• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface Modification of Titanium Oxide by Indium for Efficient Photocatalytic Hydrogen Generation①

    2019-01-05 09:31:54XUEChuiBingLIGuoJingGONGCiGUOWngHUANGJiQun
    結(jié)構(gòu)化學(xué) 2018年12期

    XUE Chui-Bing LI Guo-Jing GONG Ci GUO Wng HUANG Ji-Qun

    ?

    Surface Modification of Titanium Oxide by Indium for Efficient Photocatalytic Hydrogen Generation①

    XUE Chui-Binga, bLI Guo-Jinga, cGONG Caia, bGUO WangaHUANG Ji-Quana②

    a(350002)b(350117)c(100039)

    We fabricated indium ion-modified TiO2nanoparticles. The results revealed that indium presents on TiO2surface in the form of fixed ion, by coordinating with hydroxyl groups or terminal oxygen atoms at the surface of TiO2, which resulted in smaller grain size, larger surface area, and mesoporous structure relative to pure titanium dioxide. Compared with pure TiO2, indium ion-modified TiO2showed great enhancement of photocatalytic activity to hydrogen generation. Owing to electronic capture capability of indium, the excited electrons can rapidly transfer from TiO2conduction band to indium, resulting in the separation of electron-hole pairs. The optimal H2evolution rate was 277.8mmol·g-1·h-1, which was about 23 times higher than that of Degussa P25.

    indium modification, hydrogen generation, photocatalytic activity;

    1 INTRODUCTION

    Since the discovery of water photolysis on TiO2photoanode in 1970s[1], TiO2has promoted extensive investigations for photocatalytic hydrogen generation from water decomposition. However, presently, the reactivity of bare TiO2for water splitting is still low, mainly due to the high recombination rate of photoexcited electron-hole pairs, the fast backward reaction, and the large bandgap.

    To this end, metal or non-metal doping has been developed, for example, Nb, Fe, Co, Rh, Cr, C and N doped TiO2[2-8]. Most doped TiO2photocatalystes are responsive to visible light due to the formation of impurity level or the narrowing of the band gap. However, doping impurity levels and oxygen vacancy could serve as recombination centers, leading to the decrease of photocatalytic activity[9].

    Recently, another strategy, i.e., metal ion modifi- cation, has drawn much attention[10-17]. In this method, metal modifier is not doped in lattices but just fixed on the surface of TiO2in the forms of metal ion or molecular metal oxide (oxyhydroxide, chloride,) species, and charge transfers occur between the metal modifiers and TiO2[18, 19]. The metal modifier may inject electrons into the conduction band of TiO2. Some accept electrons from the valence band and others work as electron acceptors from the conduction band of TiO2like a cocatalyst[13]. Notably, the separation of electron-hole pairs is greatly promoted, thereby improving the photocatalytic activity. The Cu(II)-grafted TiO2exhibited a high quantum efficiency for 2-propanol decomposition under visible light[11]. Fe(III)/TiO2with amorphous FeO(OH)-like structure was assigned to the interfacial charge transfer from the valence band of TiO2to the surface Fe(III) species[12]. The platinum(III) species as a promoter for O2reductions and an electron injector to the conduction band of TiO2for response to visible light[14, 20]. In addition, analogous method could be applied to other semiconductors[21-23]. In general, surface modifica- tion is an effective strategy to design highly active photocatalyst systems, which can be applied to a variety of semiconductor materials.

    Herein, we report the fabrication of indium ions modified TiO2(In-TiO2) as an efficient photocatalyst by the sol-gel method. It is found that the intro- duction of indium modifier efficiently enhanced photocatalytic performance of TiO2. The maximum hydrogen production rate reached 277.8 μmol·g-1·h-1, which is about 23 times higher than that of P25. This improvement in photocatalytic performance can be contributed to the fixed indium ions on TiO2surface, rather than the absorption of visible light.

    2 EXPERIMENTAL

    2. 1 Preparation of the photocatalysts

    In-TiO2nanoparticles were prepared by the sol-gel process. At room temperature, a certain amount of InCl3solution (0.1 mol/L) was mixed with 15 mL of absolute ethanol. Subsequently, tetrabutyl titanate (0.01 mol) was added to the above solution under vigorous stirring. Then, 0.5 mL distilled water was added into the transparent solution, while hydro- chloric acid was used to adjust the pH. The obtained sol was stirred until a transparent gel was formed. After aging for 1 h, the gels were dried at 75 ℃ for 24 h. Subsequently, the dry gels were ground and then calcined at 450 ℃ for 2 h. The samples were named as% In-TiO2, where“%” represents the molar percentage of In3+ions in all metal ions (In3+and Ti4+) in TiO2. The synthesis procedure for pure TiO2is similar to that of In-TiO2, except for the absence of InCl3solution.

    2. 2 Characterization of the photocatalysts

    The crystal structures of the samples were deter- mined by X-ray diffractometer (Miniflex 600, Rigaku, Japan), and the morphology was characte- rized by Transmission Electron Microscopy (Tecnai G2 F20, FEI, USA). The surface areas and pore structures of the samples were analyzed by Pore Analyzer (ASAP2020, Mike, USA). The reflectance spectra of the samples were measured by a UV-Vis spectrophotometer (Lambda 950, PerkinElmer, USA) with an integrating sphere in the range of 250~800 nm and standard BaSO4powder was used as a reference. The surface analyses were determined by X-ray photoelectron spectroscopy (XPS) (ESCALAB 250, Thermo Scientific, USA).

