• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QM/MM and MD Studies of the First Proton Transfer for O2 Activation in the Catalytic Cycle of Cytochrome P450cin①

    2019-01-05 09:34:30LIUFengJioSONGJinShuiLUQinQinWEIJingZHANGMinYiHUANGJingLIChunSen
    結(jié)構(gòu)化學(xué) 2018年12期

    LIU Feng-Jio SONG Jin-Shui LU Qin-Qin WEI Jing ZHANG Min-Yi HUANG Jing LI Chun-Sen

    ?

    QM/MM and MD Studies of the First Proton Transfer for O2Activation in the Catalytic Cycle of Cytochrome P450cin①

    LIU Feng-Jiaoa, bSONG Jin-Shuaia, cLU Qian-Qiana, cWEI JingaZHANG Min-Yia, cHUANG JingaLI Chun-Sena, c②

    a(350002)b(100049)c(361005)

    P450cin (CYP176A1) isolated fromis a biodegradation enzyme that catalyzes the enantiospecific conversion of 1,8-cineole to (1R)-6-hydroxycineole. In many P450 family members the mechanism of proton delivery for O2activation is proposed to require a conserved acid-alcohol dyad in the active area, while P450cin has no such residue with alcohol but asparagine instead. In the present work, the mechanism of the first proton transfer of O2activation in P450cin has been investigated by molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) techniques. The MD simulation suggests there are two hydrogen bonding networks around the active site, one involving Asp241 and the other involving Glu356. According to our MD and QM/MM calculations, this Asp241 channel is proposed to be the energy accessible. MD results show that the hydrogen bonds around the substrate may contribute to regio- and stereo-oxidation of the substrate.

    P450cin, CYP176A1, QM/MM, proton transfer;

    1 INTRODUCTION

    The cytochromes P450 constitute a superfamily of heme-containing monooxygenases which perform various biochemical transformations, such as C–H bond hydroxylation, C=C bond epoxidation, sulfoxi- dation, N-dealkylation and O-dealkylation[1-4]. These transformations are important for a vast array of vital processes including biosynthesis of hormones, biodegradation of xenobiotics, and drug metabo- lism[4]. It is commonly accepted that the high-valent iron(IV)-oxo porphyrin-radical cation species known as Compound I (Cpd I, in Scheme 1) is responsible for these oxygenation reactions[5]. In the consensus P450 catalytic cycle[1], the formation of Cpd I involves two subsequent proton transfers: the ferric peroxo complex (shown in Scheme 1) is first protonated to yield the hydroperoxo compound, so called Compound 0, (Cpd 0 in Scheme 1), which then accepts a second proton followed by heterolytic O–O bond cleavage to generate Cpd I and water. It has been suggested that along with the water network at active site the conserved aspartate and threonine (or serine) residues forming acid-alcohol pair in most P450s play a crucial role in proton delivery mechanism[6, 7]. However, there are also some special cases in P450s. For example, P450eryF which lacks the conserved theronine could transfer proton from the 5-OH group of its substrate DEB (6-deoxyerythronolide B)[8]. Intriguingly, P450cin (CYP176A1)[9]lacks the conserved threonine or serine residue and the substrate cineole has no OH group to assist the proton delivery, indicating that a distinct mecha- nism is responsible for the formation of Cpd I.

    Scheme 1. Formation of Cpd I from ferric peroxo complexCpd 0

    Up to now, two possible proton channels invol- ving Asp241 and Glu356 (see Fig. 1) were proposed for O2activation in P450cin[10, 11]. Asp241 is believed to play a similar role as Asp251 of the well-studied P450cam[12, 13], since the Asp241 mutant of P450cin has an influence on the reaction rate. Three vital groups may be involved in the proton delivery from Asp241, including Asn242, Gly238 and substrate cineole[14-16]. However, the mutant of Asn242Ala for P450cin gave a higher coupling than P450cam, and the coupling of Asn242Thr was not very efficient compared with the wild type. These results indicate that the asparagine seems not so important in proton delivery[14]. Compared with Asp241, Gly238 could form a hydrogen bond with a water through its carbonyl group, and thus it is more likely to facilitate the proton delivery[15]. Besides, the substrate cineole was also proposed to contribute to proton delivery[16]. However, another experiment showed that mass coupling is still obtained in the absence of the ethereal oxygen atom, suggesting this ethereal oxygen does not play a significant role in proton transfer[14]. In addition, for Glu356 though lacking of both mutant experimental results and hydrogen bond networks connecting to the protein surface, the channel involving this residue has also to be considered.

    According to the previous work reported above, both Asp241 and Glu356 channels could be respon- sible for proton delivery leading to the formation of Cpd I in P450cin. In this work, we report combined MD and QM/MM studies for the first proton transfer to ferric peroxo complex that leads to the formation of Cpd 0 in the wild-type P450cin and related mutation. The possible proton transfer channels related to Asp241 and Glu356 will be presented. Our results provide a detailed mechanism of the first proton delivery and reveal the important roles of the active species or residues. These results can enrich the oxygen activation mechanism for P450s.

