• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface Modification of Titanium Oxide by Indium for Efficient Photocatalytic Hydrogen Generation①

    2019-01-05 09:31:54XUEChuiBingLIGuoJingGONGCiGUOWngHUANGJiQun
    結(jié)構(gòu)化學(xué) 2018年12期

    XUE Chui-Bing LI Guo-Jing GONG Ci GUO Wng HUANG Ji-Qun

    ?

    Surface Modification of Titanium Oxide by Indium for Efficient Photocatalytic Hydrogen Generation①

    XUE Chui-Binga, bLI Guo-Jinga, cGONG Caia, bGUO WangaHUANG Ji-Quana②

    a(350002)b(350117)c(100039)

    We fabricated indium ion-modified TiO2nanoparticles. The results revealed that indium presents on TiO2surface in the form of fixed ion, by coordinating with hydroxyl groups or terminal oxygen atoms at the surface of TiO2, which resulted in smaller grain size, larger surface area, and mesoporous structure relative to pure titanium dioxide. Compared with pure TiO2, indium ion-modified TiO2showed great enhancement of photocatalytic activity to hydrogen generation. Owing to electronic capture capability of indium, the excited electrons can rapidly transfer from TiO2conduction band to indium, resulting in the separation of electron-hole pairs. The optimal H2evolution rate was 277.8mmol·g-1·h-1, which was about 23 times higher than that of Degussa P25.

    indium modification, hydrogen generation, photocatalytic activity;

    1 INTRODUCTION

    Since the discovery of water photolysis on TiO2photoanode in 1970s[1], TiO2has promoted extensive investigations for photocatalytic hydrogen generation from water decomposition. However, presently, the reactivity of bare TiO2for water splitting is still low, mainly due to the high recombination rate of photoexcited electron-hole pairs, the fast backward reaction, and the large bandgap.

    To this end, metal or non-metal doping has been developed, for example, Nb, Fe, Co, Rh, Cr, C and N doped TiO2[2-8]. Most doped TiO2photocatalystes are responsive to visible light due to the formation of impurity level or the narrowing of the band gap. However, doping impurity levels and oxygen vacancy could serve as recombination centers, leading to the decrease of photocatalytic activity[9].

    Recently, another strategy, i.e., metal ion modifi- cation, has drawn much attention[10-17]. In this method, metal modifier is not doped in lattices but just fixed on the surface of TiO2in the forms of metal ion or molecular metal oxide (oxyhydroxide, chloride,) species, and charge transfers occur between the metal modifiers and TiO2[18, 19]. The metal modifier may inject electrons into the conduction band of TiO2. Some accept electrons from the valence band and others work as electron acceptors from the conduction band of TiO2like a cocatalyst[13]. Notably, the separation of electron-hole pairs is greatly promoted, thereby improving the photocatalytic activity. The Cu(II)-grafted TiO2exhibited a high quantum efficiency for 2-propanol decomposition under visible light[11]. Fe(III)/TiO2with amorphous FeO(OH)-like structure was assigned to the interfacial charge transfer from the valence band of TiO2to the surface Fe(III) species[12]. The platinum(III) species as a promoter for O2reductions and an electron injector to the conduction band of TiO2for response to visible light[14, 20]. In addition, analogous method could be applied to other semiconductors[21-23]. In general, surface modifica- tion is an effective strategy to design highly active photocatalyst systems, which can be applied to a variety of semiconductor materials.

    Herein, we report the fabrication of indium ions modified TiO2(In-TiO2) as an efficient photocatalyst by the sol-gel method. It is found that the intro- duction of indium modifier efficiently enhanced photocatalytic performance of TiO2. The maximum hydrogen production rate reached 277.8 μmol·g-1·h-1, which is about 23 times higher than that of P25. This improvement in photocatalytic performance can be contributed to the fixed indium ions on TiO2surface, rather than the absorption of visible light.

    2 EXPERIMENTAL

    2. 1 Preparation of the photocatalysts

    In-TiO2nanoparticles were prepared by the sol-gel process. At room temperature, a certain amount of InCl3solution (0.1 mol/L) was mixed with 15 mL of absolute ethanol. Subsequently, tetrabutyl titanate (0.01 mol) was added to the above solution under vigorous stirring. Then, 0.5 mL distilled water was added into the transparent solution, while hydro- chloric acid was used to adjust the pH. The obtained sol was stirred until a transparent gel was formed. After aging for 1 h, the gels were dried at 75 ℃ for 24 h. Subsequently, the dry gels were ground and then calcined at 450 ℃ for 2 h. The samples were named as% In-TiO2, where“%” represents the molar percentage of In3+ions in all metal ions (In3+and Ti4+) in TiO2. The synthesis procedure for pure TiO2is similar to that of In-TiO2, except for the absence of InCl3solution.

    2. 2 Characterization of the photocatalysts

    The crystal structures of the samples were deter- mined by X-ray diffractometer (Miniflex 600, Rigaku, Japan), and the morphology was characte- rized by Transmission Electron Microscopy (Tecnai G2 F20, FEI, USA). The surface areas and pore structures of the samples were analyzed by Pore Analyzer (ASAP2020, Mike, USA). The reflectance spectra of the samples were measured by a UV-Vis spectrophotometer (Lambda 950, PerkinElmer, USA) with an integrating sphere in the range of 250~800 nm and standard BaSO4powder was used as a reference. The surface analyses were determined by X-ray photoelectron spectroscopy (XPS) (ESCALAB 250, Thermo Scientific, USA).

