• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QM/MM and MD Studies of the First Proton Transfer for O2 Activation in the Catalytic Cycle of Cytochrome P450cin①

    2019-01-05 09:34:30LIUFengJioSONGJinShuiLUQinQinWEIJingZHANGMinYiHUANGJingLIChunSen
    結(jié)構(gòu)化學(xué) 2018年12期

    LIU Feng-Jio SONG Jin-Shui LU Qin-Qin WEI Jing ZHANG Min-Yi HUANG Jing LI Chun-Sen

    ?

    QM/MM and MD Studies of the First Proton Transfer for O2Activation in the Catalytic Cycle of Cytochrome P450cin①

    LIU Feng-Jiaoa, bSONG Jin-Shuaia, cLU Qian-Qiana, cWEI JingaZHANG Min-Yia, cHUANG JingaLI Chun-Sena, c②

    a(350002)b(100049)c(361005)

    P450cin (CYP176A1) isolated fromis a biodegradation enzyme that catalyzes the enantiospecific conversion of 1,8-cineole to (1R)-6-hydroxycineole. In many P450 family members the mechanism of proton delivery for O2activation is proposed to require a conserved acid-alcohol dyad in the active area, while P450cin has no such residue with alcohol but asparagine instead. In the present work, the mechanism of the first proton transfer of O2activation in P450cin has been investigated by molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) techniques. The MD simulation suggests there are two hydrogen bonding networks around the active site, one involving Asp241 and the other involving Glu356. According to our MD and QM/MM calculations, this Asp241 channel is proposed to be the energy accessible. MD results show that the hydrogen bonds around the substrate may contribute to regio- and stereo-oxidation of the substrate.

    P450cin, CYP176A1, QM/MM, proton transfer;

    1 INTRODUCTION

    The cytochromes P450 constitute a superfamily of heme-containing monooxygenases which perform various biochemical transformations, such as C–H bond hydroxylation, C=C bond epoxidation, sulfoxi- dation, N-dealkylation and O-dealkylation[1-4]. These transformations are important for a vast array of vital processes including biosynthesis of hormones, biodegradation of xenobiotics, and drug metabo- lism[4]. It is commonly accepted that the high-valent iron(IV)-oxo porphyrin-radical cation species known as Compound I (Cpd I, in Scheme 1) is responsible for these oxygenation reactions[5]. In the consensus P450 catalytic cycle[1], the formation of Cpd I involves two subsequent proton transfers: the ferric peroxo complex (shown in Scheme 1) is first protonated to yield the hydroperoxo compound, so called Compound 0, (Cpd 0 in Scheme 1), which then accepts a second proton followed by heterolytic O–O bond cleavage to generate Cpd I and water. It has been suggested that along with the water network at active site the conserved aspartate and threonine (or serine) residues forming acid-alcohol pair in most P450s play a crucial role in proton delivery mechanism[6, 7]. However, there are also some special cases in P450s. For example, P450eryF which lacks the conserved theronine could transfer proton from the 5-OH group of its substrate DEB (6-deoxyerythronolide B)[8]. Intriguingly, P450cin (CYP176A1)[9]lacks the conserved threonine or serine residue and the substrate cineole has no OH group to assist the proton delivery, indicating that a distinct mecha- nism is responsible for the formation of Cpd I.

    Scheme 1. Formation of Cpd I from ferric peroxo complexCpd 0

    Up to now, two possible proton channels invol- ving Asp241 and Glu356 (see Fig. 1) were proposed for O2activation in P450cin[10, 11]. Asp241 is believed to play a similar role as Asp251 of the well-studied P450cam[12, 13], since the Asp241 mutant of P450cin has an influence on the reaction rate. Three vital groups may be involved in the proton delivery from Asp241, including Asn242, Gly238 and substrate cineole[14-16]. However, the mutant of Asn242Ala for P450cin gave a higher coupling than P450cam, and the coupling of Asn242Thr was not very efficient compared with the wild type. These results indicate that the asparagine seems not so important in proton delivery[14]. Compared with Asp241, Gly238 could form a hydrogen bond with a water through its carbonyl group, and thus it is more likely to facilitate the proton delivery[15]. Besides, the substrate cineole was also proposed to contribute to proton delivery[16]. However, another experiment showed that mass coupling is still obtained in the absence of the ethereal oxygen atom, suggesting this ethereal oxygen does not play a significant role in proton transfer[14]. In addition, for Glu356 though lacking of both mutant experimental results and hydrogen bond networks connecting to the protein surface, the channel involving this residue has also to be considered.

    According to the previous work reported above, both Asp241 and Glu356 channels could be respon- sible for proton delivery leading to the formation of Cpd I in P450cin. In this work, we report combined MD and QM/MM studies for the first proton transfer to ferric peroxo complex that leads to the formation of Cpd 0 in the wild-type P450cin and related mutation. The possible proton transfer channels related to Asp241 and Glu356 will be presented. Our results provide a detailed mechanism of the first proton delivery and reveal the important roles of the active species or residues. These results can enrich the oxygen activation mechanism for P450s.