    2 COMPUTATION METHODS AND DETAILS

    The initial structure of the reduced hemecomplex was taken from the X-ray structure of P450cin-NO (PDB code 4FYZ)[15]. Chain B with definite occupancy was used in our model, from which the polyethylene glycol was removed and the axial NO ligand was replaced by O2. The protonation states of titratable residues (His, Glu, Asp) were designed on the basis of pKa values from PROPKA calcula- tions[17]as well as careful visual inspection of their local chemical environment. Histidine residues were dealt with three manners, including doubly proto- nated (52, 98, 267, 351, 391), or singly protonated at N(16, 342, 345), or protonated at N(18, 28, 176, 193, 337). Glutamic acid residues (32, 47, 85, 134, 178, 182, 225, 294, 356, 363, 370, 378, 404) and Aspartic acid residues (127, 241) were protonated. The generated neutral protein was immersed with a 16 ? layer of water molecules, yielding a total of ca. 8300 water molecules in the protein model. Afterwards, a classical MD run was performed for 2 ns using the CHARMM36 force fields[18-20]as implemented in the CHARMM program[21].

    In addition to O2-coordinated simplified porphyrin and substrate cineole, some relevant amino acid side chains and water molecules were also included in the QM region. In details, Asp241, Asn242, Tyr81 and Wat612 were included in the Asp241 channel, while Glu356, Thr243 and Wat636 were contained in the Glu356 channel. During QM/MM geometry optimizations, atoms within 8 ? of the QM region were defined as the active region, and the rest was kept frozen.

    The QM/MM calculations were performed with ChemShell[22, 23], combining Turbomole[24]for the QM part, DL_POLY[25]with CHARMM36 force field for the MM part, and HDLC optimizer[26]for geometry optimizations. The electronic embedding scheme[27]was adopted to explain the polarizing effect of the enzyme environment on the QM region. The QM/MM boundary was treated through hydro- gen link atoms with the charge shift model[22, 23]. In QM/MM geometry optimizations, the QM region was calculated by the hybrid UB3LYP[28]functional with two basis sets. For geometry optimization, a combined basis set including def2-TZVP for iron and def2-SVP for other atoms was used. The energies were further corrected with the large basis set def2-TZVP. All QM/MM geometry optimizations were carried out on the doublet state.

    3 RESULTS AND DISCUSSION

    PROPKA calculations show the pKa values of Asp241 and Glu356 are 6.84 and 8.15, implying that these two residues are likely to be protonated under physiological conditions. Thus, two proton transfer channels including these two residues are explored in our present study. In the Asp241 channel, proton could be transferred to distal oxygen atom of the bound O2of ferric peroxo complex via Asn242 and/or the crystal water Wat612, while the Glu356 may deliver proton through a network containing crystal water Wat636, Thr243 and the nearby residues (Fig. 1).

    Fig. 1. Two possible proton channels of P450cin. The Asp241, Glu356 and nearby residues are highlighted

    3. 1 Asp241 channel

    Proton transfer in the Asp241 channel involves three steps: protonating distal oxygen atom of ferric peroxo by Asn242, protonating the deprotonated Asn242 by Asp241, and reprotonating Asp241 via water channels from bulk solvent as suggested by Yarrow Madrona[10]. As there are many possibilities for reprotonating Asp241 from bulk solvent, we here only explore the previous two steps involved in Asp241 channel. The calculated potential energy surface and the optimized geometries of key species for the protonation involving Asp241 channel are shown in Figs. 2 and 3, respectively. As discussed above, the first step in Asp241 channel is the proto- nation of ferric peroxo center with the proton coming from NH2group of Asn242. Before this proton transfer occurs, the Fe(III)O2-group of RC undergoes an internal rotation along the Fe–Opbond to make the distal oxygen Odof Fe(III)O2-group getting close to the HD22 of Asn242. The rotation transition state TSa1 only has a tiny barrier of 0.4 kcal/mol, mainly due to the large space for rotation and the electrostatic interaction between Odand HD22. The resulted species ICa1 thus has a short Op–HD22 distance of 1.49 ?, which is similar to the geometry character of the conserved Thr252 and ferric peroxo in the P450cam crystal structure[6].Subsequently, the proton of HD22 of Asn242 transfers to the distal oxygen Odyielding interme- diate ICb1, of which Cpd 0 has been generated. This step is exothermic by 11.5 kcal/mol without any barrier. The barrierless process may be owing to the strong electrostatic interaction produced by the short distance of HD22 and distal oxygen. This process accords with the proton transfer of Thr252 in P450cam[29]and the proton transfer of DEB 5-OH group in P450eryF[8]. The high activity of RC explains why the super oxo species of P450cin is difficult to trap experimentally[15].

    The deprotonated residue Asn242 could abstract a proton from nearby residue Asp241 or, alternatively, from the crystal water Wat612 in the vicinity. As shown in Fig. 3, in ICb1 the distance between the terminal proton HD2 of Asp241 and ND2 of Asn242 is 6.40 ?, which is too far for direct proton transfer. Therefore, the side chain rotation of Asp242 and Asp241 is required. In this transformation, the acid side chain of Asp241 rotates via transition state TSc1 with a barrier of 11.8 kcal/mol. The generation of ICc1 is endothermic by 4.4 kcal/mol. It is noteworthy that the orientation of the side chain of Asp241 in ICc1 is quite similar to the Asp251 in P450cam[29, 30]. Subsequently, the side chain of Asn242 in ICc1 also undergoes an internal rotation along the CB–CG bond toward the proton source Asp241 to shorten the distance of HD2–ND2. As a result, the proton transfer from Asp241 to Asn242 then occurs via transition state TSd1 to generate ICd1. This step is exothermic by 24.0 kcal/mol with a small barrier of 6.8 kcal/mol. As such, from ICc1 to ICd1, Asn242 directly accepts the proton from Asp241 without crystal water Wat612 in the proton shuttle network[11].