    2. 3 Photocatalytic activity testing

    The hydrogen generation was tested using a photocatalytic testing system (CEL-SPH2N, AULTT, China). 100 mg photocatalysts were placed at the bottom of a 500 mL Pyrex reactor with a quartz window containing 100 mL methanol-water solution (10 vol.% methanol). The ambient temperature was kept at 28℃while the reaction liquid was maintained at 6 ℃ by circulating cooling water to prevent solution evaporation. The light source was a 300 W Xe lamp. The photocatalytic reaction time was 10 h. Hydrogen generation was determined using a gas chromatograph (SP7800, N2carrier, AULTT, China).

    The photocurrent and electrochemical impedance spectroscopies of the electrodes were measured in a 0.1 M Na2SO4electrolyte solution in a regular three-electrode electrochemical cell on potentiostat (CHI760E). A Xe lamp (PLS-SXE300C) was used as the source of sunlight. Pt wire and an Ag/AgCl electrode were used as the counter and reference electrodes, respectively.

    3 RESULTS AND DISCUSSION

    3. 1 Photocatalyst characterization

    The X-ray diffraction (XRD) patterns of In–TiO2and pure TiO2are shown in Fig. 1a. It is evident that all the samples displayed typical XRD pattern of TiO2with anatase structure. No characteristic diffraction peaks of indium species (metal or oxide phase) and any other secondary or impurity phases were observed, indicating the absence of crystalline indium oxides. Besides, with the increase of indium, there was no shift in the diffraction peaks, and the calculated lattice parameters keep nearly constant (see Fig. 1b~1c and Table 1). Given that the effec- tive ionic radius (with coordination number of 6) is 0.080 nm for In3+and 0.0605 nm for Ti4+, substi- tution of Ti4+by In3+will lead to the lattice expan- sion, reflecting as the shift of the peak positions to lower diffraction angles. Therefore, it can deduce that there was no doped In3+in TiO2lattices, or the doping concentration was very low. The difficult substitution of In3+for Ti4+can be mainly attributed to the large mismatching in the radius (> 30%) between In3+and Ti4+. Therefore, it is presumed that the In3+ions may exist in the form of amorphous nanoclusters[24, 25], or chemisorbed on the surface of TiO2as a complex-like form coordinated by the surface hydroxyl group[26]. Additionally, both crystallinity and particle size were decreased by the introduction of indium (see Fig. 1). The crystallite size of the samples was calculated by employing the Scherrer equation and shown in Table 1. The crystal size was about 18 nm for the pristine TiO2, and smaller than 10 nm for the indium ion-modified TiO2samples.

    Fig. 1. (a) X-ray diffraction patterns of pure TiO2and indium ion-modified TiO2. (b) and (c) are the enlarged patterns of (101) and (200) peaks of anatase TiO2, respectively

    Table 1. Cell Parameters, Crystallite Size and Surface Area of Pure TiO2 and Indium Ion-modified TiO2

    The TEM and HRTEM images of pristine TiO2and 2 % In–TiO2are shown in Fig. 2. The particles were roughly spherical in shape, and the average crystal sizes are about 18 and 9 nm for the pure TiO2and In–TiO2powders, respectively, which was consistent with the XRD results. The HRTEM images (Fig. 3b and 3d) reveal an interplanar spacing of 0.35 nm, corresponding to the (101) plane of anatase TiO2. Besides, EDX elemental mapping ( Fig. 2e~2f) of 2% In–TiO2sample clearly revealed the homogeneous distribution of Ti, O, and In elements in the entire nanoparticle, highlighting the formation of In3+without the second phases or local aggrega- tion, excluding the formation of amorphous In2O3nanoparticles. Therefore, the indium species may be existed in the form of fixed ion, by coordinating with hydroxyl groups or terminal oxygen atoms at the surface of TiO2[27-29].

    Fig. 2. Typical TEM (a, c) and HRTEM (b, d) images of TiO2(a, b) and In-TiO2(c, d). (e~h) STEM-EDS mapping of Ti, O, and In element for 2% In–TiO2sample

    Optical response of the samples was measured by diffuse reflection spectrometer at room temperature. The band gap energy values calculated usingequation were 3.17, 3.17, 3.18, 3.15, 3.19, and 3.17 eV for pure TiO2, 0.5, 1, 2, 3, and 4% In-TiO2, respectively, indicating that the band gap of In–TiO2was almost unchanged after the introduction of indium. Besides, additional visible absorption was not observed after the introduction of indium (see Fig. 3). In principle, indium ions doping can form impurity energy levels and reduce the value of. Similarly, the recombination of indium oxide and titanium dioxide can also result in visible light absorption due to the lower band gap of indium oxide (= 2.8 eV)[31]. Therefore, the UV-Vis reflectance spectrum indicated that indium neither exists in the lattice nor in the form of In2O3particles, which further demon- strated the presence of indium in the state of ions by hydroxyl or Ti–O terminal on the surface of TiO2[27-29].

    Fig. 4a shows the N2adsorption-desorption isotherms of TiO2and In–TiO2samples. The four isotherms were similar to typecurve withhysteresis loops, suggesting the highly mesoporous structure[32].Fig. 4b shows the Barrett-Joyner- Halenda () pore size distribution. The average pore size was obtained from the maximum of pore size distribution curves for the synthesized samples. The distribution curve revealed the mesopores of 4.5~6.5 nm. Furthermore, the BET surface area was 43.64 m2/g for TiO2, and 55.32, 72.60, 73.36, 78.23, and 74.18 m2/g for 0.5, 1, 2, 3, 4% In-TiO2samples, respectively (see Table 1). Obviously, this is related to the decrease of particle size. In other words, indium was attached to the surface of titanium dioxide, which hinders the growth of grain and thus increases the specific surface area of the samples.