    2. 3 Photocatalytic activity testing

    The hydrogen generation was tested using a photocatalytic testing system (CEL-SPH2N, AULTT, China). 100 mg photocatalysts were placed at the bottom of a 500 mL Pyrex reactor with a quartz window containing 100 mL methanol-water solution (10 vol.% methanol). The ambient temperature was kept at 28℃while the reaction liquid was maintained at 6 ℃ by circulating cooling water to prevent solution evaporation. The light source was a 300 W Xe lamp. The photocatalytic reaction time was 10 h. Hydrogen generation was determined using a gas chromatograph (SP7800, N2carrier, AULTT, China).

    The photocurrent and electrochemical impedance spectroscopies of the electrodes were measured in a 0.1 M Na2SO4electrolyte solution in a regular three-electrode electrochemical cell on potentiostat (CHI760E). A Xe lamp (PLS-SXE300C) was used as the source of sunlight. Pt wire and an Ag/AgCl electrode were used as the counter and reference electrodes, respectively.

    3 RESULTS AND DISCUSSION

    3. 1 Photocatalyst characterization

    The X-ray diffraction (XRD) patterns of In–TiO2and pure TiO2are shown in Fig. 1a. It is evident that all the samples displayed typical XRD pattern of TiO2with anatase structure. No characteristic diffraction peaks of indium species (metal or oxide phase) and any other secondary or impurity phases were observed, indicating the absence of crystalline indium oxides. Besides, with the increase of indium, there was no shift in the diffraction peaks, and the calculated lattice parameters keep nearly constant (see Fig. 1b~1c and Table 1). Given that the effec- tive ionic radius (with coordination number of 6) is 0.080 nm for In3+and 0.0605 nm for Ti4+, substi- tution of Ti4+by In3+will lead to the lattice expan- sion, reflecting as the shift of the peak positions to lower diffraction angles. Therefore, it can deduce that there was no doped In3+in TiO2lattices, or the doping concentration was very low. The difficult substitution of In3+for Ti4+can be mainly attributed to the large mismatching in the radius (> 30%) between In3+and Ti4+. Therefore, it is presumed that the In3+ions may exist in the form of amorphous nanoclusters[24, 25], or chemisorbed on the surface of TiO2as a complex-like form coordinated by the surface hydroxyl group[26]. Additionally, both crystallinity and particle size were decreased by the introduction of indium (see Fig. 1). The crystallite size of the samples was calculated by employing the Scherrer equation and shown in Table 1. The crystal size was about 18 nm for the pristine TiO2, and smaller than 10 nm for the indium ion-modified TiO2samples.

    Fig. 1. (a) X-ray diffraction patterns of pure TiO2and indium ion-modified TiO2. (b) and (c) are the enlarged patterns of (101) and (200) peaks of anatase TiO2, respectively

    Table 1. Cell Parameters, Crystallite Size and Surface Area of Pure TiO2 and Indium Ion-modified TiO2

    The TEM and HRTEM images of pristine TiO2and 2 % In–TiO2are shown in Fig. 2. The particles were roughly spherical in shape, and the average crystal sizes are about 18 and 9 nm for the pure TiO2and In–TiO2powders, respectively, which was consistent with the XRD results. The HRTEM images (Fig. 3b and 3d) reveal an interplanar spacing of 0.35 nm, corresponding to the (101) plane of anatase TiO2. Besides, EDX elemental mapping ( Fig. 2e~2f) of 2% In–TiO2sample clearly revealed the homogeneous distribution of Ti, O, and In elements in the entire nanoparticle, highlighting the formation of In3+without the second phases or local aggrega- tion, excluding the formation of amorphous In2O3nanoparticles. Therefore, the indium species may be existed in the form of fixed ion, by coordinating with hydroxyl groups or terminal oxygen atoms at the surface of TiO2[27-29].

    Fig. 2. Typical TEM (a, c) and HRTEM (b, d) images of TiO2(a, b) and In-TiO2(c, d). (e~h) STEM-EDS mapping of Ti, O, and In element for 2% In–TiO2sample

    Optical response of the samples was measured by diffuse reflection spectrometer at room temperature. The band gap energy values calculated usingequation were 3.17, 3.17, 3.18, 3.15, 3.19, and 3.17 eV for pure TiO2, 0.5, 1, 2, 3, and 4% In-TiO2, respectively, indicating that the band gap of In–TiO2was almost unchanged after the introduction of indium. Besides, additional visible absorption was not observed after the introduction of indium (see Fig. 3). In principle, indium ions doping can form impurity energy levels and reduce the value of. Similarly, the recombination of indium oxide and titanium dioxide can also result in visible light absorption due to the lower band gap of indium oxide (= 2.8 eV)[31]. Therefore, the UV-Vis reflectance spectrum indicated that indium neither exists in the lattice nor in the form of In2O3particles, which further demon- strated the presence of indium in the state of ions by hydroxyl or Ti–O terminal on the surface of TiO2[27-29].

    Fig. 4a shows the N2adsorption-desorption isotherms of TiO2and In–TiO2samples. The four isotherms were similar to typecurve withhysteresis loops, suggesting the highly mesoporous structure[32].Fig. 4b shows the Barrett-Joyner- Halenda () pore size distribution. The average pore size was obtained from the maximum of pore size distribution curves for the synthesized samples. The distribution curve revealed the mesopores of 4.5~6.5 nm. Furthermore, the BET surface area was 43.64 m2/g for TiO2, and 55.32, 72.60, 73.36, 78.23, and 74.18 m2/g for 0.5, 1, 2, 3, 4% In-TiO2samples, respectively (see Table 1). Obviously, this is related to the decrease of particle size. In other words, indium was attached to the surface of titanium dioxide, which hinders the growth of grain and thus increases the specific surface area of the samples.