    Fig. 2. QM/MM relative energies (kcal/mol) for the first proton transfer via Asp241 channel

    Fig. 3. Geometries and bond distances (?) of key residues

    Another possible pathway to deliver the proton from Asp241 to the deprotonated Asn242 is with the assistance of Wat612. All attempts to find energy feasible pathway involving proton transfer from Wat612 to the deprotonated NH group of Asn242 failed as the calculated barriers were quite high, ca. 26.1 kcal/mol. However, interestingly, as shown in Fig. 2, we found an alternative pathway in which the hydrogen HD2 of Asp241 is transferred to OD1 rather than the ND2 of Asn242 via Wat612. The corresponding transition state TSd1 only has a much small energy barrier of 1.6 kcal/mol. Although the resulting species ICd2 is less stable than IC1d by 9.4 kcal/mol, it is still possible to be involved in the second proton delivery as suggested by Kim et al[31]. The classical MD simulation results in Fig. 4 show that Wat612 is held by hydrogen bonds constituted by Asp241, Asn242, Tyr81 and substrate, and does not escape from the protein pocket during the 2ns simulation. As such, the crystal water Wat612 is possible to serve as a node in the hydrogen bond network by transferring proton from Asp241 to Asn242.

    Fig. 4. H-bonds of Wat612 of MD simulations

    3. 2 Glu356 channel

    The proton transfer from Glu356 was also investigated because similar channel has been reported in P450cam[30]and P450eryF[8]. As shown in Fig. 5, the Glu356 could deliver proton through the hydrogen bond network formed by Wat636 and Thr243. No additional water was found to enter the space between Thr243 and ferric peroxo group during the 2 ns MD simulation. As such, the distance between HG1 of Thr243 and Odis 6.6 ?, which is much longer than the distances between the distal oxygen atom and the Thr252 in P450cam[30](1.923 ?) or the WatA in P450eryF[8](3.35 ?). To locate the proton transfer from the HG1 of Thr243 to the distal oxygen Od, we performed the potential energy surface scan by shortening the distance between Fe(III)O2-and Thr243. The calculated results lead to the breaking of Fe–Op bond and the dissociation of O2(Fig. 5a). Therefore, proton transfers direct from Thr243 to ferric peroxo group is impossible. Alternatively, we attempted to find the pathway in which the proton transfer from Thr243 to ferric peroxo group is mediated by the carboxyl group of the backbone of Gly238 in vicinity. However, even the barrier for HG1 transferring from Thr243 to carboxyl group of Gly238 is 16.1 kcal/mol (Fig. 5b), the distance between protonated Gly238 and Odof ferric peroxo group is about 4.7 ?, which is too far to accomplish the subsequent proton transfer. To sum up, the Glu356 channel is failed to deliver proton to ferric peroxo group, because Glu356 is far away from the distal oxygen atom of Fe(III)O2-and there are neither appropriate residues nor additional waters that could cooperate with Glu356 to deliver proton. These findings are consistent with the results from P450cin mutation experiments in which replacing Glu356 with other residues leads to the coupling efficiency unchanged.

    (a)

    (b)

    Fig. 5. (a) Potential energy surface scan of HG1-Odbond, (b) Proton transfer of HG1 to Gly238. The distances are given in ? and the energies in kcal/mol

    3. 3 Discussion

    In the whole process, the hydrogen bond network plays a significant role in proton transfer. A strong hydrogen bond between Wat612 and oxygen of cineole was also found as the hydrogen bond length ranging from 1.72 to 2.19?. As shown in Figs. 3 and 4, Wat612 is sustained by hydrogen bond networks interacted by Tyr81, Asp241 and Asn242. In addition, in most intermediates there is an hydrogen bond between HD21 of Asn242 and oxygen of substrate ranging from 2.17 to 2.70 ?, which is in consistence with crystal structure[32].Moreover, it should be noted that the conformation of the substrate maintained by the hydrogen bond network may contribute to the regio- and stereo- selectivity in the subsequent oxidation reactions catalyzed by Cpd I generated after O2activation.

    Fig. 6. Hydrogen bond networks of (a) Asn242Ala and (b) Asn242Thr

    According to the above results, we found that residue Asn242 has two significant roles in the proton delivery. Firstly, Asn242 is the nearest residue with respect to the Fe porphyrin. The distances of HD22Asn242and the distal oxygen of ferric peroxo complex are in the range of 2.5~3.5 ? (MD results), which leads to a low barrier of proton transfer as discussed before (Fig. 2). Secondly, Asn242 could form strong hydrogen bonds with cineole (CNL) and Wat612 as the distances of ND2Asn242···OCNL, Wat612···OD1Asn242and Wat612···OCNLare about 2.42, 1.67 and 1.92 ?, respectively. The hydrogen bond networks support a stable geometry and include additional water for proton transfer. Thus, Asn242 is indispensable for the proton transfer. The oxygen atom of cineole is fixed by Asn242 and Wat612, and thus cineole loses the activity of proton transfer. This is consistent with experimental results that replacement of the cineole with no ethereal oxygen has no obvious changes in reaction rate and coupling efficient[14]. Therefore, cineole does not play a key role in proton delivery process. The crystal structure of substrate-free P450cin indicated that Gly238 forms a hydrogen bond chain that lies close to the Fe center, thus Gly238 may contribute to the O2activation. However, the hydrogen bonding chain formed by Gly238 does not exist in the present study, because of the missing crystal waters around the active area. All attempts to locate the proton transfer from Gly238 for O2activation failed. Compared with wide type of P450cin, the mutants Asn242Thr and Asn24Ala have a larger space around the substrate and flexible hydrogen bond networks (Fig. 6). Thus, the increased freedom of the substrate would decrease the regio-selectivity of C–H bond activa- tion, which is also in consistence with experimental findings[14].