    Fig. 3. (a) UV-Vis reflectance spectrum and (b) relationship between (F(R)hν)0.5and band energy () of the In–TiO2samples. F(R) = (1 –)2/2whereis the reflectance

    Fig. 4. (a) N2adsorption-desorption isotherms and (b) pore size distribution curves of TiO2and In–TiO2

    In order to determine the chemical environment of Ti, In and O, XPS analysis was carried out. The selected spectra for Ti 2, O 1, and In 3are shown in Fig. 5. For Ti 2spectra, the peaks of Ti located at 458.6 and 464.5 eV were assigned to Ti 23/2and Ti 21/2, respectively (Fig. 5a), and the splitting between Ti 21/2and Ti 23/2was 5.7 eV, indicating a normal state of Ti4+in In–TiO2samples. As shown in Fig. 5b, O 1peak was fitted with two components at 529.7 and 531.3 eV, which could be assigned to the lattice oxygen bound to anatase Ti4+and surface hydroxyl groups, respectively[33]. For the In 3spectra (Fig. 5c), the peaks with binding energy located at 443.8 and 451.3 eV were assigned to In 35/2and In 33/2respectively, which indicated the indium exists in the form of ionic state[34]. It can be seen that with the increase of indium, the peaks of O 1gradually move slightly to the high binding energy (an offset of about 0.13 eV between TiO2and 4% In-TiO2is shown in Fig. 5b). Since the Fermi level was calibrated as 0 eV and set as the reference point for all core levels in XPS, the chemical shift of the core levels (typically, oxide O 1) could be considered to be caused by the variation in the Fermi level[35]. Thus, it can be seen that the absolution energy position of theEof TiO2became more negative () by introducing indium species.

    3. 2 Photocatalytic activity

    The photocatalytic activity of the samples was investigated in the aqueous CH3OH solution under the Xe lamp irradiation for 10 h. As shown in Fig. 6a, for all the samples, the amount of generated H2increased almost linearly with the irradiation time, implying the stability of photocatalysts. Under the applied experimental conditions, pure TiO2did not exhibit observable photocatalytic activity. However, indium modified titanium dioxide presented remarkable improvement on hydrogen production. Fig. 6b depicts the dependence of H2evolution rate on the indium contents. With the incorporation of a small amount of indium, the activity of 0.5% In-TiO2sample was markedly enhanced. The H2evolution rate of the samples further increased with increasing the indium content from 0.5% to 2.0%. 2% In-TiO2sample exhibited the highest H2evolution rate, viz. 277.8 μmol·g-1·h-1, which was about 23 times higher than that of P25 (12 μmol·g-1·h-1, experimental data were not shown in Fig. 6). After that, further increasing the indium contents led to a decline of the photocatalytic activity. Most likely, excess indium attached to TiO2surface may cover its surface, resulting in the decrease of light absorption of titanium dioxide[36].

    Fig. 5. XPS of In-TiO2samples. (a) Ti 2, (b) O 1and (c) In 3

    Fig. 6. (a) Time course of photocatalytic H2evolution. (b) Dependence of H2evolution rate on the Indium contents

    3. 3 Photoelectrochemical characterization

    In order to further ascertain the reasons for the enhanced photocatalytic ability, electrochemical measurements were carried out. Fig. 7a shows the current-time() curves of the TiO2and In–TiO2electrodes. The transient photocurrent responses of the samples were recorded under intermittent light on and off. Strikingly, considerable rise in the current intensity of In–TiO2electrodes was observed relative to bare TiO2electrodes, suggesting that the boosted separation efficiency of photogenerated electron-hole pairs was afforded for In–TiO2[37]. Electrochemical impedance spectroscopy () was measured to evaluate the electrochemical characteristics of bare TiO2and In–TiO2electrodes (Fig. 7b). The charge transfer resistance of samples can be deduced from the Nyquist plots of TiO2and In–TiO2[38]. Obviously, In–TiO2sample shows a lower resistance than that of bare TiO2, indicating that the modification of indium can greatly promote the efficiency of charge transfer.

    Fig. 7. (a) Time courses of photoresponse using bare TiO2and In–TiO2electrodes. (b) Electrochemical impednce spectra of bare TiO2and In–TiO2electrodes

    3. 4 Photocatalysis mechanism

    According to the above results, the improved hydrogen production capacity of TiO2by indium modification can be explained as follows. Pure TiO2does not exhibit detectable photocatalytic activity due to its wide band gap energy and high photo- generated carrier recombination rate. However, for indium ion-modified TiO2, when TiO2nanoparticles are irradiated by photons equal to or larger than the band gap energy, the electrons in the valence band will transfer to the conduction band to form photo- generated electrons (e-), while photogenerated holes (h+) produced in the valence band accordingly. Subsequently, the excited electrons can be transferred rapidly from the conduction band to indium due to the ability of indium to trap electrons, resulting in the separation of electron-hole pairs[39]. The photoge- nerated holes (h+) react with absorbed H2O to generate hydrogen ions (H+) and hydroxyal radical (?OH), while electrons convert H+into H2(see the schematic Fig. 8). As a result, photogenerated elec- trons and holes can be separated efficiently via the presence of In3+over the surface, and then contribute to the photocatalytic reactions. Moreover, In modification can lead to smaller grains and larger surface area, thereby reducing the migration distance of the electrons in the bulk TiO2(i.e., reducing the recombination) and increasing the surface active sites[40]. Therefore, indium ion-modified TiO2shows much higher photocatalytic activities than pure TiO2under UV-Vis light irradiation.