    2 COMPUTATION METHODS AND DETAILS

    The initial structure of the reduced hemecomplex was taken from the X-ray structure of P450cin-NO (PDB code 4FYZ)[15]. Chain B with definite occupancy was used in our model, from which the polyethylene glycol was removed and the axial NO ligand was replaced by O2. The protonation states of titratable residues (His, Glu, Asp) were designed on the basis of pKa values from PROPKA calcula- tions[17]as well as careful visual inspection of their local chemical environment. Histidine residues were dealt with three manners, including doubly proto- nated (52, 98, 267, 351, 391), or singly protonated at N(16, 342, 345), or protonated at N(18, 28, 176, 193, 337). Glutamic acid residues (32, 47, 85, 134, 178, 182, 225, 294, 356, 363, 370, 378, 404) and Aspartic acid residues (127, 241) were protonated. The generated neutral protein was immersed with a 16 ? layer of water molecules, yielding a total of ca. 8300 water molecules in the protein model. Afterwards, a classical MD run was performed for 2 ns using the CHARMM36 force fields[18-20]as implemented in the CHARMM program[21].

    In addition to O2-coordinated simplified porphyrin and substrate cineole, some relevant amino acid side chains and water molecules were also included in the QM region. In details, Asp241, Asn242, Tyr81 and Wat612 were included in the Asp241 channel, while Glu356, Thr243 and Wat636 were contained in the Glu356 channel. During QM/MM geometry optimizations, atoms within 8 ? of the QM region were defined as the active region, and the rest was kept frozen.

    The QM/MM calculations were performed with ChemShell[22, 23], combining Turbomole[24]for the QM part, DL_POLY[25]with CHARMM36 force field for the MM part, and HDLC optimizer[26]for geometry optimizations. The electronic embedding scheme[27]was adopted to explain the polarizing effect of the enzyme environment on the QM region. The QM/MM boundary was treated through hydro- gen link atoms with the charge shift model[22, 23]. In QM/MM geometry optimizations, the QM region was calculated by the hybrid UB3LYP[28]functional with two basis sets. For geometry optimization, a combined basis set including def2-TZVP for iron and def2-SVP for other atoms was used. The energies were further corrected with the large basis set def2-TZVP. All QM/MM geometry optimizations were carried out on the doublet state.

    3 RESULTS AND DISCUSSION

    PROPKA calculations show the pKa values of Asp241 and Glu356 are 6.84 and 8.15, implying that these two residues are likely to be protonated under physiological conditions. Thus, two proton transfer channels including these two residues are explored in our present study. In the Asp241 channel, proton could be transferred to distal oxygen atom of the bound O2of ferric peroxo complex via Asn242 and/or the crystal water Wat612, while the Glu356 may deliver proton through a network containing crystal water Wat636, Thr243 and the nearby residues (Fig. 1).

    Fig. 1. Two possible proton channels of P450cin. The Asp241, Glu356 and nearby residues are highlighted

    3. 1 Asp241 channel

    Proton transfer in the Asp241 channel involves three steps: protonating distal oxygen atom of ferric peroxo by Asn242, protonating the deprotonated Asn242 by Asp241, and reprotonating Asp241 via water channels from bulk solvent as suggested by Yarrow Madrona[10]. As there are many possibilities for reprotonating Asp241 from bulk solvent, we here only explore the previous two steps involved in Asp241 channel. The calculated potential energy surface and the optimized geometries of key species for the protonation involving Asp241 channel are shown in Figs. 2 and 3, respectively. As discussed above, the first step in Asp241 channel is the proto- nation of ferric peroxo center with the proton coming from NH2group of Asn242. Before this proton transfer occurs, the Fe(III)O2-group of RC undergoes an internal rotation along the Fe–Opbond to make the distal oxygen Odof Fe(III)O2-group getting close to the HD22 of Asn242. The rotation transition state TSa1 only has a tiny barrier of 0.4 kcal/mol, mainly due to the large space for rotation and the electrostatic interaction between Odand HD22. The resulted species ICa1 thus has a short Op–HD22 distance of 1.49 ?, which is similar to the geometry character of the conserved Thr252 and ferric peroxo in the P450cam crystal structure[6].Subsequently, the proton of HD22 of Asn242 transfers to the distal oxygen Odyielding interme- diate ICb1, of which Cpd 0 has been generated. This step is exothermic by 11.5 kcal/mol without any barrier. The barrierless process may be owing to the strong electrostatic interaction produced by the short distance of HD22 and distal oxygen. This process accords with the proton transfer of Thr252 in P450cam[29]and the proton transfer of DEB 5-OH group in P450eryF[8]. The high activity of RC explains why the super oxo species of P450cin is difficult to trap experimentally[15].

    The deprotonated residue Asn242 could abstract a proton from nearby residue Asp241 or, alternatively, from the crystal water Wat612 in the vicinity. As shown in Fig. 3, in ICb1 the distance between the terminal proton HD2 of Asp241 and ND2 of Asn242 is 6.40 ?, which is too far for direct proton transfer. Therefore, the side chain rotation of Asp242 and Asp241 is required. In this transformation, the acid side chain of Asp241 rotates via transition state TSc1 with a barrier of 11.8 kcal/mol. The generation of ICc1 is endothermic by 4.4 kcal/mol. It is noteworthy that the orientation of the side chain of Asp241 in ICc1 is quite similar to the Asp251 in P450cam[29, 30]. Subsequently, the side chain of Asn242 in ICc1 also undergoes an internal rotation along the CB–CG bond toward the proton source Asp241 to shorten the distance of HD2–ND2. As a result, the proton transfer from Asp241 to Asn242 then occurs via transition state TSd1 to generate ICd1. This step is exothermic by 24.0 kcal/mol with a small barrier of 6.8 kcal/mol. As such, from ICc1 to ICd1, Asn242 directly accepts the proton from Asp241 without crystal water Wat612 in the proton shuttle network[11].

