精品999在线| 久久精品成人免费网站| 99久久99久久久精品蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利在线观看吧| 可以在线观看毛片的网站| 在线视频色国产色| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品亚洲美女久久久| 精品国产美女av久久久久小说| x7x7x7水蜜桃| 女同久久另类99精品国产91| 91成年电影在线观看| 国产亚洲欧美98| 特大巨黑吊av在线直播 | 午夜福利欧美成人| 丝袜人妻中文字幕| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩黄片免| 日韩三级视频一区二区三区| 精品熟女少妇八av免费久了| 午夜两性在线视频| 18美女黄网站色大片免费观看| 欧美乱色亚洲激情| 亚洲狠狠婷婷综合久久图片| 亚洲在线自拍视频| 国产在线观看jvid| 中文字幕人妻熟女乱码| 婷婷亚洲欧美| 亚洲成人精品中文字幕电影| 丝袜人妻中文字幕| 国产亚洲精品av在线| 在线永久观看黄色视频| 精品一区二区三区四区五区乱码| 在线国产一区二区在线| 国产蜜桃级精品一区二区三区| 久9热在线精品视频| 熟妇人妻久久中文字幕3abv| 天堂动漫精品| 99久久精品国产亚洲精品| 国产精品99久久99久久久不卡| 变态另类丝袜制服| 男人的好看免费观看在线视频 | 日韩国内少妇激情av| 91麻豆精品激情在线观看国产| 非洲黑人性xxxx精品又粗又长| 少妇 在线观看| 亚洲av日韩精品久久久久久密| 欧美中文综合在线视频| 国产三级在线视频| 真人一进一出gif抽搐免费| 中文字幕精品免费在线观看视频| 日韩欧美免费精品| 一级毛片女人18水好多| 男女下面进入的视频免费午夜 | 国产伦一二天堂av在线观看| 国产精品,欧美在线| 最新在线观看一区二区三区| 成人av一区二区三区在线看| 久久精品91无色码中文字幕| 国产熟女xx| 免费电影在线观看免费观看| 欧美色欧美亚洲另类二区| 麻豆成人av在线观看| 国产精品日韩av在线免费观看| 熟女少妇亚洲综合色aaa.| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 脱女人内裤的视频| 香蕉av资源在线| 亚洲人成伊人成综合网2020| 亚洲国产高清在线一区二区三 | 国产人伦9x9x在线观看| 亚洲美女黄片视频| 1024手机看黄色片| 亚洲五月色婷婷综合| 一二三四社区在线视频社区8| 久久精品国产99精品国产亚洲性色| 亚洲精品在线美女| 国产亚洲精品久久久久5区| 人人澡人人妻人| 99re在线观看精品视频| 久久这里只有精品19| 精品少妇一区二区三区视频日本电影| 欧美激情高清一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲精品久久成人aⅴ小说| x7x7x7水蜜桃| 99久久久亚洲精品蜜臀av| 一个人免费在线观看的高清视频| 制服人妻中文乱码| 国产成人系列免费观看| 两个人视频免费观看高清| www.