    Fig. 8. Schematic diagram of photocatalytic mechanism on indium ion-modified TiO2under simulated sunlight

    4 CONCLUSION

    In summary, we have successfully fabricated indium ion-modified TiO2nanoparticles with remarkable photocatalytic performance for hydrogen generation from water splitting. It is found that indium was distributed over TiO2in the form of fixed ion, by coordinating with hydroxyl groups or terminal oxygen atoms at the surface of TiO2. Due to surface modification of indium, the synthesized samples have smaller grain size, larger surface area, and mesoporous structure. The sample with 2% In exhibits high efficiency for hydrogen generation, corresponding to the value of 277.8 μmol·g-1·h-1. The presence of indium over TiO2surface is conductive to the separation and transport of photogenerated carriers and thereby responsible for the high photocatalttic efficiency.

    (1) Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode.1972, 238, 37-38.

    (2) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis.1995, 95, 69-96.

    (3) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation.2010, 110, 6503-6570.

    (4) Wang, L.; Zhang, S.; Zhu, Y.; Patlolla, A.; Shan, J.; Yoshida, H.; Takeda, S.; Frenkel, A. I.; Tao, F. Catalysis andstudies of Rh/Co3O4nanorods in reduction of NO with H2.2013, 3, 1011-1019.

    (5) Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide.2003, 42, 4908-4911.

    (6) Park, J. H.; Kim, S.; Bard, A. J. Novel carbon-doped TiO2nanotube arrays with high aspect ratios for efficient solar water splitting.2006, 6, 24-28.

    (7) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides.2001, 293, 269-271.

    (8) Chen, X.; Burda, C. The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2nanomaterials.2008, 130, 5018-5019.

    (9) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2for hydrogen production.. 2007, 11, 401-425.

    (10) Irie, H.; Shibanuma, T.; Kamiya, K.; Miura, S.; Yokoyama, T.; Hashimoto, K. Characterization of Cr(III)-grafted TiO2for photocatalytic reaction under visible ligh.2010, 96, 142-147.

    (11) Irie, H.; Miura, S.; Kamiya, K.; Hashimoto, K. Efficient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2and WO3photocatalysts.2008, 457, 202-205.

    (12) Yu, H.; Irie, H.; Shimodaira, Y. An efficient visible-light-sensitive Fe(III)-grafted TiO2photocatalyst.2010, 114, 16481-16487.

    (13) Kitano, S.; Murakami, N.; Ohno, T.; Mitani, Y.; Nosaka, Y.; Asakura, H.; Teramura, K,; Tada, T.; H.; Hashimoto, K.; Kominam, H. Bifunctionality of Rh3+Modifier on TiO2and working mechanism of Rh3+/TiO2photocatalyst under irradiation of visible light.2013, 117, 11008-11016.

    (14) Kitano, S.; Tanaka, A.; Hashimoto, K.; Kominami, H. Metal ion-modified TiO2photocatalysts having controllable oxidative performance under irradiation of visible light.2016, 521, 202-207.

    (15) Kisch, H.; Zang, L.; Lange, C.; Maier, W. F.; Antonius, C.; Meissner, D. Modified, amorphous titania—a hybrid semiconductor for detoxification and current generation by visible light.1998, 37, 3034-3036.

    (16) Tada, H.; Jin, Q.; Nishijima, H.; Yamamoto, H.; Fujishima, M.; Okuoka, S.; Hattori, T.; Sumida, Y.; Kobayashi, H. Titanium (IV) dioxide surface-modified with iron oxide as a visible light photocatalyst.2011, 50, 3501-3505.

    (17) Jin, Q.; Ikeda, T.; Fujishima, M.; Tada, H. Nickel(II) oxide surface-modified titanium(IV) dioxide as a visible-light-active photocatalyst.. 2011, 47, 8814-8816.

    (18) Kumar, S. G.; Devi, L. G. Review on modified TiO2photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics.2011, 115, 13211-13241.

    (19) Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2for environmental photocatalytic applications: a review.2013, 52, 3581-3599.

    (20) Dai, Z. M.; Burgeth, G.; Parrino, F.; Kisch, H. Visible light photocatalysis by a titania-rhodium(III) complex.2009, 694, 1049-1054.

    (21) Tang, E.; Cheng, G.; Ma, X.; Pang, X.; Zhao, Q. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system.2006, 252, 5227-5232.

    (22) Ouyang, S.; Tong, H.; Umezawa, N.; Cao, J.; Li, P.; Bi, P.; Zhang, Y.; Ye, J. Surface-alkalinization-induced enhancement of photocatalytic H2evolution over SrTiO3-based photocatalysts.2012, 134, 1974-1977.

    (23) Yu, H.; Xu, L.; Wang, P.; Wang, P.; Yu, J. Enhanced photoinduced stability and photocatalytic activity of AgBr photocatalyst by surface modification of Fe(III) cocatalyst.2014, 144, 75-82.

    (24) Tagliente, M. A.; Mattei, G.; Tapfer, L.; Antisari, M.; Mazzoldi, P. Thermal behavior of indium nanoclusters in ion-implanted silica.2004, 70, 075418.

    (25) Shi, F. F.; Bulkowski, M.; Hsieh, K. C. Synthesis of indium nanoclusters and formation of thin film contacts on plastic substrates for organic and flexible electronics applications.2007, 18, 265301.

    (26) Jeon, M. K.; Kang, M. Synthesis and characterization of indium-tin-oxide particles prepared using sol-gel and solvothermal methods and their conductivities after fixation on polyethyleneterephthalate films.2008, 62, 676-682.

    (27) Wang, E.; Yang, W.; Cao, Y. Unique surface chemical species on indium doped TiO2and their effect on the visible light photocatalytic activity.2009, 113, 20912-20917.

    (28) Yu, Y.; Wang, E.; Yuan, J.; Cao, Y. Enhanced photocatalytic activity of titania with unique surface indium and boron species.2013, 273, 638-644.

    (29) Myilsamy, M.; Mahalakshmi, M.; Murugesan, V.; Subha, N. Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO2nanocomposites for the degradation of 2,4-dinitrophenol under visible light.. 2015, 342, 1-10.