    Fig. 3. (a) UV-Vis reflectance spectrum and (b) relationship between (F(R)hν)0.5and band energy () of the In–TiO2samples. F(R) = (1 –)2/2whereis the reflectance

    Fig. 4. (a) N2adsorption-desorption isotherms and (b) pore size distribution curves of TiO2and In–TiO2

    In order to determine the chemical environment of Ti, In and O, XPS analysis was carried out. The selected spectra for Ti 2, O 1, and In 3are shown in Fig. 5. For Ti 2spectra, the peaks of Ti located at 458.6 and 464.5 eV were assigned to Ti 23/2and Ti 21/2, respectively (Fig. 5a), and the splitting between Ti 21/2and Ti 23/2was 5.7 eV, indicating a normal state of Ti4+in In–TiO2samples. As shown in Fig. 5b, O 1peak was fitted with two components at 529.7 and 531.3 eV, which could be assigned to the lattice oxygen bound to anatase Ti4+and surface hydroxyl groups, respectively[33]. For the In 3spectra (Fig. 5c), the peaks with binding energy located at 443.8 and 451.3 eV were assigned to In 35/2and In 33/2respectively, which indicated the indium exists in the form of ionic state[34]. It can be seen that with the increase of indium, the peaks of O 1gradually move slightly to the high binding energy (an offset of about 0.13 eV between TiO2and 4% In-TiO2is shown in Fig. 5b). Since the Fermi level was calibrated as 0 eV and set as the reference point for all core levels in XPS, the chemical shift of the core levels (typically, oxide O 1) could be considered to be caused by the variation in the Fermi level[35]. Thus, it can be seen that the absolution energy position of theEof TiO2became more negative () by introducing indium species.

    3. 2 Photocatalytic activity

    The photocatalytic activity of the samples was investigated in the aqueous CH3OH solution under the Xe lamp irradiation for 10 h. As shown in Fig. 6a, for all the samples, the amount of generated H2increased almost linearly with the irradiation time, implying the stability of photocatalysts. Under the applied experimental conditions, pure TiO2did not exhibit observable photocatalytic activity. However, indium modified titanium dioxide presented remarkable improvement on hydrogen production. Fig. 6b depicts the dependence of H2evolution rate on the indium contents. With the incorporation of a small amount of indium, the activity of 0.5% In-TiO2sample was markedly enhanced. The H2evolution rate of the samples further increased with increasing the indium content from 0.5% to 2.0%. 2% In-TiO2sample exhibited the highest H2evolution rate, viz. 277.8 μmol·g-1·h-1, which was about 23 times higher than that of P25 (12 μmol·g-1·h-1, experimental data were not shown in Fig. 6). After that, further increasing the indium contents led to a decline of the photocatalytic activity. Most likely, excess indium attached to TiO2surface may cover its surface, resulting in the decrease of light absorption of titanium dioxide[36].

    Fig. 5. XPS of In-TiO2samples. (a) Ti 2, (b) O 1and (c) In 3

    Fig. 6. (a) Time course of photocatalytic H2evolution. (b) Dependence of H2evolution rate on the Indium contents

    3. 3 Photoelectrochemical characterization

    In order to further ascertain the reasons for the enhanced photocatalytic ability, electrochemical measurements were carried out. Fig. 7a shows the current-time() curves of the TiO2and In–TiO2electrodes. The transient photocurrent responses of the samples were recorded under intermittent light on and off. Strikingly, considerable rise in the current intensity of In–TiO2electrodes was observed relative to bare TiO2electrodes, suggesting that the boosted separation efficiency of photogenerated electron-hole pairs was afforded for In–TiO2[37]. Electrochemical impedance spectroscopy () was measured to evaluate the electrochemical characteristics of bare TiO2and In–TiO2electrodes (Fig. 7b). The charge transfer resistance of samples can be deduced from the Nyquist plots of TiO2and In–TiO2[38]. Obviously, In–TiO2sample shows a lower resistance than that of bare TiO2, indicating that the modification of indium can greatly promote the efficiency of charge transfer.

    Fig. 7. (a) Time courses of photoresponse using bare TiO2and In–TiO2electrodes. (b) Electrochemical impednce spectra of bare TiO2and In–TiO2electrodes

    3. 4 Photocatalysis mechanism

    According to the above results, the improved hydrogen production capacity of TiO2by indium modification can be explained as follows. Pure TiO2does not exhibit detectable photocatalytic activity due to its wide band gap energy and high photo- generated carrier recombination rate. However, for indium ion-modified TiO2, when TiO2nanoparticles are irradiated by photons equal to or larger than the band gap energy, the electrons in the valence band will transfer to the conduction band to form photo- generated electrons (e-), while photogenerated holes (h+) produced in the valence band accordingly. Subsequently, the excited electrons can be transferred rapidly from the conduction band to indium due to the ability of indium to trap electrons, resulting in the separation of electron-hole pairs[39]. The photoge- nerated holes (h+) react with absorbed H2O to generate hydrogen ions (H+) and hydroxyal radical (?OH), while electrons convert H+into H2(see the schematic Fig. 8). As a result, photogenerated elec- trons and holes can be separated efficiently via the presence of In3+over the surface, and then contribute to the photocatalytic reactions. Moreover, In modification can lead to smaller grains and larger surface area, thereby reducing the migration distance of the electrons in the bulk TiO2(i.e., reducing the recombination) and increasing the surface active sites[40]. Therefore, indium ion-modified TiO2shows much higher photocatalytic activities than pure TiO2under UV-Vis light irradiation.

    Fig. 8. Schematic diagram of photocatalytic mechanism on indium ion-modified TiO2under simulated sunlight

    4 CONCLUSION

    In summary, we have successfully fabricated indium ion-modified TiO2nanoparticles with remarkable photocatalytic performance for hydrogen generation from water splitting. It is found that indium was distributed over TiO2in the form of fixed ion, by coordinating with hydroxyl groups or terminal oxygen atoms at the surface of TiO2. Due to surface modification of indium, the synthesized samples have smaller grain size, larger surface area, and mesoporous structure. The sample with 2% In exhibits high efficiency for hydrogen generation, corresponding to the value of 277.8 μmol·g-1·h-1. The presence of indium over TiO2surface is conductive to the separation and transport of photogenerated carriers and thereby responsible for the high photocatalttic efficiency.