    Fig. 2. QM/MM relative energies (kcal/mol) for the first proton transfer via Asp241 channel

    Fig. 3. Geometries and bond distances (?) of key residues

    Another possible pathway to deliver the proton from Asp241 to the deprotonated Asn242 is with the assistance of Wat612. All attempts to find energy feasible pathway involving proton transfer from Wat612 to the deprotonated NH group of Asn242 failed as the calculated barriers were quite high, ca. 26.1 kcal/mol. However, interestingly, as shown in Fig. 2, we found an alternative pathway in which the hydrogen HD2 of Asp241 is transferred to OD1 rather than the ND2 of Asn242 via Wat612. The corresponding transition state TSd1 only has a much small energy barrier of 1.6 kcal/mol. Although the resulting species ICd2 is less stable than IC1d by 9.4 kcal/mol, it is still possible to be involved in the second proton delivery as suggested by Kim et al[31]. The classical MD simulation results in Fig. 4 show that Wat612 is held by hydrogen bonds constituted by Asp241, Asn242, Tyr81 and substrate, and does not escape from the protein pocket during the 2ns simulation. As such, the crystal water Wat612 is possible to serve as a node in the hydrogen bond network by transferring proton from Asp241 to Asn242.

    Fig. 4. H-bonds of Wat612 of MD simulations

    3. 2 Glu356 channel

    The proton transfer from Glu356 was also investigated because similar channel has been reported in P450cam[30]and P450eryF[8]. As shown in Fig. 5, the Glu356 could deliver proton through the hydrogen bond network formed by Wat636 and Thr243. No additional water was found to enter the space between Thr243 and ferric peroxo group during the 2 ns MD simulation. As such, the distance between HG1 of Thr243 and Odis 6.6 ?, which is much longer than the distances between the distal oxygen atom and the Thr252 in P450cam[30](1.923 ?) or the WatA in P450eryF[8](3.35 ?). To locate the proton transfer from the HG1 of Thr243 to the distal oxygen Od, we performed the potential energy surface scan by shortening the distance between Fe(III)O2-and Thr243. The calculated results lead to the breaking of Fe–Op bond and the dissociation of O2(Fig. 5a). Therefore, proton transfers direct from Thr243 to ferric peroxo group is impossible. Alternatively, we attempted to find the pathway in which the proton transfer from Thr243 to ferric peroxo group is mediated by the carboxyl group of the backbone of Gly238 in vicinity. However, even the barrier for HG1 transferring from Thr243 to carboxyl group of Gly238 is 16.1 kcal/mol (Fig. 5b), the distance between protonated Gly238 and Odof ferric peroxo group is about 4.7 ?, which is too far to accomplish the subsequent proton transfer. To sum up, the Glu356 channel is failed to deliver proton to ferric peroxo group, because Glu356 is far away from the distal oxygen atom of Fe(III)O2-and there are neither appropriate residues nor additional waters that could cooperate with Glu356 to deliver proton. These findings are consistent with the results from P450cin mutation experiments in which replacing Glu356 with other residues leads to the coupling efficiency unchanged.

    (a)

    (b)

    Fig. 5. (a) Potential energy surface scan of HG1-Odbond, (b) Proton transfer of HG1 to Gly238. The distances are given in ? and the energies in kcal/mol

    3. 3 Discussion

    In the whole process, the hydrogen bond network plays a significant role in proton transfer. A strong hydrogen bond between Wat612 and oxygen of cineole was also found as the hydrogen bond length ranging from 1.72 to 2.19?. As shown in Figs. 3 and 4, Wat612 is sustained by hydrogen bond networks interacted by Tyr81, Asp241 and Asn242. In addition, in most intermediates there is an hydrogen bond between HD21 of Asn242 and oxygen of substrate ranging from 2.17 to 2.70 ?, which is in consistence with crystal structure[32].Moreover, it should be noted that the conformation of the substrate maintained by the hydrogen bond network may contribute to the regio- and stereo- selectivity in the subsequent oxidation reactions catalyzed by Cpd I generated after O2activation.

    Fig. 6. Hydrogen bond networks of (a) Asn242Ala and (b) Asn242Thr

    According to the above results, we found that residue Asn242 has two significant roles in the proton delivery. Firstly, Asn242 is the nearest residue with respect to the Fe porphyrin. The distances of HD22Asn242and the distal oxygen of ferric peroxo complex are in the range of 2.5~3.5 ? (MD results), which leads to a low barrier of proton transfer as discussed before (Fig. 2). Secondly, Asn242 could form strong hydrogen bonds with cineole (CNL) and Wat612 as the distances of ND2Asn242···OCNL, Wat612···OD1Asn242and Wat612···OCNLare about 2.42, 1.67 and 1.92 ?, respectively. The hydrogen bond networks support a stable geometry and include additional water for proton transfer. Thus, Asn242 is indispensable for the proton transfer. The oxygen atom of cineole is fixed by Asn242 and Wat612, and thus cineole loses the activity of proton transfer. This is consistent with experimental results that replacement of the cineole with no ethereal oxygen has no obvious changes in reaction rate and coupling efficient[14]. Therefore, cineole does not play a key role in proton delivery process. The crystal structure of substrate-free P450cin indicated that Gly238 forms a hydrogen bond chain that lies close to the Fe center, thus Gly238 may contribute to the O2activation. However, the hydrogen bonding chain formed by Gly238 does not exist in the present study, because of the missing crystal waters around the active area. All attempts to locate the proton transfer from Gly238 for O2activation failed. Compared with wide type of P450cin, the mutants Asn242Thr and Asn24Ala have a larger space around the substrate and flexible hydrogen bond networks (Fig. 6). Thus, the increased freedom of the substrate would decrease the regio-selectivity of C–H bond activa- tion, which is also in consistence with experimental findings[14].