    (30) Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium.1966, 15, 627-637.

    (31) Mu, J.; Chen, B.; Zhang, M.; Guo, Z.; Zhang, P.; Zhang, Z.; Sun, Y.; Shao, C.; Liu, Y. Enhancement of the visible-light photocatalytic activity of In2O3-TiO2nanofiber heteroarchitectures.2011, 4, 424-430.

    (32) Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials.2001, 13, 3169-3183.

    (33) Dickinson, T.; Povey, A. F.; Sherwood, P. M. A. Dissolution and passivation of nickel. An X-ray photoelectron spectroscopic study.1977, 73, 327-343.

    (34) Powell, C. J. Recommended Auger parameters for 42 elemental solids.2012, 185, 1-3.

    (35) Glover, E. N. K.; Ellington, S. G.; Sankar, G.; Palgrave, R. G. The nature and effects of rhodium and antimony dopants on the electronic structure of TiO2: towards design of Z-scheme photocatalysts.2016, 4, 6946-6954.

    (36) Ismail, A. A.; Bahnemann, D. W.; Al-Sayari, S. A. Synthesis and photocatalytic properties of nanocrystalline Au, Pd and Pt photodeposited onto mesoporous RuO2-TiO2nanocomposites.2012, 431, 62-68.

    (37) Sun, M.; Chen, Z. Enhanced photoelectrochemical cathodic protection performance of the In2O3/TiO2composite.2015, 162, C96-C104.

    (38) Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions.2002, 47, 4213-4225.

    (39) Tahir, M.; Amin, N. A. S. Indium-doped TiO2nanoparticles for photocatalytic CO2reduction with H2O vapors to CH4.2015, 162, 98-109.

    (40) Li, Z.; Dong, T.; Zhang, Y.; Studies on In(OH)Ssolid solutions: syntheses, characterizations, electronic structure, and visible-light-driven photocatalytic activities.2007, 111, 4727-4733.

    13 April 2018;

    5 June 2018

    the Natural Science Foundation of Fujian Province (2015j01231), the Chunmiao Project of Haixi Institute of Chinese Academy of Sciences (CMZX-2014-005), and the National Key Research and Development Program of China (2016YFB0701003)

    . Huang Ji-Quan. E-mail: hjq@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-2046