    4 CONCLUSION

    P450cin has two distinct hydrogen bond networks involving Asp251 and Glu356 that are capable of shuttling protons for O2activation. In the Asp241 channel, the Asp241 residue has a direct access to bulky water and thus can be easily reprotonated. The first proton transfer from Asp241 to distal oxygen proceeds via Asn242 to produce the Cpd 0 species. It was found that Asn242 is indispensable among proton delivery process, since this residue is an important proton bridge in the first proton delivery from Asn241 to ferric peroxo center. In the proton transfer from Asp241 to Asn242, two possible pathways are found. One involves direct proton transfer to form species ICd1, whereas the other forms ICd2 via Wat612. MD results show Wat612 plays a significant role for the latter process. In comparison, the Glu356 channel lacks the connectivity with bulky water, which casts doubt on the feasibility of the requisite reprotonation of Glu356. Moreover, our calculation shows that it is difficult to transmit proton from Glu356 to the ferric peroxo center. Our work presents a detailed mecha- nism of the first proton transfer for the O2activation of P450cin, which has shown distinct characters as compared with P450cam. This new mechanism may provide new insights for understanding the proton transfer for similar P450 enzymes. The second proton-transfer step is under investigation.

    (1) Ortiz de Montellano, P. R.3rd ed. Kluwer Academic/Plenum Publisher: New York 2005, p1-24.

    (2) Meunier, B.; de Visser, S. P.; Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes.2004, 104, 3947-3980.

    (3) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes.2005, 105, 2279-2328.

    (4) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations.2010, 110, 949-1017.

    (5) Yamazaki, H. Springer Japan: Tokyo2014, p132.

    (6) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, B. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. The catalytic pathway of cytochrome P450cam at atomic resolution.2000, 287, 1615-1622.

    (7) Nebert, D. W.; Nelson, D. R.; Coon, M. J.; Estabrook, R. W.; Feyereisen, R.; Fujiikuriyama, Y.; Gonzalez, F. J.; Guengerich, F. P.; Gunsalus, I. C.; Johnson, E. F.; Loper, J. C.; Sato, R.; Waterman, M. R.; Waxman, D. J. The P450 superfamily-update on newsequences, gene-mapping, and recommended nomenclatrue.1991, 10, 1-14.

    (8) Sen, K.; Thiel, W. Role of two alternate water networks in compound I formation in P450eryF.2014, 118, 2810-2820.

    (9) Hawkes, D. B.; Adams, G. W.; Burlingame, A. L.; de Montellano, P. R. O.; De Voss, J. J. Cytochrome P450cin(CYP176A), isolation, expression, and characterization.2002, 277, 27725-27732.

    (10) Madrona, Y.; Hollingsworth, S. A.; Khan, B.; Poulos, T. L. P450cin active site water: implications for substrate binding and solvent accessibility.2013, 52, 5039-5050.

    (11) Stok, J. E.; Yamada, S.; Farlow, A. J.; Slessor, K. E.; De Voss, J. J. Cytochrome P450cin(CYP176A1) D241N: investigating the role of the conserved acid in the active site of cytochrome P450s.2013, 1834, 688-696.

    (12) Gerber, N. C.; Sligar, S. G. Catalytic mechanism of cytochrome-P-450-evidence for a distal charge relay.1992, 114, 8742-8743.

    (13) Gerber, N. C.; Sligar, S. G. A role for Asp-251 in cytochrome P-450cam oxygen activation.1994, 269, 4260-4266.

    (14) Slessor, K. E.; Farlow, A. J.; Cavaignac, S. M.; Stok, J. E.; De Voss, J. J. Oxygen activation by P450cin: protein and substrate mutagenesis.2011, 507, 154-162.

    (15) Madrona, Y.; Tripathi, S.; Li, H. Y.; Poulos, T. L. Crystal structures of substrate-free and nitrosyl cytochrome P450cin: implications for O2activation.2012, 51, 6623-6631.

    (16) Meharenna, Y. T.; Li, H. Y.; Hawkes, D. B.; Pearson, A. G.; De Voss, J.; Poulos, T. L. Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam.2004, 43, 9487-9494.

    (17) Olsson, M. H. M.; Sondergaard, C. R.; Rostkowski, M.; Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pK(a) predictions.2011, 7, 525-537.

    (18) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles.2012, 8, 3257-3273.

    (19) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins.1998, 102, 3586-3616.

    (20) Mackerell, A. D.; Feig, M.; Brooks, C. L. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.2004, 25, 1400-1415.

    (21) Brooks, B. R.; Brooks III, C. L.; Mackerell, A. D. Jr.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M. CHARMM: the biomolecular simulation program.2009, 30, 1545-1614.

    (22) Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz, C. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis.2003, 632, 1-28.

    (23) Metz, S.; K?stner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P. ChemShell-a modular software package for QM/MM simulations.2014, 4, 101-110.

    (24) Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Electronic-structure calculations on workstation computers - the program system turbomole.1989, 162, 165-169.

    (25) Smith, W.; Forester, T. R. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package.1996, 14, 136-141.

    (26) Billeter, S. R.; Turner, A. J.; Thiel, W. Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates.2000, 2, 2177-2186.