    (1) Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode.1972, 238, 37-38.

    (2) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis.1995, 95, 69-96.

    (3) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation.2010, 110, 6503-6570.

    (4) Wang, L.; Zhang, S.; Zhu, Y.; Patlolla, A.; Shan, J.; Yoshida, H.; Takeda, S.; Frenkel, A. I.; Tao, F. Catalysis andstudies of Rh/Co3O4nanorods in reduction of NO with H2.2013, 3, 1011-1019.

    (5) Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide.2003, 42, 4908-4911.

    (6) Park, J. H.; Kim, S.; Bard, A. J. Novel carbon-doped TiO2nanotube arrays with high aspect ratios for efficient solar water splitting.2006, 6, 24-28.

    (7) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides.2001, 293, 269-271.

    (8) Chen, X.; Burda, C. The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2nanomaterials.2008, 130, 5018-5019.

    (9) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2for hydrogen production.. 2007, 11, 401-425.

    (10) Irie, H.; Shibanuma, T.; Kamiya, K.; Miura, S.; Yokoyama, T.; Hashimoto, K. Characterization of Cr(III)-grafted TiO2for photocatalytic reaction under visible ligh.2010, 96, 142-147.

    (11) Irie, H.; Miura, S.; Kamiya, K.; Hashimoto, K. Efficient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2and WO3photocatalysts.2008, 457, 202-205.

    (12) Yu, H.; Irie, H.; Shimodaira, Y. An efficient visible-light-sensitive Fe(III)-grafted TiO2photocatalyst.2010, 114, 16481-16487.

    (13) Kitano, S.; Murakami, N.; Ohno, T.; Mitani, Y.; Nosaka, Y.; Asakura, H.; Teramura, K,; Tada, T.; H.; Hashimoto, K.; Kominam, H. Bifunctionality of Rh3+Modifier on TiO2and working mechanism of Rh3+/TiO2photocatalyst under irradiation of visible light.2013, 117, 11008-11016.

    (14) Kitano, S.; Tanaka, A.; Hashimoto, K.; Kominami, H. Metal ion-modified TiO2photocatalysts having controllable oxidative performance under irradiation of visible light.2016, 521, 202-207.

    (15) Kisch, H.; Zang, L.; Lange, C.; Maier, W. F.; Antonius, C.; Meissner, D. Modified, amorphous titania—a hybrid semiconductor for detoxification and current generation by visible light.1998, 37, 3034-3036.

    (16) Tada, H.; Jin, Q.; Nishijima, H.; Yamamoto, H.; Fujishima, M.; Okuoka, S.; Hattori, T.; Sumida, Y.; Kobayashi, H. Titanium (IV) dioxide surface-modified with iron oxide as a visible light photocatalyst.2011, 50, 3501-3505.

    (17) Jin, Q.; Ikeda, T.; Fujishima, M.; Tada, H. Nickel(II) oxide surface-modified titanium(IV) dioxide as a visible-light-active photocatalyst.. 2011, 47, 8814-8816.

    (18) Kumar, S. G.; Devi, L. G. Review on modified TiO2photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics.2011, 115, 13211-13241.

    (19) Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2for environmental photocatalytic applications: a review.2013, 52, 3581-3599.

    (20) Dai, Z. M.; Burgeth, G.; Parrino, F.; Kisch, H. Visible light photocatalysis by a titania-rhodium(III) complex.2009, 694, 1049-1054.

    (21) Tang, E.; Cheng, G.; Ma, X.; Pang, X.; Zhao, Q. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system.2006, 252, 5227-5232.

    (22) Ouyang, S.; Tong, H.; Umezawa, N.; Cao, J.; Li, P.; Bi, P.; Zhang, Y.; Ye, J. Surface-alkalinization-induced enhancement of photocatalytic H2evolution over SrTiO3-based photocatalysts.2012, 134, 1974-1977.

    (23) Yu, H.; Xu, L.; Wang, P.; Wang, P.; Yu, J. Enhanced photoinduced stability and photocatalytic activity of AgBr photocatalyst by surface modification of Fe(III) cocatalyst.2014, 144, 75-82.

    (24) Tagliente, M. A.; Mattei, G.; Tapfer, L.; Antisari, M.; Mazzoldi, P. Thermal behavior of indium nanoclusters in ion-implanted silica.2004, 70, 075418.

    (25) Shi, F. F.; Bulkowski, M.; Hsieh, K. C. Synthesis of indium nanoclusters and formation of thin film contacts on plastic substrates for organic and flexible electronics applications.2007, 18, 265301.

    (26) Jeon, M. K.; Kang, M. Synthesis and characterization of indium-tin-oxide particles prepared using sol-gel and solvothermal methods and their conductivities after fixation on polyethyleneterephthalate films.2008, 62, 676-682.

    (27) Wang, E.; Yang, W.; Cao, Y. Unique surface chemical species on indium doped TiO2and their effect on the visible light photocatalytic activity.2009, 113, 20912-20917.

    (28) Yu, Y.; Wang, E.; Yuan, J.; Cao, Y. Enhanced photocatalytic activity of titania with unique surface indium and boron species.2013, 273, 638-644.

    (29) Myilsamy, M.; Mahalakshmi, M.; Murugesan, V.; Subha, N. Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO2nanocomposites for the degradation of 2,4-dinitrophenol under visible light.. 2015, 342, 1-10.

    (30) Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium.1966, 15, 627-637.