    4 CONCLUSION

    P450cin has two distinct hydrogen bond networks involving Asp251 and Glu356 that are capable of shuttling protons for O2activation. In the Asp241 channel, the Asp241 residue has a direct access to bulky water and thus can be easily reprotonated. The first proton transfer from Asp241 to distal oxygen proceeds via Asn242 to produce the Cpd 0 species. It was found that Asn242 is indispensable among proton delivery process, since this residue is an important proton bridge in the first proton delivery from Asn241 to ferric peroxo center. In the proton transfer from Asp241 to Asn242, two possible pathways are found. One involves direct proton transfer to form species ICd1, whereas the other forms ICd2 via Wat612. MD results show Wat612 plays a significant role for the latter process. In comparison, the Glu356 channel lacks the connectivity with bulky water, which casts doubt on the feasibility of the requisite reprotonation of Glu356. Moreover, our calculation shows that it is difficult to transmit proton from Glu356 to the ferric peroxo center. Our work presents a detailed mecha- nism of the first proton transfer for the O2activation of P450cin, which has shown distinct characters as compared with P450cam. This new mechanism may provide new insights for understanding the proton transfer for similar P450 enzymes. The second proton-transfer step is under investigation.

    (1) Ortiz de Montellano, P. R.3rd ed. Kluwer Academic/Plenum Publisher: New York 2005, p1-24.

    (2) Meunier, B.; de Visser, S. P.; Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes.2004, 104, 3947-3980.

    (3) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes.2005, 105, 2279-2328.

    (4) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations.2010, 110, 949-1017.

    (5) Yamazaki, H. Springer Japan: Tokyo2014, p132.

    (6) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, B. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. The catalytic pathway of cytochrome P450cam at atomic resolution.2000, 287, 1615-1622.

    (7) Nebert, D. W.; Nelson, D. R.; Coon, M. J.; Estabrook, R. W.; Feyereisen, R.; Fujiikuriyama, Y.; Gonzalez, F. J.; Guengerich, F. P.; Gunsalus, I. C.; Johnson, E. F.; Loper, J. C.; Sato, R.; Waterman, M. R.; Waxman, D. J. The P450 superfamily-update on newsequences, gene-mapping, and recommended nomenclatrue.1991, 10, 1-14.

    (8) Sen, K.; Thiel, W. Role of two alternate water networks in compound I formation in P450eryF.2014, 118, 2810-2820.

    (9) Hawkes, D. B.; Adams, G. W.; Burlingame, A. L.; de Montellano, P. R. O.; De Voss, J. J. Cytochrome P450cin(CYP176A), isolation, expression, and characterization.2002, 277, 27725-27732.

    (10) Madrona, Y.; Hollingsworth, S. A.; Khan, B.; Poulos, T. L. P450cin active site water: implications for substrate binding and solvent accessibility.2013, 52, 5039-5050.

    (11) Stok, J. E.; Yamada, S.; Farlow, A. J.; Slessor, K. E.; De Voss, J. J. Cytochrome P450cin(CYP176A1) D241N: investigating the role of the conserved acid in the active site of cytochrome P450s.2013, 1834, 688-696.

    (12) Gerber, N. C.; Sligar, S. G. Catalytic mechanism of cytochrome-P-450-evidence for a distal charge relay.1992, 114, 8742-8743.

    (13) Gerber, N. C.; Sligar, S. G. A role for Asp-251 in cytochrome P-450cam oxygen activation.1994, 269, 4260-4266.

    (14) Slessor, K. E.; Farlow, A. J.; Cavaignac, S. M.; Stok, J. E.; De Voss, J. J. Oxygen activation by P450cin: protein and substrate mutagenesis.2011, 507, 154-162.

    (15) Madrona, Y.; Tripathi, S.; Li, H. Y.; Poulos, T. L. Crystal structures of substrate-free and nitrosyl cytochrome P450cin: implications for O2activation.2012, 51, 6623-6631.

    (16) Meharenna, Y. T.; Li, H. Y.; Hawkes, D. B.; Pearson, A. G.; De Voss, J.; Poulos, T. L. Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam.2004, 43, 9487-9494.

    (17) Olsson, M. H. M.; Sondergaard, C. R.; Rostkowski, M.; Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pK(a) predictions.2011, 7, 525-537.

    (18) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles.2012, 8, 3257-3273.

    (19) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins.1998, 102, 3586-3616.

    (20) Mackerell, A. D.; Feig, M.; Brooks, C. L. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.2004, 25, 1400-1415.

    (21) Brooks, B. R.; Brooks III, C. L.; Mackerell, A. D. Jr.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M. CHARMM: the biomolecular simulation program.2009, 30, 1545-1614.

    (22) Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz, C. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis.2003, 632, 1-28.

    (23) Metz, S.; K?stner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P. ChemShell-a modular software package for QM/MM simulations.2014, 4, 101-110.