    (27) Bakowies, D.; Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches.1996, 100, 10580-10594.

    (28) Becke, A. D. Density-functional thermichemistry. 3. The role of exact exchange.1993, 98, 5648-5652.

    (29) Wang, D. Q.; Zheng, J. J.; Shaik, S.; Thiel, W. Quantum and molecular mechanical study of the first proton transfer in the catalytic cycle of cytochrome P450cam and its mutant D251N.2008, 112, 5126-5138.

    (30) Zheng, J. J.; Wang, D. Q.; Thiel, W.; Shaik, S. QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam.2006, 128, 13204-13215.

    (31) Kim, D.; Heo, Y. S.; Ortiz de Montellano, P. R. Efficient catalytic turnover of cytochrome P450camis supported by a T252N mutation.2008, 474, 150-156.

    (32) Meharenna, Y. T.; Slessor, K. E.; Cavaignac, S. M.; Poulos, T. L.; De Voss, J. J. The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in P450cin.2008, 283, 10804-10812.

    28 February 2018;

    11 June 2018

    ①This project was supported by the National Natural Science Foundation of China (No. 21573237, 21603227, 21403242, 21703246) and the Natural Science Foundation of Fujian Province (2017J05032)

    . Male, born in 1978, professor, majoring in theoretical chemistry. E-mail: chunsen.li@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-2029