精华液| 久久久久久免费高清国产稀缺| 69av精品久久久久久| 国产亚洲精品综合一区在线观看 | 亚洲七黄色美女视频| 亚洲 欧美一区二区三区| 丰满的人妻完整版| 性欧美人与动物交配| 国产午夜福利久久久久久| 亚洲国产精品成人综合色| 热re99久久国产66热| 国产精品免费一区二区三区在线| 亚洲国产精品久久男人天堂| 午夜福利在线在线| 91国产中文字幕| 亚洲三区欧美一区| 在线观看午夜福利视频| 国产乱人伦免费视频| 日韩视频一区二区在线观看| 成人一区二区视频在线观看| 99热只有精品国产| e午夜精品久久久久久久| 免费在线观看影片大全网站| 亚洲精品久久国产高清桃花| 亚洲专区字幕在线| 亚洲av电影在线进入| 精品国内亚洲2022精品成人| 国产精品免费一区二区三区在线| 色尼玛亚洲综合影院| 国产野战对白在线观看| 久久香蕉激情| 亚洲精品国产区一区二| 禁无遮挡网站| 中文亚洲av片在线观看爽| 欧美日韩乱码在线| 精品卡一卡二卡四卡免费| 十八禁网站免费在线| 国产麻豆成人av免费视频| 丁香六月欧美| 在线观看一区二区三区| 高清毛片免费观看视频网站| 不卡av一区二区三区| www.999成人在线观看| 黄色丝袜av网址大全| 神马国产精品三级电影在线观看 | 91麻豆av在线| 12—13女人毛片做爰片一| 欧美日韩一级在线毛片| 亚洲精品国产区一区二| 两性夫妻黄色片| 精品少妇一区二区三区视频日本电影| 国产高清有码在线观看视频 | 成人国语在线视频| 黄色 视频免费看| 最近最新免费中文字幕在线| 欧美激情久久久久久爽电影| 欧美激情高清一区二区三区| 亚洲国产欧美网| 天堂√8在线中文| 国产精品亚洲av一区麻豆| 久久精品91蜜桃| av在线天堂中文字幕| 99精品在免费线老司机午夜| www.999成人在线观看| 精品久久久久久久久久久久久 | 大香蕉久久成人网| 国产亚洲精品av在线| 国产黄a三级三级三级人| 日韩高清综合在线| 亚洲专区国产一区二区| 日韩大码丰满熟妇| 老司机靠b影院| 日韩有码中文字幕| 亚洲欧美日韩无卡精品| 国内久久婷婷六月综合欲色啪| 久久中文看片网| 啦啦啦韩国在线观看视频| 精品久久久久久久毛片微露脸| 好看av亚洲va欧美ⅴa在| av视频在线观看入口| 亚洲专区国产一区二区| 中文在线观看免费www的网站 | 欧美黑人巨大hd| 又紧又爽又黄一区二区| 国产真实乱freesex| 欧美又色又爽又黄视频| 成人亚洲精品av一区二区| 他把我摸到了高潮在线观看| 看免费av毛片| 免费看美女性在线毛片视频| 国产精品99久久99久久久不卡| 禁无遮挡网站| 国产精品影院久久| 亚洲精品国产一区二区精华液| 少妇被粗大的猛进出69影院| 日日夜夜操网爽| 黑丝袜美女国产一区| 久久久久国产精品人妻aⅴ院| 1024视频免费在线观看| 久久久久久九九精品二区国产 | 日韩国内少妇激情av| 国产精品久久视频播放| 日韩欧美 国产精品| 日本撒尿小便嘘嘘汇集6| 国产又色又爽无遮挡免费看| 精品久久久久久久久久免费视频| 日韩视频一区二区在线观看| 国语自产精品视频在线第100页| 一区二区三区精品91| 久久精品人妻少妇| 中出人妻视频一区二区| 日韩欧美三级三区| 日日爽夜夜爽网站| 久久精品国产亚洲av高清一级| 在线观看免费视频日本深夜| 人人妻人人澡人人看| 久久久国产欧美日韩av| 亚洲欧洲精品一区二区精品久久久| 99精品欧美一区二区三区四区| 国产激情偷乱视频一区二区| 国产黄色小视频在线观看| 日本成人三级电影网站| 国产国语露脸激情在线看| 美女免费视频网站| 久久久久久久久免费视频了| 国产精品精品国产色婷婷| 老熟妇乱子伦视频在线观看| 久9热在线精品视频| 午夜影院日韩av| 欧美中文综合在线视频| 在线天堂中文资源库| av电影中文网址| 老鸭窝网址在线观看| 妹子高潮喷水视频| 成人国语在线视频| 黄片小视频在线播放| 麻豆一二三区av精品| 国产高清有码在线观看视频 | 久久人人精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 