    (31) Mu, J.; Chen, B.; Zhang, M.; Guo, Z.; Zhang, P.; Zhang, Z.; Sun, Y.; Shao, C.; Liu, Y. Enhancement of the visible-light photocatalytic activity of In2O3-TiO2nanofiber heteroarchitectures.2011, 4, 424-430.

    (32) Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials.2001, 13, 3169-3183.

    (33) Dickinson, T.; Povey, A. F.; Sherwood, P. M. A. Dissolution and passivation of nickel. An X-ray photoelectron spectroscopic study.1977, 73, 327-343.

    (34) Powell, C. J. Recommended Auger parameters for 42 elemental solids.2012, 185, 1-3.

    (35) Glover, E. N. K.; Ellington, S. G.; Sankar, G.; Palgrave, R. G. The nature and effects of rhodium and antimony dopants on the electronic structure of TiO2: towards design of Z-scheme photocatalysts.2016, 4, 6946-6954.

    (36) Ismail, A. A.; Bahnemann, D. W.; Al-Sayari, S. A. Synthesis and photocatalytic properties of nanocrystalline Au, Pd and Pt photodeposited onto mesoporous RuO2-TiO2nanocomposites.2012, 431, 62-68.

    (37) Sun, M.; Chen, Z. Enhanced photoelectrochemical cathodic protection performance of the In2O3/TiO2composite.2015, 162, C96-C104.

    (38) Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions.2002, 47, 4213-4225.

    (39) Tahir, M.; Amin, N. A. S. Indium-doped TiO2nanoparticles for photocatalytic CO2reduction with H2O vapors to CH4.2015, 162, 98-109.

    (40) Li, Z.; Dong, T.; Zhang, Y.; Studies on In(OH)Ssolid solutions: syntheses, characterizations, electronic structure, and visible-light-driven photocatalytic activities.2007, 111, 4727-4733.

    13 April 2018;

    5 June 2018

    the Natural Science Foundation of Fujian Province (2015j01231), the Chunmiao Project of Haixi Institute of Chinese Academy of Sciences (CMZX-2014-005), and the National Key Research and Development Program of China (2016YFB0701003)

    . Huang Ji-Quan. E-mail: hjq@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-2046