    亚洲精华国产精华精| 黑人巨大精品欧美一区二区mp4| 精品第一国产精品| 国产精品电影一区二区三区| 男男h啪啪无遮挡| 男男h啪啪无遮挡| 岛国在线观看网站| 一边摸一边做爽爽视频免费| 国产欧美日韩一区二区三| 91av网站免费观看| 性欧美人与动物交配| 级片在线观看| 丝袜美足系列| 久久久久亚洲av毛片大全| 天堂√8在线中文| 久久亚洲真实| bbb黄色大片| 国产aⅴ精品一区二区三区波| 久久精品亚洲熟妇少妇任你| 国产不卡一卡二| 日韩视频一区二区在线观看| 两性夫妻黄色片| 丰满人妻熟妇乱又伦精品不卡| 日韩精品中文字幕看吧| 精品一品国产午夜福利视频| 久久久久国内视频| 久久久久精品国产欧美久久久| 成人国产综合亚洲| 国产精品久久久久久精品电影 | 色播亚洲综合网| 免费在线观看亚洲国产| 在线国产一区二区在线| 人人妻人人澡欧美一区二区 | 欧美不卡视频在线免费观看 | 999精品在线视频| 最好的美女福利视频网| 国产av精品麻豆| 精品国产一区二区久久| 韩国av一区二区三区四区| 女人被躁到高潮嗷嗷叫费观| 黄色视频不卡| 中亚洲国语对白在线视频| 免费人成视频x8x8入口观看| 国产精华一区二区三区| 国内精品久久久久久久电影| 黄色a级毛片大全视频| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 亚洲精品在线观看二区| 大陆偷拍与自拍| 久久久精品国产亚洲av高清涩受| 99精品在免费线老司机午夜| 此物有八面人人有两片| 久久久久久久午夜电影| 免费不卡黄色视频| 色婷婷久久久亚洲欧美| 久久国产精品男人的天堂亚洲| 制服丝袜大香蕉在线| 性欧美人与动物交配| 午夜福利影视在线免费观看| 久久亚洲精品不卡| 久久久久久久精品吃奶| 91大片在线观看| 国产精品亚洲一级av第二区| 精品乱码久久久久久99久播| 18禁黄网站禁片午夜丰满| 久久国产亚洲av麻豆专区| 国产精品永久免费网站| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久精品电影 | 日本在线视频免费播放| 精品不卡国产一区二区三区| АⅤ资源中文在线天堂| 很黄的视频免费| 丰满人妻熟妇乱又伦精品不卡| 精品不卡国产一区二区三区| 国产午夜精品久久久久久| 久99久视频精品免费| 久久 成人 亚洲| 成人国产一区最新在线观看| 亚洲av熟女| 国产成人啪精品午夜网站| 一级a爱视频在线免费观看| 日韩欧美一区二区三区在线观看| 亚洲人成电影观看| 精品国内亚洲2022精品成人| 欧美av亚洲av综合av国产av| 久久精品91无色码中文字幕| 最新美女视频免费是黄的| 亚洲中文字幕日韩| 欧美日本中文国产一区发布| 午夜老司机福利片| netflix在线观看网站| 亚洲少妇的诱惑av| 免费人成视频x8x8入口观看| 中文字幕久久专区| 涩涩av久久男人的天堂| 国产精品久久视频播放| 亚洲情色 制服丝袜| 成人永久免费在线观看视频| 成人av一区二区三区在线看| 色综合亚洲欧美另类图片| 99在线人妻在线中文字幕| 真人一进一出gif抽搐免费| 国产高清videossex| 麻豆成人av在线观看| 天堂动漫精品| 男女下面插进去视频免费观看| 99精品久久久久人妻精品| 午夜精品在线福利| 午夜福利在线观看吧| 在线观看免费日韩欧美大片| 亚洲色图 男人天堂 中文字幕| 真人一进一出gif抽搐免费| 欧美另类亚洲清纯唯美| 精品国产乱子伦一区二区三区| 女性被躁到高潮视频| 成人av一区二区三区在线看| 黑丝袜美女国产一区| 中文字幕色久视频| 在线观看www视频免费| 亚洲av成人av| 精品久久蜜臀av无| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| 在线av久久热| 亚洲色图av天堂| 久久精品国产清高在天天线| 老司机午夜十八禁免费视频| www日本在线高清视频| 国产主播在线观看一区二区| 香蕉国产在线看| 精品高清国产在线一区| 久热这里只有精品99| 制服诱惑二区| 搞女人的毛片| 丰满的人妻完整版| 国产成人一区二区三区免费视频网站| 国产精品一区二区精品视频观看| 啦啦啦 在线观看视频| 老司机午夜十八禁免费视频| 亚洲色图av天堂| 国产成年人精品一区二区| 人人妻人人澡人人看| 超碰成人久久| 黄片小视频在线播放| 中文字幕人妻熟女乱码| 国产精品国产高清国产av| 18禁国产床啪视频网站| 桃色一区二区三区在线观看| 精品国产超薄肉色丝袜足j| 国产三级黄色录像| 免费久久久久久久精品成人欧美视频| 纯流量卡能插随身wifi吗| 国产伦人伦偷精品视频| 精品一区二区三区av网在线观看| 国产成人系列免费观看| 男人操女人黄网站| 亚洲av五月六月丁香网| 久久久久久久午夜电影| 伦理电影免费视频| 91成人精品电影| 久久亚洲真实| 91九色精品人成在线观看| 99re在线观看精品视频| 中文字幕人妻熟女乱码| 国产精品免费视频内射| 久久精品人人爽人人爽视色| 亚洲天堂国产精品一区在线| 精品久久久久久,| 久久精品91无色码中文字幕| 黄色片一级片一级黄色片| 在线观看午夜福利视频| 久久 成人 亚洲| 国产精品亚洲一级av第二区| 亚洲无线在线观看| 成人三级做爰电影| 搞女人的毛片| 国产一区二区激情短视频| 欧美黄色淫秽网站| 亚洲精品中文字幕在线视频| 高清黄色对白视频在线免费看| 国产在线精品亚洲第一网站| 午夜免费成人在线视频| 国产精华一区二区三区| 无限看片的www在线观看| 国产精品久久久久久精品电影 | 美女扒开内裤让男人捅视频| 伊人久久大香线蕉亚洲五| 69av精品久久久久久| 亚洲欧美日韩高清在线视频| 日韩精品免费视频一区二区三区| x7x7x7水蜜桃| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 黄色丝袜av网址大全| 嫩草影视91久久| av网站免费在线观看视频| 精品第一国产精品| 在线观看一区二区三区| 中文字幕人妻熟女乱码| 女同久久另类99精品国产91| 中文字幕另类日韩欧美亚洲嫩草| 国内久久婷婷六月综合欲色啪| 亚洲成人免费电影在线观看| 