    (24) Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Electronic-structure calculations on workstation computers - the program system turbomole.1989, 162, 165-169.

    (25) Smith, W.; Forester, T. R. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package.1996, 14, 136-141.

    (26) Billeter, S. R.; Turner, A. J.; Thiel, W. Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates.2000, 2, 2177-2186.

    (27) Bakowies, D.; Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches.1996, 100, 10580-10594.

    (28) Becke, A. D. Density-functional thermichemistry. 3. The role of exact exchange.1993, 98, 5648-5652.

    (29) Wang, D. Q.; Zheng, J. J.; Shaik, S.; Thiel, W. Quantum and molecular mechanical study of the first proton transfer in the catalytic cycle of cytochrome P450cam and its mutant D251N.2008, 112, 5126-5138.

    (30) Zheng, J. J.; Wang, D. Q.; Thiel, W.; Shaik, S. QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam.2006, 128, 13204-13215.

    (31) Kim, D.; Heo, Y. S.; Ortiz de Montellano, P. R. Efficient catalytic turnover of cytochrome P450camis supported by a T252N mutation.2008, 474, 150-156.

    (32) Meharenna, Y. T.; Slessor, K. E.; Cavaignac, S. M.; Poulos, T. L.; De Voss, J. J. The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in P450cin.2008, 283, 10804-10812.

    28 February 2018;

    11 June 2018

    ①This project was supported by the National Natural Science Foundation of China (No. 21573237, 21603227, 21403242, 21703246) and the Natural Science Foundation of Fujian Province (2017J05032)

    . Male, born in 1978, professor, majoring in theoretical chemistry. E-mail: chunsen.li@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-2029