    精品少妇一区二区三区视频日本电影| 国产高清videossex| 亚洲三区欧美一区| 夫妻午夜视频| 欧美日韩福利视频一区二区| 在线观看免费日韩欧美大片| 亚洲精华国产精华精| 交换朋友夫妻互换小说| 国产成人精品在线电影| 国产免费现黄频在线看| 精品国产美女av久久久久小说| 亚洲国产精品sss在线观看 | 久久香蕉激情| 久久久久国内视频| 亚洲七黄色美女视频| 国产成人精品无人区| 中文字幕人妻丝袜制服| 久久精品人人爽人人爽视色| 久久久久精品人妻al黑| 黄色女人牲交| 国产不卡一卡二| 日韩 欧美 亚洲 中文字幕| 国产真人三级小视频在线观看| 免费黄频网站在线观看国产| 亚洲全国av大片| 人人妻,人人澡人人爽秒播| 自线自在国产av| 丰满饥渴人妻一区二区三| 久久久久国产精品人妻aⅴ院 | 亚洲 国产 在线| 午夜日韩欧美国产| 91九色精品人成在线观看| 国产成+人综合+亚洲专区| 天天躁日日躁夜夜躁夜夜| 99国产精品99久久久久| 热re99久久国产66热| 精品一区二区三区av网在线观看| 久久ye,这里只有精品| 久久久久久久久免费视频了| 午夜免费鲁丝| 国产精品电影一区二区三区 | 在线永久观看黄色视频| 亚洲精品久久成人aⅴ小说| 精品亚洲成国产av| www.自偷自拍.com| av线在线观看网站| 亚洲少妇的诱惑av| av中文乱码字幕在线| 99国产极品粉嫩在线观看| 日韩欧美国产一区二区入口| 欧美+亚洲+日韩+国产| 18禁观看日本| 午夜影院日韩av| 亚洲成人免费av在线播放| 国产精品影院久久| 午夜精品国产一区二区电影| 欧美 日韩 精品 国产| 大型黄色视频在线免费观看| 乱人伦中国视频| 午夜影院日韩av| 亚洲第一av免费看| 日韩 欧美 亚洲 中文字幕| 日韩欧美一区二区三区在线观看 | 一级,二级,三级黄色视频| 久久天躁狠狠躁夜夜2o2o| 亚洲黑人精品在线| 最近最新免费中文字幕在线| 一区二区三区精品91| 麻豆国产av国片精品| 亚洲人成电影免费在线| 极品人妻少妇av视频| 最新在线观看一区二区三区| 人妻久久中文字幕网| 婷婷丁香在线五月| 午夜成年电影在线免费观看| 国产成人啪精品午夜网站| 欧美国产精品一级二级三级| xxx96com| 国产激情欧美一区二区| 在线国产一区二区在线| 成人永久免费在线观看视频| 国产免费男女视频| 不卡av一区二区三区| 老熟妇乱子伦视频在线观看| 欧美精品亚洲一区二区| 精品少妇一区二区三区视频日本电影| 亚洲专区中文字幕在线| 人人妻,人人澡人人爽秒播| 久久精品aⅴ一区二区三区四区| 一二三四社区在线视频社区8| 久久国产精品大桥未久av| 欧美精品人与动牲交sv欧美| 久久久久久久久久久久大奶| 国产av又大| 亚洲五月婷婷丁香| 国产欧美日韩一区二区精品| 成人国语在线视频| 法律面前人人平等表现在哪些方面| 国产aⅴ精品一区二区三区波| 美国免费a级毛片| 日日爽夜夜爽网站| 又黄又粗又硬又大视频| 国产乱人伦免费视频| 欧美亚洲日本最大视频资源| 午夜影院日韩av| 两个人免费观看高清视频| 日本精品一区二区三区蜜桃| 久久精品人人爽人人爽视色| 亚洲九九香蕉| 久久99一区二区三区| 免费看十八禁软件| 视频在线观看一区二区三区| 亚洲熟女精品中文字幕| 久久午夜亚洲精品久久| 一个人免费在线观看的高清视频| 91麻豆精品激情在线观看国产 | av中文乱码字幕在线| 乱人伦中国视频| 欧美在线黄色| 黄片小视频在线播放| 99国产综合亚洲精品| 啪啪无遮挡十八禁网站| 嫁个100分男人电影在线观看| 久久久国产成人免费| 国产区一区二久久| 亚洲精品国产色婷婷电影| 日日爽夜夜爽网站| 欧美精品啪啪一区二区三区| 女同久久另类99精品国产91| 久久久久久久国产电影| 女人高潮潮喷娇喘18禁视频| 国产真人三级小视频在线观看| 国产精品久久久人人做人人爽| 91麻豆精品激情在线观看国产 | 国产亚洲精品久久久久5区| 国产精品久久视频播放| 国产精品久久久久久人妻精品电影| 国产高清激情床上av| 黄色女人牲交| 嫁个100分男人电影在线观看| 国产99久久九九免费精品| 大香蕉久久网| 国产欧美亚洲国产| 国产伦人伦偷精品视频| 亚洲人成电影观看| 午夜老司机福利片| 国产激情久久老熟女| av国产精品久久久久影院| 老司机深夜福利视频在线观看| 国产亚洲精品久久久久久毛片 | 99riav亚洲国产免费| 精品一区二区三区四区五区乱码| 成人18禁在线播放| 少妇猛男粗大的猛烈进出视频| 777久久人妻少妇嫩草av网站| 12—13女人毛片做爰片一| 一a级毛片在线观看| 91麻豆精品激情在线观看国产 | 亚洲,欧美精品.| av有码第一页| 国产精品久久视频播放| 国产麻豆69| 国产高清国产精品国产三级| 老司机亚洲免费影院| 欧美日韩黄片免| 国产xxxxx性猛交| 一本一本久久a久久精品综合妖精| 国产精品九九99| 性色av乱码一区二区三区2| 在线看a的网站| 在线观看日韩欧美| 欧美日韩亚洲国产一区二区在线观看 | 1024视频免费在线观看| 99热国产这里只有精品6| 欧美日韩亚洲国产一区二区在线观看 | 亚洲avbb在线观看| 精品高清国产在线一区| 九色亚洲精品在线播放| 好男人电影高清在线观看| 一区福利在线观看| 精品久久久久久久毛片微露脸| 国产精华一区二区三区| 欧美成人免费av一区二区三区 | 丝袜在线中文字幕| 一a级毛片在线观看| 99精国产麻豆久久婷婷| 亚洲av日韩在线播放| 99热网站在线观看| 国产片内射在线| 在线观看舔阴道视频| 亚洲三区欧美一区| 国产又爽黄色视频| 十八禁网站免费在线| 日韩人妻精品一区2区三区| 操出白浆在线播放| √禁漫天堂资源中文www| 91精品国产国语对白视频| avwww免费| 他把我摸到了高潮在线观看| 女人久久www免费人成看片| 成人手机av| 国产亚洲欧美精品永久| 精品高清国产在线一区| 老熟妇乱子伦视频在线观看| 日本五十路高清| 欧美黄色片欧美黄色片| 国产精品久久视频播放| 狂野欧美激情性xxxx| xxxhd国产人妻xxx| 水蜜桃什么品种好| 午夜免费成人在线视频| 