• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on the Reaction Mechanism of o-Aminophenol, Acetic Acid and Phosphorus Oxytrichloride One-pot to Form 2-Methyl Benzoxazole①

    2019-01-05 09:34:26ZHANGFuLan
    結(jié)構(gòu)化學(xué) 2018年12期

    ZHANG Fu-Lan

    ?

    Theoretical Study on the Reaction Mechanism of-Aminophenol, Acetic Acid and Phosphorus Oxytrichloride One-pot to Form 2-Methyl Benzoxazole①

    ZHANG Fu-Lan②

    (408003)

    The reaction mechanism of-aminophenol, acetic acid and phosphorus oxytrichlo- ride in one-pot to form 2-methyl benzoxazole was studied by density functional theory. The geometries of the reactants, transition states, intermediates and products were optimized at the GGA/PW91/DNP level. Vibration analysis was carried out to confirm the transition state structure. Two possible reaction pathways were investigated in this study. The result indicates that the reaction Re→TS1→IM1→TSA2→IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→P2is the main pathway, the activation energy of which is the lowest. Re→TS1→IM1 is the rate-limiting step, with the activation energy being 221.54 kJ·mol-1and the reaction heat being 10.06 kJ·mol-1. The dominant product predicted theoretically is in agreement with the experiment results.

    -aminophenol, acetic acid, phosphorus oxytrichloride, 2-methyl benzoxazole, density functional, reaction mechanism;

    1 INTRODUCTION

    Heterocyclic compounds exist widely in nature. It is the largest number of organic compounds. Benzo- xazoleis a kind of nitrogenous heterocyclic compounds which have been widely used. It is important for pilot skeleton and maternal in organic synthesis. Study on the synthesis of these com- pounds is one of the focuses in recent twenty years, because it has many physiological activities, drug activities, and so on[1, 2]. For example, they have been widely applied by antimicrobial[3], anticon- vulsant[4], antifungal[5], anti-inflammation[6], antitu- mor[7, 8], and so forth. According to relevant research, benzoxazoles were used as heat-resistant materials, because they have high heat resistance and corrosion resistance[9]. They have been widely applied by fluorescent brightener and scintillator[10, 11].

    In recent years, benzoxazoles are so widely used, and their synthesis reaction has become attractive in chemistry. There are many ways in the high-yield synthesis of benzoxazoles[12-17]. In particular, Tang. developed a new way[17], as shown in Fig. 1. Four new series of 2-alkyl, 2-aryl and 2-styryl benzoxazoles were synthesized by using-amino- phenol, acetic acid and phosphorus oxytrichloride in refluxing CHCl3in one-pot. Compared with the traditional methods, this method has the advantages of mild reaction conditions, simple operation, good yields, and easily available reaction substrate.However, the mechanism of these reactions still remains unclear. To make a better understanding of these reactions, we investigated the typical reaction mechanism of-aminophenol, acetic acid and phosphorus oxytrichloride one-pot to form 2-methyl benzoxazole by density functional theory (DFT). I hope that the research can provide a theoretical base for the synthesis of benzoxazoles. The computa- tional details are described in the next section. In section 3, we present the calculated results and discuss the reaction mechanism, followed by a conclusion in section 4.

    Fig. 1. Synthesis of 2-methyl benzoxazole

    2 CALCULATION METHODS

    All calculations have been performed using Dmol3code[18, 19]as implemented in Accelrys Materials Studio 5.0. The generalized gradient approximation (GGA) with the Perdew-Wang (PW91)[20]exchange-correlation functional is selected in the DFT calculations. All electrons are computationally inexpensive with good approxima- tion for elements with atomic numbers less than 21. The convergence criteria for geometry optimization are 2×10-5hartree, 0.004 hartree/?, 0.005 ?, and 1 × 10-5hartree for the energy, force, displacement, and selfconsistent field (SCF) density, respectively. Dmol3utilizes a basis set of numeric atomic func- tions, which are exact solutions to the Kohn-Sham equations for the atom[21]. The basis set of double numerical plus polarization (DNP) is used throughout the study.

    Preliminary transition state geometries are obtained using the integrated linear synchronous transit/quadratic synchronous transit (LST/QST) method[22]. All structures identified as stationary points are subject to full-frequency analysis to verify their classification as equilibrium geometries (zero imaginary frequencies) or transition states (one imaginary frequency). The solvent effects of species have also been acquired by COMSO.