    啦啦啦免费观看视频1| 一级毛片精品| 老司机午夜十八禁免费视频| 亚洲一区高清亚洲精品| 三级毛片av免费| 国产精品美女特级片免费视频播放器 | 51午夜福利影视在线观看| 99国产精品一区二区蜜桃av| 欧美日韩亚洲国产一区二区在线观看| 成人高潮视频无遮挡免费网站| 波多野结衣高清无吗| 免费高清视频大片| 久久性视频一级片| 精品国产乱子伦一区二区三区| 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 51午夜福利影视在线观看| 国产69精品久久久久777片 | 岛国在线免费视频观看| 老司机福利观看| 国产成+人综合+亚洲专区| 国产三级中文精品| 偷拍熟女少妇极品色| 可以在线观看的亚洲视频| 91老司机精品| 女同久久另类99精品国产91| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| 久久伊人香网站| 欧美精品啪啪一区二区三区| 精华霜和精华液先用哪个| 色综合站精品国产| xxxwww97欧美| 国产午夜精品论理片| 一进一出抽搐gif免费好疼| 美女高潮喷水抽搐中文字幕| 青草久久国产| 亚洲欧洲精品一区二区精品久久久| 国产精品乱码一区二三区的特点| 亚洲美女视频黄频| 日韩高清综合在线| 九色国产91popny在线| 三级男女做爰猛烈吃奶摸视频| 最新中文字幕久久久久 | 日韩大尺度精品在线看网址| 午夜福利高清视频| 嫩草影院精品99| 国产成人一区二区三区免费视频网站| 亚洲av中文字字幕乱码综合| 亚洲精品一区av在线观看| 亚洲国产欧美人成| 桃色一区二区三区在线观看| 亚洲av成人一区二区三| 久久人人精品亚洲av| 黄色视频,在线免费观看| 午夜激情福利司机影院| 搡老熟女国产l中国老女人| 一区二区三区高清视频在线| 琪琪午夜伦伦电影理论片6080| 后天国语完整版免费观看| 国产成人av激情在线播放| 欧美三级亚洲精品| 视频区欧美日本亚洲| 18禁黄网站禁片午夜丰满| 窝窝影院91人妻| 日韩欧美 国产精品| 亚洲精品美女久久av网站| 欧美日韩福利视频一区二区| 中文资源天堂在线| 一级a爱片免费观看的视频| 欧美性猛交╳xxx乱大交人| 免费在线观看亚洲国产| 亚洲自偷自拍图片 自拍| 久久国产乱子伦精品免费另类| 国产精品女同一区二区软件 | 啦啦啦免费观看视频1| 香蕉丝袜av| 欧美3d第一页| 免费无遮挡裸体视频| 亚洲片人在线观看| 毛片女人毛片| 色综合婷婷激情| 日韩欧美国产一区二区入口| 91久久精品国产一区二区成人 | 成人一区二区视频在线观看| 18禁观看日本| 嫩草影院精品99| 国产精品亚洲av一区麻豆| 无限看片的www在线观看| 美女大奶头视频| 日日干狠狠操夜夜爽| 人妻久久中文字幕网| 老司机在亚洲福利影院| 99精品欧美一区二区三区四区| 青草久久国产| 国产欧美日韩精品一区二区| 精品久久久久久,| 两个人视频免费观看高清| 亚洲国产精品久久男人天堂| 99久久久亚洲精品蜜臀av| 亚洲精品国产精品久久久不卡| bbb黄色大片| 日韩欧美在线乱码| 婷婷六月久久综合丁香| 久9热在线精品视频| 国产成人精品久久二区二区免费| av国产免费在线观看| 国产黄色小视频在线观看| 国产激情久久老熟女| 一二三四在线观看免费中文在| 91麻豆精品激情在线观看国产| 青草久久国产| 国产av麻豆久久久久久久| 波多野结衣高清无吗| 国产黄色小视频在线观看| 国产三级黄色录像| 亚洲人与动物交配视频| 757午夜福利合集在线观看| 在线观看一区二区三区| 亚洲欧美日韩高清专用| 免费看光身美女| 久久婷婷人人爽人人干人人爱| 黄片大片在线免费观看| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 美女cb高潮喷水在线观看 | 国产一区二区激情短视频| 国产视频内射| 日韩中文字幕欧美一区二区| 亚洲狠狠婷婷综合久久图片| 法律面前人人平等表现在哪些方面| 久久香蕉精品热| 国产一区二区激情短视频| 首页视频小说图片口味搜索| 天堂av国产一区二区熟女人妻| 最新在线观看一区二区三区| 五月玫瑰六月丁香| 久久精品影院6| 精品久久久久久久末码| 日本撒尿小便嘘嘘汇集6| 最近最新中文字幕大全电影3| 人妻丰满熟妇av一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲国产欧美网| 成人三级做爰电影| 亚洲专区字幕在线| 国产精品久久久av美女十八| 美女高潮喷水抽搐中文字幕| 香蕉国产在线看| 午夜成年电影在线免费观看| av天堂中文字幕网| 欧美日韩国产亚洲二区| 男女下面进入的视频免费午夜| or卡值多少钱| 欧美极品一区二区三区四区| 99国产精品99久久久久| 亚洲欧美日韩无卡精品| 中亚洲国语对白在线视频| 久久久久精品国产欧美久久久| 国产亚洲精品久久久久久毛片| 美女黄网站色视频| 国内精品久久久久久久电影| 国内精品一区二区在线观看| 99精品欧美一区二区三区四区| 毛片女人毛片| 国产熟女xx| 人人妻,人人澡人人爽秒播| 偷拍熟女少妇极品色| 欧美3d第一页| 一级黄色大片毛片| 色综合站精品国产| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 久久精品国产99精品国产亚洲性色| 欧美乱码精品一区二区三区| 草草在线视频免费看| www.www免费av| 人妻丰满熟妇av一区二区三区| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 亚洲欧美日韩高清在线视频| 亚洲自拍偷在线| 久久久久久久精品吃奶| 精品国产乱子伦一区二区三区| 日韩人妻高清精品专区| 搡老妇女老女人老熟妇| 精品久久久久久久久久免费视频| 亚洲精品在线观看二区| 国模一区二区三区四区视频 | 在线观看日韩欧美| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜| 禁无遮挡网站| 欧美乱色亚洲激情| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 成人国产综合亚洲| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| 亚洲最大成人中文| 深夜精品福利| 色综合欧美亚洲国产小说| 午夜两性在线视频| 免费大片18禁| 日韩大尺度精品在线看网址| 国产又色又爽无遮挡免费看| 国产一区二区三区在线臀色熟女| 国内毛片毛片毛片毛片毛片| 久久精品人妻少妇| 丁香六月欧美| 日韩中文字幕欧美一区二区| 久久99热这里只有精品18| 精品免费久久久久久久清纯| 一进一出抽搐动态| 亚洲男人的天堂狠狠| 午夜成年电影在线免费观看| 女人被狂操c到高潮| 国产日本99.