久久久久精品人妻al黑| 日韩人妻精品一区2区三区| 亚洲综合色网址| 超碰成人久久| 大型黄色视频在线免费观看| 午夜福利,免费看| 满18在线观看网站| 最新在线观看一区二区三区| 免费观看精品视频网站| 美女国产高潮福利片在线看| 在线视频色国产色| 久久香蕉国产精品| 如日韩欧美国产精品一区二区三区| 中出人妻视频一区二区| 9191精品国产免费久久| 国产亚洲一区二区精品| 热99久久久久精品小说推荐| 天堂中文最新版在线下载| 最新在线观看一区二区三区| 99国产精品99久久久久| 国产亚洲一区二区精品| 日韩欧美一区视频在线观看| 国产免费现黄频在线看| 欧美人与性动交α欧美精品济南到| 国产亚洲欧美精品永久| 一级毛片高清免费大全| 女同久久另类99精品国产91| 午夜福利欧美成人| 免费女性裸体啪啪无遮挡网站| 在线观看免费午夜福利视频| 最近最新中文字幕大全电影3 | 国产在线精品亚洲第一网站| 国产免费男女视频| 日韩欧美国产一区二区入口| 91精品三级在线观看| 欧美日韩成人在线一区二区| 免费av中文字幕在线| 在线十欧美十亚洲十日本专区| 女人被躁到高潮嗷嗷叫费观| 国产av一区二区精品久久| 天堂中文最新版在线下载| 色婷婷av一区二区三区视频| 啦啦啦视频在线资源免费观看| 国产亚洲一区二区精品| 黄色女人牲交| 狠狠狠狠99中文字幕| 日本vs欧美在线观看视频| 人人妻人人添人人爽欧美一区卜| 精品少妇一区二区三区视频日本电影| 在线视频色国产色| 大陆偷拍与自拍| 精品国产一区二区久久| 91大片在线观看| 亚洲一区中文字幕在线| 精品亚洲成国产av| 精品国产一区二区三区久久久樱花| 欧美色视频一区免费| 久久热在线av| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免费看| 18禁美女被吸乳视频| 欧美成人免费av一区二区三区 | 亚洲成人免费av在线播放| 久久中文字幕一级| 在线av久久热| netflix在线观看网站| 少妇粗大呻吟视频| 亚洲久久久国产精品| 亚洲熟女精品中文字幕| 高潮久久久久久久久久久不卡| 一级黄色大片毛片| 亚洲精品久久成人aⅴ小说| 91av网站免费观看| 日韩一卡2卡3卡4卡2021年| 91精品国产国语对白视频| 亚洲伊人色综图| 亚洲av日韩精品久久久久久密| 欧美色视频一区免费| 欧洲精品卡2卡3卡4卡5卡区| 一边摸一边抽搐一进一出视频| 亚洲片人在线观看| cao死你这个sao货| 国产精品欧美亚洲77777| 97人妻天天添夜夜摸| 久久精品aⅴ一区二区三区四区| 在线看a的网站| 亚洲综合色网址| 一本大道久久a久久精品| 新久久久久国产一级毛片| 99精国产麻豆久久婷婷| 狂野欧美激情性xxxx| 欧美 亚洲 国产 日韩一| 欧美精品高潮呻吟av久久| 天天操日日干夜夜撸| 午夜成年电影在线免费观看| 欧美国产精品va在线观看不卡| 精品电影一区二区在线| 五月开心婷婷网| 精品国产一区二区久久| 热re99久久国产66热| www.自偷自拍.com| 日韩熟女老妇一区二区性免费视频| 女警被强在线播放| 99国产精品99久久久久| 老熟女久久久| 一夜夜www| 99久久综合精品五月天人人| 中文字幕精品免费在线观看视频| 99精品久久久久人妻精品| 女人精品久久久久毛片| 中文字幕av电影在线播放| 日韩欧美国产一区二区入口| 狠狠婷婷综合久久久久久88av| 中出人妻视频一区二区| 亚洲专区字幕在线| 国产男靠女视频免费网站| 狠狠婷婷综合久久久久久88av| 成熟少妇高潮喷水视频| 国产精品1区2区在线观看. | 女人久久www免费人成看片| 精品国产一区二区久久| 国产精品久久久久成人av| 亚洲国产精品sss在线观看 | 老熟女久久久| 99精国产麻豆久久婷婷| 亚洲成a人片在线一区二区| 韩国av一区二区三区四区| 免费看a级黄色片| 国产精品 国内视频| 人妻丰满熟妇av一区二区三区 | 国产欧美日韩一区二区三| 久久精品成人免费网站| 久久影院123| 一边摸一边做爽爽视频免费| 人人妻人人澡人人爽人人夜夜| 久久久国产成人精品二区 | 精品少妇久久久久久888优播| 欧美日韩黄片免| 国产欧美亚洲国产| 精品无人区乱码1区二区| 99国产精品一区二区三区| 久久亚洲精品不卡| 老鸭窝网址在线观看| 男女高潮啪啪啪动态图| 亚洲欧美激情在线| 99在线人妻在线中文字幕 | 国产一区二区三区视频了| 欧美激情极品国产一区二区三区| 久9热在线精品视频| 国产1区2区3区精品| 国产一区有黄有色的免费视频| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区在线不卡| 999精品在线视频| 女人久久www免费人成看片| 国产精品亚洲av一区麻豆| 超碰成人久久| 国产精品久久久人人做人人爽| 在线观看免费日韩欧美大片| 美女福利国产在线| 色在线成人网| 天天操日日干夜夜撸| 国产高清国产精品国产三级| 热re99久久精品国产66热6| 天堂√8在线中文| 日韩有码中文字幕| 欧美乱色亚洲激情| 精品国产美女av久久久久小说| 波多野结衣一区麻豆| 亚洲中文日韩欧美视频| 亚洲国产毛片av蜜桃av| 1024视频免费在线观看| 国产aⅴ精品一区二区三区波| 老司机靠b影院| 免费高清在线观看日韩| 日本vs欧美在线观看视频| 老司机在亚洲福利影院| 99国产精品免费福利视频| 热99re8久久精品国产| 又黄又粗又硬又大视频| 亚洲欧美色中文字幕在线| 一区二区三区精品91| 免费一级毛片在线播放高清视频 | 精品久久久久久电影网| 国产精品久久久久成人av| 国产高清激情床上av| 欧美日韩福利视频一区二区| 又黄又粗又硬又大视频| 精品国产美女av久久久久小说| 男人操女人黄网站| 美国免费a级毛片| 人妻 亚洲 视频| 亚洲一卡2卡3卡4卡5卡精品中文| 免费一级毛片在线播放高清视频 | 国产日韩一区二区三区精品不卡| 男人舔女人的私密视频| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av高清一级| 国产精品一区二区在线不卡| 