91麻豆精品激情在线观看国产| 91国产中文字幕| 夜夜躁狠狠躁天天躁| 老司机靠b影院| 视频区欧美日本亚洲| 久久久精品国产亚洲av高清涩受| 国产99久久九九免费精品| 欧美成人午夜精品| 午夜福利一区二区在线看| 少妇裸体淫交视频免费看高清 | 激情视频va一区二区三区| 欧美激情 高清一区二区三区| 十八禁人妻一区二区| 久久人妻av系列| 国产视频一区二区在线看| 在线永久观看黄色视频| 国产精品久久视频播放| 亚洲国产精品久久男人天堂| 一边摸一边抽搐一进一出视频| 免费少妇av软件| 国产高清有码在线观看视频 | 亚洲精品久久成人aⅴ小说| 久久久久久久久久久久大奶| 国产精品亚洲美女久久久| 日韩欧美三级三区| 一卡2卡三卡四卡精品乱码亚洲| 悠悠久久av| 99国产精品一区二区蜜桃av| 咕卡用的链子| 亚洲精品粉嫩美女一区| 人人澡人人妻人| 午夜福利18| 波多野结衣一区麻豆| 欧美精品啪啪一区二区三区| 极品教师在线免费播放| 国产1区2区3区精品| 免费av毛片视频| 老司机午夜十八禁免费视频| 纯流量卡能插随身wifi吗| 亚洲五月天丁香| 看片在线看免费视频| 一区二区日韩欧美中文字幕| 国产成人欧美在线观看| 身体一侧抽搐| 午夜免费激情av| 亚洲专区字幕在线| 亚洲久久久国产精品| 国产亚洲欧美98| 日本黄色视频三级网站网址| 国产精品久久久久久人妻精品电影| 久久 成人 亚洲| 少妇被粗大的猛进出69影院| 精品日产1卡2卡| 亚洲专区中文字幕在线| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美精品综合一区二区三区| 欧美日韩乱码在线| 亚洲国产欧美网| 亚洲成人国产一区在线观看| 成人三级做爰电影| 成人三级黄色视频| 三级毛片av免费| 久久香蕉精品热| 男女之事视频高清在线观看| 国产成人免费无遮挡视频| 91麻豆精品激情在线观看国产| 狂野欧美激情性xxxx| 亚洲 国产 在线| 国产色视频综合| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 国产精品一区二区免费欧美| 国产精品久久久久久精品电影 | 欧美精品亚洲一区二区| 国产伦人伦偷精品视频| 国产精品亚洲美女久久久| 黄色视频不卡| 精品久久久久久久久久免费视频| 色综合亚洲欧美另类图片| 久久草成人影院| 欧美+亚洲+日韩+国产| 成年人黄色毛片网站| 欧美不卡视频在线免费观看 | 国产一区二区三区综合在线观看| 国产片内射在线| 久久国产乱子伦精品免费另类| 99香蕉大伊视频| 亚洲精品一卡2卡三卡4卡5卡| 久久中文字幕一级| 女人爽到高潮嗷嗷叫在线视频| 99在线人妻在线中文字幕| 日韩欧美国产在线观看| 在线永久观看黄色视频| 国内久久婷婷六月综合欲色啪| 日韩成人在线观看一区二区三区| 免费不卡黄色视频| 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 人人妻,人人澡人人爽秒播| 亚洲成av人片免费观看| 在线观看66精品国产| 亚洲av熟女| 精品久久久精品久久久| 久久中文字幕一级| 好看av亚洲va欧美ⅴa在| 国产黄a三级三级三级人| 久久热在线av| 国产私拍福利视频在线观看| 黄色丝袜av网址大全| 男人舔女人下体高潮全视频| 免费久久久久久久精品成人欧美视频| avwww免费| 国产成人欧美在线观看| 丁香欧美五月| 人妻久久中文字幕网| 免费看a级黄色片| 最近最新免费中文字幕在线| 久久 成人 亚洲| 99热只有精品国产| 亚洲avbb在线观看| 一进一出抽搐gif免费好疼| 老鸭窝网址在线观看| 中文字幕精品免费在线观看视频| 国产伦人伦偷精品视频| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久毛片微露脸| 精品国内亚洲2022精品成人| 亚洲精品粉嫩美女一区| 黄片播放在线免费| 亚洲av美国av| 欧美大码av| 午夜福利一区二区在线看| 精品久久久久久成人av| 在线观看免费视频网站a站| 成年女人毛片免费观看观看9| 亚洲少妇的诱惑av| 国产成人一区二区三区免费视频网站| 神马国产精品三级电影在线观看 | 在线观看午夜福利视频| 午夜两性在线视频| 欧美成狂野欧美在线观看| 一级黄色大片毛片| 在线观看午夜福利视频| 精品少妇一区二区三区视频日本电影| 国产成人影院久久av| 久热爱精品视频在线9| 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| 亚洲五月天丁香| 国产精品一区二区精品视频观看| 亚洲精品久久国产高清桃花| 亚洲欧美激情在线| 国产亚洲av嫩草精品影院| 夜夜看夜夜爽夜夜摸| 日韩大码丰满熟妇| 妹子高潮喷水视频| 欧美人与性动交α欧美精品济南到| 身体一侧抽搐| bbb黄色大片| 12—13女人毛片做爰片一| 亚洲成av人片免费观看| 午夜视频精品福利| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 日本撒尿小便嘘嘘汇集6| www.自偷自拍.com| 免费不卡黄色视频| 久久国产精品男人的天堂亚洲| 精品午夜福利视频在线观看一区| 巨乳人妻的诱惑在线观看| 国产成人欧美在线观看| 日韩精品免费视频一区二区三区| 在线播放国产精品三级| 人人妻人人爽人人添夜夜欢视频| 国产精品电影一区二区三区| 美女高潮到喷水免费观看| 国产激情欧美一区二区| 久久精品人人爽人人爽视色| 国产精品亚洲美女久久久| 免费女性裸体啪啪无遮挡网站| 不卡av一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产成+人综合+亚洲专区| 男女之事视频高清在线观看| 精品福利观看| 日韩高清综合在线| 身体一侧抽搐| 精品一区二区三区四区五区乱码| 亚洲国产精品999在线| 亚洲欧美精品综合久久99| 男女下面进入的视频免费午夜 | 免费观看精品视频网站| 国产精品日韩av在线免费观看 | 高清黄色对白视频在线免费看| 激情在线观看视频在线高清| 色精品久久人妻99蜜桃| 国产99白浆流出| 制服诱惑二区| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美98| 亚洲第一av免费看| 日本在线视频免费播放| 日韩欧美三级三区| 脱女人内裤的视频| 亚洲性夜色夜夜综合| 搞女人的毛片| 一级,二级,三级黄色视频| 亚洲熟女毛片儿| 国产av又大| 大型黄色视频在线免费观看| 国产精品秋霞免费鲁丝片| 色在线成人网| 熟女少妇亚洲综合色aaa.