    99热网站在线观看| 国产av国产精品国产| 18禁裸乳无遮挡动漫免费视频| 91麻豆av在线| 淫妇啪啪啪对白视频 | av超薄肉色丝袜交足视频| 久久精品亚洲av国产电影网| 亚洲国产av影院在线观看| 亚洲成国产人片在线观看| 搡老乐熟女国产| netflix在线观看网站| 国产精品一区二区精品视频观看| 日韩欧美国产一区二区入口| 国产一卡二卡三卡精品| cao死你这个sao货| 国产成人免费观看mmmm| 一区二区三区四区激情视频| 亚洲五月色婷婷综合| 亚洲av成人不卡在线观看播放网 | 亚洲精品国产av蜜桃| 热re99久久精品国产66热6| 黑人巨大精品欧美一区二区蜜桃| 在线精品无人区一区二区三| 亚洲一区二区三区欧美精品| 婷婷丁香在线五月| 搡老熟女国产l中国老女人| 国产视频一区二区在线看| 男女午夜视频在线观看| 美女高潮到喷水免费观看| av超薄肉色丝袜交足视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕av电影在线播放| 手机成人av网站| 狠狠精品人妻久久久久久综合| 日韩精品免费视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲av欧美aⅴ国产| 99热国产这里只有精品6| 大片电影免费在线观看免费| 黄片播放在线免费| 久久 成人 亚洲| 手机成人av网站| 久久精品国产a三级三级三级| 国产不卡av网站在线观看| 黄色视频,在线免费观看| 91av网站免费观看| 成年人黄色毛片网站| 一级片'在线观看视频| 免费一级毛片在线播放高清视频 | 亚洲国产成人一精品久久久| 无遮挡黄片免费观看| 欧美黄色片欧美黄色片| 亚洲激情五月婷婷啪啪| 中文精品一卡2卡3卡4更新| 中文字幕av电影在线播放| 狂野欧美激情性bbbbbb| 国产真人三级小视频在线观看| 亚洲精品美女久久久久99蜜臀| 欧美精品人与动牲交sv欧美| 极品人妻少妇av视频| 国产精品偷伦视频观看了| 最近最新中文字幕大全免费视频| 大香蕉久久网| 99久久人妻综合| 婷婷色av中文字幕| 国产精品久久久久久精品古装| 12—13女人毛片做爰片一| 婷婷成人精品国产| 男人舔女人的私密视频| av在线app专区| 日韩视频在线欧美| 热99久久久久精品小说推荐| 亚洲,欧美精品.| 捣出白浆h1v1| 成人亚洲精品一区在线观看| 美女脱内裤让男人舔精品视频| 高清黄色对白视频在线免费看| 亚洲国产欧美一区二区综合| 欧美精品一区二区免费开放| 男女国产视频网站| 国产老妇伦熟女老妇高清| 亚洲伊人色综图| 80岁老熟妇乱子伦牲交| 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 91字幕亚洲| 一个人免费在线观看的高清视频 | 亚洲欧美清纯卡通| 午夜免费观看性视频| 电影成人av| 男女国产视频网站| 999精品在线视频| 精品人妻熟女毛片av久久网站| 波多野结衣一区麻豆| 日日夜夜操网爽| 纯流量卡能插随身wifi吗| 大香蕉久久网| av网站在线播放免费| 手机成人av网站| 欧美午夜高清在线| 香蕉国产在线看| 国产1区2区3区精品| 国产精品影院久久| 欧美精品一区二区大全| 国产高清国产精品国产三级| 999久久久国产精品视频| 黑丝袜美女国产一区| 一本—道久久a久久精品蜜桃钙片| 一本大道久久a久久精品| 青春草视频在线免费观看| av网站免费在线观看视频| 男女高潮啪啪啪动态图| 午夜精品国产一区二区电影| 亚洲av电影在线进入| 成年女人毛片免费观看观看9 | 日本猛色少妇xxxxx猛交久久| 国产精品免费视频内射| 欧美激情极品国产一区二区三区| 日本vs欧美在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 中国美女看黄片| 丰满迷人的少妇在线观看| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 夜夜夜夜夜久久久久| 欧美 亚洲 国产 日韩一| 在线观看免费视频网站a站| 黄片大片在线免费观看| 亚洲精品国产av成人精品| 美女午夜性视频免费| 亚洲精品自拍成人| 久久精品国产综合久久久| 亚洲第一av免费看| 美女主播在线视频| 亚洲一区中文字幕在线| 亚洲男人天堂网一区| 在线观看免费午夜福利视频| 免费日韩欧美在线观看| 十八禁网站网址无遮挡| 爱豆传媒免费全集在线观看| 黄网站色视频无遮挡免费观看| 成年人免费黄色播放视频| 少妇人妻久久综合中文| 亚洲欧美激情在线| 丝袜美腿诱惑在线| 亚洲情色 制服丝袜| 18禁观看日本| 最近最新中文字幕大全免费视频| 啦啦啦在线免费观看视频4| 国产亚洲av片在线观看秒播厂| 国产亚洲精品久久久久5区| 法律面前人人平等表现在哪些方面 | 日韩三级视频一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 各种免费的搞黄视频| 亚洲五月色婷婷综合| 国产一区二区激情短视频 | 国产不卡av网站在线观看| 欧美日韩福利视频一区二区| 人妻人人澡人人爽人人| 亚洲男人天堂网一区| 少妇人妻久久综合中文| 啦啦啦啦在线视频资源| 成年美女黄网站色视频大全免费| 91老司机精品| 搡老岳熟女国产| 又大又爽又粗| 高清欧美精品videossex| 两个人免费观看高清视频| 波多野结衣一区麻豆| 无限看片的www在线观看| 国产av一区二区精品久久| 午夜视频精品福利| 亚洲七黄色美女视频| 免费av中文字幕在线| 999精品在线视频| 精品国产乱码久久久久久男人| 丰满人妻熟妇乱又伦精品不卡| 999精品在线视频| 国内毛片毛片毛片毛片毛片| 黄色a级毛片大全视频| videos熟女内射| 亚洲国产欧美一区二区综合| netflix在线观看网站| 国产主播在线观看一区二区| 亚洲人成电影免费在线| a 毛片基地| www.av在线官网国产| 大码成人一级视频| 纯流量卡能插随身wifi吗| 美女脱内裤让男人舔精品视频| 丰满人妻熟妇乱又伦精品不卡| 天天躁夜夜躁狠狠躁躁| 丝袜人妻中文字幕| 一本大道久久a久久精品| 亚洲第一青青草原| 久久久国产一区二区| 超碰97精品在线观看| 精品国产一区二区三区久久久樱花| 