国产日韩欧美亚洲二区| 亚洲人成电影观看| 好看av亚洲va欧美ⅴa在| 午夜免费观看网址| 精品久久久久久电影网| 久热爱精品视频在线9| 免费高清在线观看日韩| 欧美大码av| 人人妻,人人澡人人爽秒播| 超色免费av| 欧美乱码精品一区二区三区| 久久精品aⅴ一区二区三区四区| 操出白浆在线播放| 黄色成人免费大全| 久久香蕉国产精品| 亚洲精品国产一区二区精华液| 丝袜在线中文字幕| 国产亚洲精品久久久久5区| 国产在线精品亚洲第一网站| 免费黄频网站在线观看国产| 黑人操中国人逼视频| 黑人巨大精品欧美一区二区mp4| 国产免费现黄频在线看| √禁漫天堂资源中文www| ponron亚洲| 中文字幕人妻丝袜制服| 9色porny在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 无限看片的www在线观看| 男女床上黄色一级片免费看| 视频区欧美日本亚洲| 校园春色视频在线观看| 成人av一区二区三区在线看| 久久99一区二区三区| 日日爽夜夜爽网站| 国产主播在线观看一区二区| 99久久国产精品久久久| 黑人巨大精品欧美一区二区mp4| 亚洲av电影在线进入| 正在播放国产对白刺激| videos熟女内射| 成人手机av| 757午夜福利合集在线观看| 成人亚洲精品一区在线观看| 久久久久精品国产欧美久久久| 午夜福利视频在线观看免费| 欧美色视频一区免费| 又紧又爽又黄一区二区| 欧美激情高清一区二区三区| 欧美最黄视频在线播放免费 | 精品国产亚洲在线| 一个人免费在线观看的高清视频| 久久午夜综合久久蜜桃| 丁香欧美五月| 99久久国产精品久久久| 建设人人有责人人尽责人人享有的| 51午夜福利影视在线观看| 啦啦啦视频在线资源免费观看| 国产主播在线观看一区二区| 成人国语在线视频| 自线自在国产av| 国产精品成人在线| 国产精品免费视频内射| 免费观看人在逋| 日日爽夜夜爽网站| 欧美激情 高清一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费av在线播放| 国产精品成人在线| 欧美不卡视频在线免费观看 | 在线观看免费视频日本深夜| 中文字幕人妻丝袜制服| 少妇猛男粗大的猛烈进出视频| 午夜福利,免费看| 高清av免费在线| 亚洲伊人色综图| 中文欧美无线码| 亚洲欧美精品综合一区二区三区| 国产一区二区三区在线臀色熟女 | 国产高清videossex| 亚洲国产精品sss在线观看 | 国产91精品成人一区二区三区| 久久草成人影院| 亚洲 国产 在线| 男人操女人黄网站| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av高清一级| 真人做人爱边吃奶动态| 日本精品一区二区三区蜜桃| 免费av中文字幕在线| 搡老岳熟女国产| 精品久久久久久电影网| 亚洲国产欧美日韩在线播放| 高清毛片免费观看视频网站 | 精品久久蜜臀av无| 亚洲伊人色综图| 国产成人av教育| 久久婷婷成人综合色麻豆| 1024视频免费在线观看| 国产免费男女视频| 一个人免费在线观看的高清视频| av国产精品久久久久影院| 欧美黄色片欧美黄色片| 夫妻午夜视频| 人人妻,人人澡人人爽秒播| 操出白浆在线播放| 亚洲中文字幕日韩| 久久久久国内视频| 一边摸一边抽搐一进一出视频| 51午夜福利影视在线观看| 91九色精品人成在线观看| 国产精品.久久久| 国精品久久久久久国模美| 91麻豆精品激情在线观看国产 | 亚洲免费av在线视频| 99久久人妻综合| av福利片在线| 精品国产亚洲在线| a在线观看视频网站| 麻豆成人av在线观看| 满18在线观看网站| 老司机深夜福利视频在线观看| 大陆偷拍与自拍| 一级毛片高清免费大全| 亚洲熟妇熟女久久| 我的亚洲天堂| 亚洲第一青青草原| 人妻久久中文字幕网| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 超碰97精品在线观看| 18在线观看网站| 国产精品一区二区精品视频观看| 免费人成视频x8x8入口观看| 免费日韩欧美在线观看| 午夜亚洲福利在线播放| 日韩免费高清中文字幕av| 黄色视频,在线免费观看| 在线观看免费高清a一片| 女人久久www免费人成看片| 国产99久久九九免费精品| 老汉色av国产亚洲站长工具| 黑人欧美特级aaaaaa片| 国产91精品成人一区二区三区| 国产aⅴ精品一区二区三区波| 国产一卡二卡三卡精品| 成人影院久久| a级片在线免费高清观看视频| 搡老乐熟女国产| 亚洲成av片中文字幕在线观看| 久久人人爽av亚洲精品天堂| 天堂√8在线中文| 真人做人爱边吃奶动态| 免费观看人在逋| 手机成人av网站| 交换朋友夫妻互换小说| 侵犯人妻中文字幕一二三四区| 免费av中文字幕在线| 老熟女久久久| 狂野欧美激情性xxxx| 国产精品香港三级国产av潘金莲| 欧美日韩亚洲国产一区二区在线观看 | 婷婷成人精品国产| 女警被强在线播放| 国产野战对白在线观看| 成熟少妇高潮喷水视频| 丰满的人妻完整版| 精品国产乱子伦一区二区三区| 国产一区二区激情短视频| 王馨瑶露胸无遮挡在线观看| 男女之事视频高清在线观看| 777久久人妻少妇嫩草av网站| 十八禁人妻一区二区| 日韩免费av在线播放| 亚洲成a人片在线一区二区| 国产又色又爽无遮挡免费看| 高清在线国产一区| 深夜精品福利| 一级毛片高清免费大全| 91av网站免费观看| 老司机在亚洲福利影院| 桃红色精品国产亚洲av| 欧美日韩亚洲高清精品| 亚洲免费av在线视频| 午夜福利乱码中文字幕| 亚洲欧美日韩高清在线视频| 午夜免费观看网址| 国产aⅴ精品一区二区三区波| 精品一区二区三区视频在线观看免费 | 在线观看舔阴道视频| 两个人免费观看高清视频| а√天堂www在线а√下载 | 亚洲成人免费av在线播放| 日韩大码丰满熟妇| 在线十欧美十亚洲十日本专区| 日韩三级视频一区二区三区| 免费不卡黄色视频| 成人特级黄色片久久久久久久| 国内毛片毛片毛片毛片毛片| 看片在线看免费视频| 欧美黄色片欧美黄色片| 精品欧美一区二区三区在线|