| 日韩欧美一区视频在线观看| 最近最新中文字幕大全电影3 | 少妇裸体淫交视频免费看高清 | 亚洲国产中文字幕在线视频| 国产精品,欧美在线| 国产片内射在线| 欧美黑人欧美精品刺激| 精品久久久久久久人妻蜜臀av | 国产成人av激情在线播放| 久久香蕉国产精品| 精品国产国语对白av| 18禁美女被吸乳视频| 国产精品一区二区精品视频观看| 午夜精品在线福利| 婷婷精品国产亚洲av在线| 中出人妻视频一区二区| 国产一卡二卡三卡精品| 亚洲欧美日韩无卡精品| 欧美日韩一级在线毛片| 欧美+亚洲+日韩+国产| 亚洲一区高清亚洲精品| av在线播放免费不卡| 亚洲天堂国产精品一区在线| 亚洲中文av在线| 久久精品国产综合久久久| 国产av精品麻豆| 国产精品国产高清国产av| 日韩大码丰满熟妇| 男人舔女人的私密视频| 精品欧美一区二区三区在线| 国产精品,欧美在线| 高潮久久久久久久久久久不卡| 国产一区二区在线av高清观看| 91九色精品人成在线观看| 国产成人精品久久二区二区91| 国产亚洲av高清不卡| 真人一进一出gif抽搐免费| 大型黄色视频在线免费观看| 老司机午夜福利在线观看视频| 国产av一区二区精品久久| 欧美一级a爱片免费观看看 | 长腿黑丝高跟| 午夜福利影视在线免费观看| a级毛片在线看网站| 在线观看www视频免费| 三级毛片av免费| 日本欧美视频一区| 久久影院123| 亚洲精品粉嫩美女一区| 搞女人的毛片| 丝袜人妻中文字幕| 自线自在国产av| 婷婷丁香在线五月| 99精品欧美一区二区三区四区| 亚洲精品av麻豆狂野| 91av网站免费观看| 精品福利观看| 在线观看日韩欧美| 亚洲国产精品sss在线观看| 久久久久精品国产欧美久久久| 在线天堂中文资源库| 国产成+人综合+亚洲专区| 久久精品成人免费网站| 嫩草影视91久久| 成人亚洲精品av一区二区| 岛国视频午夜一区免费看| 亚洲av成人一区二区三| 亚洲精华国产精华精| 午夜视频精品福利| 自拍欧美九色日韩亚洲蝌蚪91| 欧美老熟妇乱子伦牲交| 精品高清国产在线一区| 久久亚洲真实| 精品电影一区二区在线| 精品欧美一区二区三区在线| 人人妻人人爽人人添夜夜欢视频| 在线观看舔阴道视频| 免费搜索国产男女视频| 久久久久久人人人人人| 人妻久久中文字幕网| 中文字幕人妻丝袜一区二区| 熟妇人妻久久中文字幕3abv| 禁无遮挡网站| 国产野战对白在线观看| 免费观看精品视频网站| 搡老妇女老女人老熟妇| 999久久久精品免费观看国产| 亚洲成a人片在线一区二区| 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区免费| cao死你这个sao货| 国产高清视频在线播放一区| 人妻久久中文字幕网| 长腿黑丝高跟| 岛国在线观看网站| 香蕉国产在线看| 亚洲成人精品中文字幕电影| 两个人看的免费小视频| 国产精品精品国产色婷婷| 国语自产精品视频在线第100页| 99香蕉大伊视频| 午夜福利欧美成人| 国产99久久九九免费精品| 欧美成人性av电影在线观看| 亚洲成人久久性| 人妻久久中文字幕网| 国产一区二区三区综合在线观看| 亚洲va日本ⅴa欧美va伊人久久| 黄片大片在线免费观看| 男女午夜视频在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲av日韩精品久久久久久密| 精品福利观看| 久久久精品国产亚洲av高清涩受| 丰满的人妻完整版| 99久久99久久久精品蜜桃| cao死你这个sao货| 一边摸一边抽搐一进一出视频| 真人一进一出gif抽搐免费| 丁香欧美五月| 亚洲 欧美一区二区三区| 99国产精品一区二区蜜桃av| 精品电影一区二区在线| 日本在线视频免费播放| 一个人免费在线观看的高清视频| 黑人巨大精品欧美一区二区mp4| 日韩一卡2卡3卡4卡2021年| 久久精品国产清高在天天线| av电影中文网址| 久久性视频一级片| 美女大奶头视频| 国产99久久九九免费精品| 日韩av在线大香蕉| 黄网站色视频无遮挡免费观看| 亚洲一区高清亚洲精品| 十八禁网站免费在线| 亚洲va日本ⅴa欧美va伊人久久| 一区在线观看完整版| av在线播放免费不卡| 麻豆一二三区av精品| 中国美女看黄片| 一区二区三区高清视频在线| 狂野欧美激情性xxxx| 99在线人妻在线中文字幕| 亚洲av五月六月丁香网| 美女 人体艺术 gogo| 久久天堂一区二区三区四区| 色播在线永久视频| 午夜福利视频1000在线观看 | 日韩欧美在线二视频| 露出奶头的视频| 亚洲欧美日韩另类电影网站| 极品人妻少妇av视频| 88av欧美| 亚洲午夜精品一区,二区,三区| 热99re8久久精品国产| 国产欧美日韩一区二区三| 成人永久免费在线观看视频| 国产av又大| 午夜a级毛片| 国产成人精品久久二区二区免费| 一本久久中文字幕| 成人三级黄色视频| 久久国产亚洲av麻豆专区| 亚洲精品久久国产高清桃花| 人人妻人人澡欧美一区二区 | 精品人妻在线不人妻| 91九色精品人成在线观看| 久久午夜亚洲精品久久| 亚洲片人在线观看| 91九色精品人成在线观看| 后天国语完整版免费观看| 国产高清激情床上av| 一级毛片高清免费大全| 桃红色精品国产亚洲av| 精品国产一区二区三区四区第35| 丁香六月欧美| 又大又爽又粗| 天天躁狠狠躁夜夜躁狠狠躁| 脱女人内裤的视频| 免费看十八禁软件| 亚洲成人精品中文字幕电影| 黄色a级毛片大全视频| 国产精品 国内视频| 国产男靠女视频免费网站| 最近最新中文字幕大全电影3 | av超薄肉色丝袜交足视频| 午夜影院日韩av| 怎么达到女性高潮| 国产精品久久视频播放| 亚洲国产毛片av蜜桃av| 一级毛片高清免费大全| 成人手机av| 久久婷婷人人爽人人干人人爱 | 免费看十八禁软件|