在线天堂中文资源库| 日韩国内少妇激情av| 嫁个100分男人电影在线观看| 日韩精品青青久久久久久| 精品日产1卡2卡| 88av欧美| 中文字幕精品免费在线观看视频| 嫁个100分男人电影在线观看| 久久久久亚洲av毛片大全| 法律面前人人平等表现在哪些方面| 国产成年人精品一区二区| 香蕉久久夜色| 黄片大片在线免费观看| 国产精品久久久久久亚洲av鲁大| 校园春色视频在线观看| 波多野结衣高清作品| 中文字幕精品免费在线观看视频| 一级片免费观看大全| 免费在线观看影片大全网站| av片东京热男人的天堂| 国产欧美日韩一区二区三| 亚洲中文日韩欧美视频| 久久精品91无色码中文字幕| 亚洲av成人不卡在线观看播放网| 久久伊人香网站| 亚洲精品国产精品久久久不卡| 久久久久国产精品人妻aⅴ院| 男人操女人黄网站| www日本黄色视频网| 亚洲在线自拍视频| 日本a在线网址| 在线观看www视频免费| 亚洲一区高清亚洲精品| 亚洲精品色激情综合| 欧美乱色亚洲激情| 香蕉国产在线看| 波多野结衣av一区二区av| 一本精品99久久精品77| 国产一区二区三区在线臀色熟女| 国产精品1区2区在线观看.| 国产国语露脸激情在线看| 久久亚洲精品不卡| 看黄色毛片网站| 18美女黄网站色大片免费观看| 日韩精品青青久久久久久| 欧美国产日韩亚洲一区| 成人免费观看视频高清| 久热爱精品视频在线9| 精品无人区乱码1区二区| 色综合亚洲欧美另类图片| 99久久99久久久精品蜜桃| 日韩高清综合在线| 亚洲自拍偷在线| 两个人看的免费小视频| 免费女性裸体啪啪无遮挡网站| 在线观看www视频免费| 可以免费在线观看a视频的电影网站| 亚洲成av片中文字幕在线观看| 国产亚洲精品一区二区www| 午夜福利视频1000在线观看| 日韩成人在线观看一区二区三区| 黑人欧美特级aaaaaa片| 亚洲精品中文字幕一二三四区| 12—13女人毛片做爰片一| 亚洲avbb在线观看| 国产精品九九99| 国语自产精品视频在线第100页| 久久久精品国产亚洲av高清涩受| 91麻豆精品激情在线观看国产| 国产伦一二天堂av在线观看| 一区二区三区精品91| 波多野结衣av一区二区av| 精品国产乱子伦一区二区三区| 亚洲七黄色美女视频| ponron亚洲| svipshipincom国产片| 听说在线观看完整版免费高清| 欧美成人午夜精品| 欧美丝袜亚洲另类 | 亚洲欧美精品综合一区二区三区| 香蕉国产在线看| 人人妻人人澡欧美一区二区| 在线播放国产精品三级| 嫩草影院精品99| 亚洲电影在线观看av| 桃色一区二区三区在线观看| 国产精品一区二区三区四区久久 | 视频区欧美日本亚洲| 国产亚洲av高清不卡| 狂野欧美激情性xxxx| 欧美激情极品国产一区二区三区| 变态另类成人亚洲欧美熟女| 97超级碰碰碰精品色视频在线观看| 日本精品一区二区三区蜜桃| 成年版毛片免费区| 美女 人体艺术 gogo| 黄片小视频在线播放| 女性被躁到高潮视频| 无人区码免费观看不卡| 久久中文看片网| 岛国在线观看网站| 欧美色视频一区免费| 午夜福利一区二区在线看| 成人永久免费在线观看视频| 欧美日韩一级在线毛片| 久久精品国产清高在天天线| 亚洲va日本ⅴa欧美va伊人久久| 操出白浆在线播放| 国产精品,欧美在线| 又黄又爽又免费观看的视频| 老司机午夜十八禁免费视频| 亚洲第一青青草原| 亚洲午夜精品一区,二区,三区| 97超级碰碰碰精品色视频在线观看| 十八禁网站免费在线| 亚洲专区国产一区二区| 狂野欧美激情性xxxx| 久久久久久大精品| 亚洲一区二区三区色噜噜| 亚洲欧美精品综合久久99|