免费观看| 99久久精品国产亚洲精品| 成熟少妇高潮喷水视频| 久久午夜综合久久蜜桃| 国产亚洲精品综合一区在线观看| 日本熟妇午夜| 亚洲成人久久性| 亚洲成人中文字幕在线播放| 黄片小视频在线播放| 90打野战视频偷拍视频| 国产成人av教育| 成人国产综合亚洲| 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式 | 免费av毛片视频| 成人av在线播放网站| www日本在线高清视频| 亚洲av免费在线观看| 国产视频内射| 两个人的视频大全免费| 亚洲国产欧美一区二区综合| 黑人操中国人逼视频| 久久久成人免费电影| 午夜激情欧美在线| 动漫黄色视频在线观看| 91久久精品国产一区二区成人 | 日本熟妇午夜| 国产一区二区三区在线臀色熟女| 国产探花在线观看一区二区| 日韩欧美一区二区三区在线观看| 最新在线观看一区二区三区| 精品电影一区二区在线| 一本久久中文字幕| 国产精品国产高清国产av| 亚洲,欧美精品.| 亚洲精品456在线播放app | 亚洲av成人av| 18禁黄网站禁片午夜丰满| 亚洲最大成人中文| 成在线人永久免费视频| 国产探花在线观看一区二区| 免费av毛片视频| 亚洲一区高清亚洲精品| www.自偷自拍.com| 一本一本综合久久| 久久香蕉精品热| 一个人免费在线观看电影 | 少妇裸体淫交视频免费看高清| 香蕉丝袜av| 亚洲欧美精品综合久久99| 1000部很黄的大片| 性色avwww在线观看| 国产精品99久久久久久久久| 欧美一区二区国产精品久久精品| 观看免费一级毛片| 黄色女人牲交| 99久久综合精品五月天人人| 亚洲精品在线观看二区| 国产成人aa在线观看| 亚洲欧美精品综合一区二区三区| 国产黄色小视频在线观看| 怎么达到女性高潮| 深夜精品福利| 观看免费一级毛片| 精品国产美女av久久久久小说| e午夜精品久久久久久久| 午夜福利在线观看免费完整高清在 | 又黄又粗又硬又大视频| 色综合站精品国产| 精品一区二区三区av网在线观看| 99久久精品热视频| 国产精品久久电影中文字幕| 最好的美女福利视频网| 久久九九热精品免费| 欧美激情久久久久久爽电影| 免费大片18禁| 欧美乱码精品一区二区三区| 久久久久久大精品| 成人一区二区视频在线观看| 黄色日韩在线| 男人舔奶头视频| 久久久精品欧美日韩精品| 一进一出抽搐动态| 夜夜躁狠狠躁天天躁| 黄色日韩在线| 99re在线观看精品视频| 久久中文字幕人妻熟女| 国内精品久久久久久久电影| 国产伦在线观看视频一区| 久久久国产欧美日韩av| 亚洲九九香蕉| 国产成人欧美在线观看| 在线十欧美十亚洲十日本专区| 在线观看一区二区三区| 亚洲国产欧美一区二区综合| 久久人妻av系列| 三级男女做爰猛烈吃奶摸视频| 97人妻精品一区二区三区麻豆| 国产97色在线日韩免费| 日日夜夜操网爽| 久久欧美精品欧美久久欧美| 国产一区二区三区在线臀色熟女| 欧美色欧美亚洲另类二区| 麻豆一二三区av精品| 日韩人妻高清精品专区| 成年女人永久免费观看视频| 在线观看免费午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 又黄又爽又免费观看的视频| www日本黄色视频网| 精品久久久久久久末码| 中文在线观看免费www的网站| 亚洲一区二区三区色噜噜| 国产高清视频在线观看网站| 欧美成狂野欧美在线观看| 最新美女视频免费是黄的| 三级男女做爰猛烈吃奶摸视频| 丰满的人妻完整版| 欧美在线一区亚洲| 亚洲国产中文字幕在线视频| 国产视频一区二区在线看| 岛国视频午夜一区免费看| 在线观看免费午夜福利视频| 91在线观看av| 一a级毛片在线观看| 岛国在线免费视频观看| 欧美国产日韩亚洲一区| 成年版毛片免费区| 亚洲,欧美精品.| 国产成人av教育| 国产伦一二天堂av在线观看| 九九久久精品国产亚洲av麻豆 | 久久久久国产一级毛片高清牌| 亚洲av五月六月丁香网| 他把我摸到了高潮在线观看| 给我免费播放毛片高清在线观看| 99国产精品99久久久久| 中文字幕人成人乱码亚洲影| 99久久无色码亚洲精品果冻| 亚洲av成人精品一区久久| av天堂在线播放| 18禁美女被吸乳视频| 国产激情久久老熟女| www日本在线高清视频| 少妇人妻一区二区三区视频| 亚洲欧美一区二区三区黑人| 日韩欧美在线二视频| 亚洲成人免费电影在线观看| 18禁国产床啪视频网站| 久久性视频一级片| 亚洲在线观看片| 夜夜看夜夜爽夜夜摸| 国产精品免费一区二区三区在线| 性色av乱码一区二区三区2| 欧美黑人巨大hd| 在线看三级毛片| 脱女人内裤的视频| 国语自产精品视频在线第100页| 亚洲欧美日韩无卡精品| 床上黄色一级片| 中文字幕精品亚洲无线码一区| 精品久久久久久久人妻蜜臀av| 亚洲精品在线美女| 久久国产乱子伦精品免费另类| 天堂√8在线中文| 午夜免费激情av| 欧美一级a爱片免费观看看| 此物有八面人人有两片| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频| 男女做爰动态图高潮gif福利片| 女警被强在线播放| 成人国产综合亚洲| 美女黄网站色视频| 国产美女午夜福利| 91九色精品人成在线观看| 久久天堂一区二区三区四区| 禁无遮挡网站| 欧美激情久久久久久爽电影| 露出奶头的视频| 久久国产精品人妻蜜桃| 美女大奶头视频| 99久久国产精品久久久| 国产毛片a区久久久久| 国产精品乱码一区二三区的特点| 18禁国产床啪视频网站| 久久精品国产99精品国产亚洲性色| 日韩人妻高清精品专区| 给我免费播放毛片高清在线观看| 一个人看的www免费观看视频| 亚洲狠狠婷婷综合久久图片| 国产在线精品亚洲第一网站| 国产精品久久久人人做人人爽| 国产亚洲欧美98| 国产高清视频在线播放一区| 青草久久国产| 在线a可以看的网站| av视频在线观看入口| 在线观看舔阴道视频| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 一级a爱片免费观看的视频| 亚洲黑人精品在线| 黑人操中国人逼视频| 女生性感内裤真人,穿戴方法视频| 丰满人妻熟妇乱又伦精品不卡| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 亚洲欧美精品综合一区二区三区| 国产成人精品无人区| 国产伦在线观看视频一区| 国产高清视频在线观看网站| www.