午夜成年电影在线免费观看| 国产野战对白在线观看| 香蕉国产在线看| 超碰成人久久| 欧美黑人欧美精品刺激| av网站在线播放免费| 悠悠久久av| 国产成人精品久久二区二区91| 天堂8中文在线网| 一个人免费看片子| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区mp4| 啦啦啦 在线观看视频| 亚洲综合色网址| 天堂俺去俺来也www色官网| 国产精品自产拍在线观看55亚洲 | 极品人妻少妇av视频| 国产精品99久久99久久久不卡| 99精品欧美一区二区三区四区| 日本vs欧美在线观看视频| 国产日韩欧美视频二区| 久久99一区二区三区| 啦啦啦中文免费视频观看日本| 美女中出高潮动态图| 欧美人与性动交α欧美精品济南到| 久久精品亚洲熟妇少妇任你| 亚洲av电影在线进入| 国产精品一区二区在线不卡| 国产精品麻豆人妻色哟哟久久| tocl精华| 97精品久久久久久久久久精品| 午夜福利在线免费观看网站| 人人澡人人妻人| 国产日韩欧美在线精品| 亚洲国产av影院在线观看| 日韩一区二区三区影片| 超碰97精品在线观看| 天天添夜夜摸| 看免费av毛片| 国产又色又爽无遮挡免| 精品久久蜜臀av无| 午夜免费成人在线视频| 免费观看a级毛片全部| 下体分泌物呈黄色| 性色av乱码一区二区三区2| 精品国产乱子伦一区二区三区 | 色视频在线一区二区三区| 午夜影院在线不卡| 亚洲av男天堂| 亚洲精品国产av蜜桃| 男女边摸边吃奶| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 午夜成年电影在线免费观看| 久久国产精品男人的天堂亚洲| 国产极品粉嫩免费观看在线| 一边摸一边做爽爽视频免费| 国产精品久久久久久人妻精品电影 | 欧美乱码精品一区二区三区| 女性生殖器流出的白浆| 青青草视频在线视频观看| 男人添女人高潮全过程视频| www.999成人在线观看| 久久久国产一区二区| 国产在线一区二区三区精| 久久久久国内视频| 亚洲精品国产av成人精品| 一区二区日韩欧美中文字幕| 高清黄色对白视频在线免费看| 人人妻人人爽人人添夜夜欢视频| 香蕉国产在线看| 亚洲 欧美一区二区三区| 欧美日韩亚洲高清精品| 十八禁网站免费在线| 亚洲欧美成人综合另类久久久| 国产精品久久久久成人av| 精品一品国产午夜福利视频| 久久人妻熟女aⅴ| 欧美另类亚洲清纯唯美| 秋霞在线观看毛片| 亚洲精品粉嫩美女一区| 国产区一区二久久| 在线观看www视频免费| 国产免费现黄频在线看| 精品国产一区二区久久| 9191精品国产免费久久| 国产日韩欧美亚洲二区| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 嫩草影视91久久| videosex国产| 成人三级做爰电影| 纯流量卡能插随身wifi吗| 欧美激情高清一区二区三区| 高清在线国产一区| 亚洲精品国产区一区二| 亚洲av电影在线进入| 99热网站在线观看| 国产精品久久久久久精品古装| 国产一区二区三区在线臀色熟女 | 久久久国产成人免费| 免费在线观看日本一区| 老熟妇仑乱视频hdxx| 久久av网站| 青草久久国产| 黄片播放在线免费| 在线 av 中文字幕| 亚洲精品国产精品久久久不卡| 桃花免费在线播放| 欧美日韩av久久| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩视频精品一区| 久久精品国产综合久久久| 飞空精品影院首页| 在线天堂中文资源库| 色婷婷av一区二区三区视频| 黄色视频在线播放观看不卡| 蜜桃在线观看..| 人妻久久中文字幕网| 亚洲成人免费电影在线观看| 亚洲精品美女久久av网站| 日本vs欧美在线观看视频| 天堂俺去俺来也www色官网| 国产精品av久久久久免费| 免费av中文字幕在线| 亚洲全国av大片| 免费观看人在逋| 两个人看的免费小视频| 亚洲欧美精品综合一区二区三区| 在线精品无人区一区二区三| 操美女的视频在线观看| 亚洲欧美激情在线| 天天操日日干夜夜撸| 国产精品一区二区在线不卡| 伊人久久大香线蕉亚洲五| 99国产精品一区二区蜜桃av | 精品久久久久久久毛片微露脸 | 一级黄色大片毛片| 色94色欧美一区二区| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 亚洲av美国av| 精品久久久久久电影网| 女性被躁到高潮视频| 国产在线视频一区二区| 精品少妇久久久久久888优播| 亚洲精品一二三| 正在播放国产对白刺激| 久久久欧美国产精品| 久久久精品94久久精品| 日韩电影二区| 日本猛色少妇xxxxx猛交久久| 欧美97在线视频| 中文精品一卡2卡3卡4更新| 亚洲欧美色中文字幕在线| 一本色道久久久久久精品综合| 涩涩av久久男人的天堂| 精品欧美一区二区三区在线| 啦啦啦免费观看视频1| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 在线av久久热| 国产又爽黄色视频| 法律面前人人平等表现在哪些方面 | 99香蕉大伊视频| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻熟女乱码| 老熟女久久久| 亚洲免费av在线视频| 国产日韩欧美亚洲二区| 欧美一级毛片孕妇| 久久精品aⅴ一区二区三区四区| 色综合欧美亚洲国产小说| 日本欧美视频一区| 美女扒开内裤让男人捅视频| 久久久欧美国产精品| 久久ye,这里只有精品| 国产一区有黄有色的免费视频| 在线av久久热| 欧美精品高潮呻吟av久久| 久久久久视频综合| 亚洲精品久久成人aⅴ小说| av网站在线播放免费| 国产淫语在线视频| 中文字幕最新亚洲高清| 91精品三级在线观看| 日本av手机在线免费观看| 在线天堂中文资源库| 久久国产亚洲av麻豆专区| 成人免费观看视频高清| 亚洲欧美一区二区三区久久| 久久人妻熟女aⅴ| 岛国在线观看网站| 这个男人来自地球电影免费观看| 国产日韩欧美视频二区| 午夜精品久久久久久毛片777| 久久久久久人人人人人| 99热网站在线观看| 美女午夜性视频免费| 国产激情久久老熟女| 久久精品国产亚洲av香蕉五月 | 