熟女人妻精品国产| 91av网一区二区| 99热6这里只有精品| 亚洲成人久久性| 一边摸一边抽搐一进一小说| 日韩精品中文字幕看吧| 中文字幕熟女人妻在线| 脱女人内裤的视频| 国产高清视频在线观看网站| 国产 一区 欧美 日韩| av欧美777| 女人被狂操c到高潮| 亚洲 欧美一区二区三区| 国产精品影院久久| 日本一二三区视频观看| 久久久久免费精品人妻一区二区| 五月伊人婷婷丁香| 黄色片一级片一级黄色片| 国产精品1区2区在线观看.| 国产精品自产拍在线观看55亚洲| 亚洲av成人精品一区久久| 一区福利在线观看| 桃色一区二区三区在线观看| 在线a可以看的网站| 天天添夜夜摸| 精品久久久久久久久久免费视频| 在线视频色国产色| 欧美日韩一级在线毛片| 免费av不卡在线播放| 国产精品av久久久久免费| 男女那种视频在线观看| 日韩欧美精品v在线| 欧美乱妇无乱码| 欧美日韩瑟瑟在线播放| 亚洲无线在线观看| 天堂影院成人在线观看| 午夜福利18| 国产精品美女特级片免费视频播放器 | 久久精品亚洲精品国产色婷小说| 哪里可以看免费的av片| 一卡2卡三卡四卡精品乱码亚洲| 两个人的视频大全免费| 99riav亚洲国产免费| 国内精品一区二区在线观看| 露出奶头的视频| 中文在线观看免费www的网站| 国产一区二区在线观看日韩 | 亚洲欧美一区二区三区黑人| 国产亚洲精品综合一区在线观看| 美女高潮喷水抽搐中文字幕| 99久久综合精品五月天人人| 亚洲av成人不卡在线观看播放网| 久久久久国内视频| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| 看免费av毛片| 免费电影在线观看免费观看| 亚洲国产中文字幕在线视频| 此物有八面人人有两片| 午夜精品在线福利| 又黄又爽又免费观看的视频| 成在线人永久免费视频| 亚洲在线观看片| 国产精品av视频在线免费观看| 黄色片一级片一级黄色片| 熟女电影av网| 免费看美女性在线毛片视频| 免费观看精品视频网站| 18禁黄网站禁片免费观看直播| 中文字幕精品亚洲无线码一区| 国产一级毛片七仙女欲春2| 亚洲国产欧美一区二区综合| 一个人看视频在线观看www免费 | 俄罗斯特黄特色一大片| 一本精品99久久精品77| 18禁黄网站禁片免费观看直播| 两人在一起打扑克的视频| 999精品在线视频| a在线观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看电影 | 99在线人妻在线中文字幕| 国产高清videossex| 亚洲欧美日韩无卡精品| bbb黄色大片| 亚洲成人久久性| 黄片大片在线免费观看| 91在线观看av| 国产av不卡久久| xxx96com| 九九久久精品国产亚洲av麻豆 | 成人永久免费在线观看视频| 日本精品一区二区三区蜜桃| 国产精品永久免费网站| 美女大奶头视频| 在线看三级毛片| 此物有八面人人有两片| 女警被强在线播放| 亚洲精品在线美女| 久久天躁狠狠躁夜夜2o2o| 99久久99久久久精品蜜桃| 免费高清视频大片| 亚洲天堂国产精品一区在线| 午夜a级毛片| 狂野欧美激情性xxxx| 国内少妇人妻偷人精品xxx网站 | 女同久久另类99精品国产91| 天天躁日日操中文字幕| 久久久久免费精品人妻一区二区| 亚洲精品国产精品久久久不卡| 国产 一区 欧美 日韩| 黄色女人牲交| 欧美丝袜亚洲另类 | 美女大奶头视频| 亚洲欧美激情综合另类| 亚洲真实伦在线观看| 成人av在线播放网站| 免费在线观看影片大全网站| 黄片大片在线免费观看| 白带黄色成豆腐渣| 日本免费a在线| 亚洲人成网站高清观看| 免费av毛片视频| 蜜桃久久精品国产亚洲av| 少妇丰满av| 99久久综合精品五月天人人| 97人妻精品一区二区三区麻豆| 首页视频小说图片口味搜索| 在线视频色国产色| 精品午夜福利视频在线观看一区| 99国产极品粉嫩在线观看| 精品熟女少妇八av免费久了| 亚洲av成人不卡在线观看播放网| aaaaa片日本免费| 国产三级中文精品| 99热6这里只有精品| 午夜影院日韩av| 久久久国产成人精品二区| 国产三级在线视频| 99久久国产精品久久久| 男人舔女人的私密视频| 99精品久久久久人妻精品| 精品电影一区二区在线| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 美女 人体艺术 gogo| 嫩草影视91久久| 99久久国产精品久久久| 亚洲真实伦在线观看| 欧美成人免费av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| 午夜a级毛片| 国产aⅴ精品一区二区三区波| 亚洲18禁久久av| 人人妻人人看人人澡| 观看美女的网站| 岛国在线观看网站| 69av精品久久久久久| 国产黄片美女视频| 久久精品91无色码中文字幕| 欧美日韩综合久久久久久 | 香蕉丝袜av| 免费无遮挡裸体视频| 国产亚洲av嫩草精品影院| 999精品在线视频| 久久这里只有精品19| 国产av在哪里看| 人妻久久中文字幕网| 国产91精品成人一区二区三区| 久久国产精品人妻蜜桃| 亚洲熟妇熟女久久| 国产伦一二天堂av在线观看| 99久久无色码亚洲精品果冻| 国产精品久久久久久久电影 | 麻豆成人午夜福利视频| 波多野结衣高清无吗| 精品久久蜜臀av无| 在线观看一区二区三区| 日韩欧美国产在线观看| 国产午夜精品久久久久久| 国产午夜精品论理片| 亚洲av熟女| 欧美日韩综合久久久久久 | 国产成人影院久久av|