亚洲第一欧美日韩一区二区三区 | 在线精品无人区一区二区三| 少妇猛男粗大的猛烈进出视频| 一个人免费在线观看的高清视频 | 美女高潮到喷水免费观看| 国产成人a∨麻豆精品| 精品久久久久久久毛片微露脸 | 成人免费观看视频高清| 亚洲专区字幕在线| 人成视频在线观看免费观看| 亚洲熟女毛片儿| 制服诱惑二区| 精品亚洲乱码少妇综合久久| 人妻久久中文字幕网| 国产精品久久久人人做人人爽| 中文字幕最新亚洲高清| 亚洲精品粉嫩美女一区| 国产在视频线精品| 永久免费av网站大全| 欧美精品亚洲一区二区| 国产av又大| 国产欧美日韩一区二区三区在线| 十分钟在线观看高清视频www| 国产成人系列免费观看| 欧美另类一区| 欧美日本中文国产一区发布| 9191精品国产免费久久| 人成视频在线观看免费观看| 动漫黄色视频在线观看| 视频区图区小说| 日韩欧美国产一区二区入口| 国产区一区二久久| 久久久精品免费免费高清| 欧美大码av| 中文字幕人妻丝袜一区二区| 精品卡一卡二卡四卡免费| 免费观看人在逋| 黄色视频在线播放观看不卡| tocl精华| 精品人妻一区二区三区麻豆| 法律面前人人平等表现在哪些方面 | 久久 成人 亚洲| 在线精品无人区一区二区三| 亚洲av成人一区二区三| 最近最新中文字幕大全免费视频| 国产精品国产三级国产专区5o| 一区在线观看完整版| 自线自在国产av| 狂野欧美激情性xxxx| 青春草视频在线免费观看| 国产精品一区二区在线不卡| 性高湖久久久久久久久免费观看| 99国产精品一区二区三区| 男女边摸边吃奶| 老司机靠b影院| 国产成人一区二区三区免费视频网站| 啦啦啦免费观看视频1| 亚洲欧洲精品一区二区精品久久久| 人人妻人人爽人人添夜夜欢视频| 99久久99久久久精品蜜桃| 在线看a的网站| 久热爱精品视频在线9| 成年人黄色毛片网站| 老汉色∧v一级毛片| 国产av又大| 女人高潮潮喷娇喘18禁视频| 亚洲avbb在线观看| 亚洲精品美女久久久久99蜜臀| 精品国产国语对白av| 人成视频在线观看免费观看| 国产一级毛片在线| 亚洲成国产人片在线观看| 国产精品久久久人人做人人爽| 免费在线观看日本一区| 久久人妻熟女aⅴ| 精品少妇一区二区三区视频日本电影| 欧美日韩福利视频一区二区| 巨乳人妻的诱惑在线观看| 欧美大码av| 成人亚洲精品一区在线观看| 手机成人av网站| 欧美日韩视频精品一区| 久久久国产欧美日韩av| 久久影院123| 日韩熟女老妇一区二区性免费视频| 欧美国产精品va在线观看不卡| 丝袜人妻中文字幕| 亚洲精品一区蜜桃| www.熟女人妻精品国产| 欧美日韩中文字幕国产精品一区二区三区 | 嫁个100分男人电影在线观看| 成年av动漫网址| 亚洲第一欧美日韩一区二区三区 | 99精国产麻豆久久婷婷| 黄色视频在线播放观看不卡| 免费在线观看黄色视频的| 国产又爽黄色视频| 黄色怎么调成土黄色| 91av网站免费观看| 亚洲中文字幕日韩| 两人在一起打扑克的视频| 国产av一区二区精品久久| 啦啦啦在线免费观看视频4| 亚洲欧美一区二区三区黑人| 亚洲精品中文字幕在线视频| 成年女人毛片免费观看观看9 | 亚洲国产欧美日韩在线播放| 亚洲第一欧美日韩一区二区三区 | 香蕉丝袜av| 国产日韩欧美视频二区| 性少妇av在线| 国产日韩欧美在线精品| 中文精品一卡2卡3卡4更新| 三上悠亚av全集在线观看| 国产在线观看jvid| 热99re8久久精品国产| 性色av一级| 男女边摸边吃奶| 国产精品99久久99久久久不卡| 天天操日日干夜夜撸| 国产老妇伦熟女老妇高清| 欧美xxⅹ黑人| 精品少妇一区二区三区视频日本电影| 精品一区二区三区四区五区乱码| 国产精品国产av在线观看| 美女福利国产在线| 午夜福利在线观看吧| 成年av动漫网址| 国产精品欧美亚洲77777| 国产三级黄色录像| 黄色视频在线播放观看不卡| 三级毛片av免费| av视频免费观看在线观看| 国产成人精品久久二区二区免费| 视频在线观看一区二区三区| 国产日韩欧美亚洲二区| 人妻久久中文字幕网| 精品人妻在线不人妻| 亚洲欧洲精品一区二区精品久久久| 久久 成人 亚洲| 大香蕉久久网| 精品久久久精品久久久| 狠狠婷婷综合久久久久久88av| 欧美 亚洲 国产 日韩一| 亚洲av日韩在线播放| 欧美日韩av久久| 免费高清在线观看视频在线观看| 午夜两性在线视频| 麻豆国产av国片精品| 蜜桃国产av成人99| 别揉我奶头~嗯~啊~动态视频 | 叶爱在线成人免费视频播放| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区黑人| 9热在线视频观看99| 亚洲精品自拍成人| 999久久久精品免费观看国产| 麻豆国产av国片精品| 日韩欧美国产一区二区入口| 成人国语在线视频| 精品一区二区三卡| 正在播放国产对白刺激| 国产欧美日韩精品亚洲av| 中文字幕高清在线视频| 精品国产乱码久久久久久男人| 一边摸一边抽搐一进一出视频| 中国美女看黄片| 婷婷成人精品国产| 日韩制服骚丝袜av| 午夜福利视频在线观看免费| 美女扒开内裤让男人捅视频| 亚洲,欧美精品.| 久久国产亚洲av麻豆专区| 日韩欧美免费精品| 日韩 亚洲 欧美在线| 黄片大片在线免费观看| 午夜精品国产一区二区电影| 夜夜夜夜夜久久久久| 男女无遮挡免费网站观看| 午夜久久久在线观看| 国产一区二区激情短视频 | 国产国语露脸激情在线看| 国产精品国产av在线观看| 无限看片的www在线观看| 欧美人与性动交α欧美精品济南到| 一区二区日韩欧美中文字幕| 人妻人人澡人人爽人人| 久久香蕉激情| 另类亚洲欧美激情| 一本大道久久a久久精品| 99香蕉大伊视频| 另类亚洲欧美激情| 两性午夜刺激爽爽歪歪视频在线观看 | 777久久人妻少妇嫩草av网站| 极品人妻少妇av视频| 99re6热这里在线精品视频| 久久久久网色| 性少妇av在线| 国产在线视频一区二区| 久热爱精品视频在线9| 亚洲成国产人片在线观看| 岛国毛片在线播放| 亚洲熟女毛片儿| 高清av免费在线| 亚洲性夜色夜夜综合| 超碰97精品在线观看| 免费av中文字幕在线| 国产亚洲精品久久久久5区| 亚洲精品国产av蜜桃| 久久国产精品人妻蜜桃| 亚洲七黄色美女视频| 乱人伦中国视频| 久久99热这里只频精品6学生|