    3 RESULTS AND DISCUSSION

    In this work, we have explored the reaction of acetic acid (Re1), phosphorus oxytrichloride (Re2), and-aminophenol (Re3), as shown in Fig. 2.The total energies, relative energies and frequencies of different compounds are listed in Table 1. The corresponding geometries of the reactants and products are shown in Fig. 3. The corresponding geometries of the intermediates and transition states are shown in Figs. 4 and 5, respectively. Thediagram of relative energies along the channels of reactions is shown in Fig. 6.

    Fig. 2. Processes for the synthesis of 2-methyl benzoxazole

    Table 1. Total Energies (E(a.u.)), Relative Energies (Erel/(kJ·mol-1))–and Frequencies ν (cm-1) of the Stationary Points on the Reaction Paths

    Fig. 3. Geometric parameters of the reactants and products (Bond length in nm and bond angle in degree)

    3. 1 Reaction mechanism analysis

    The reaction mechanism ofacetic acid (Re1),phosphorus oxytrichloride (Re2), and-amino- phenol (Re3) one-pot to form 2-methyl benzoxazole was studied by density functional theory at the GGA/PW91/DNP level. The first stage is that acetic acid and phosphorus oxytrichloride formed IM1, which is the substitution reaction. In the step, the hysroxyl bond of Re1 is replaced by the Cl(1) atom of Re2. Through a ring transition state TS1, IM1 and P1 are prepared. In this process, the activation energy is 221.54 kJ·mol-1, the heat of reaction is 10.06 kJ·mol-1and the only imaginary frequency is 255.60cm-1, as shown in Table 1.

    The C(1)–O(2) bonds are 0.1370 and 0.1958 nm in Re1 and TS1, respectively. The P(1)–Cl(1) bonds are 0.2028 and 0.2428 nm in Re2 and TS1, respectively. The C(1)–Cl(1) bonds are 0.2230 and 0.1829 nm in TS1 and IM1, respectively. The O(2)–P(1) bonds are 0.1814 and 0.1612 nm in TS1 and P1, respectively. The bond lengths of C(1)–O(2) and P(1)–Cl(1) are increased by 0.0588 and 0.0300 nm, while those of C(1)–Cl(1) and O(2)–P(1) are decreased by 0.0401 and 0.0202 nm, respectively. Obviously, the C(1)–O(2) and P(1)–Cl(1) bonds are partly broken, and the C(1)–Cl(1) and O(2)–P(1) bonds are partly formed in TS1. After the transition state TS1, intermediate IM1 and product P1 are formed.

    In the second stage, there are two possible reac- tion pathways from intermediate IM1 to the products P1 and P2: in paths A and B. The two reaction pathways are discussed as follows.

    3. 1. 1 Analysis of the chemical reaction mechanism of path A

    In path A,-aminophenol (Re3) form P2, in order of three stages of acylation, nucleophilic addition, and cyclization. Our calculations indicate that the whole reaction process consists of four steps, during which three intermediates and four transition states are formed.

    Firstly, with acylation reaction of compound IM1 and-aminophenol (Re3), compound IMA2 was prepared. In the process of forming IMA2, the NH2of Re3 reacts with the C(1)–Cl(1) of IM1. The H atom of NH2transfers to Cl(1), while the NH of NH2transfers to C(1). The acylation reaction occurs easily because the activation energy for the reaction from complex IM1 to TSA2 is 18.85 kJ·mol-1. As listed in Table 1, the heat of reaction is –30.14 kJ·mol-1and the only imaginary frequency is 146.30i cm-1. The N(1)–H(2) bonds are 0.1015 and 0.1419 nm in Re3 and TSA2, respectively. The C(1)–Cl(1) bonds are 0.1829 and 0.2477 nm in IM1 and TSA2, respectively. The C(1)–N(1) bonds are 0.2901 and 0.1382 nm in TSA2 and IMA2, respec- tively. The bond lengths of N(1)–H(2) and C(1)–Cl(1) are increased by 0.0404 and 0.0648 nm, while that of C(1)–N(1) is decreased by 0.1519 nm, respectively. Obviously, the N(1)–H(2) and C(1)– Cl(1) bonds are partly broken, and the C(1)–N(1) bond is partly formed in TSA2. After the reaction surpasses the transition state TSA2, the interme- diates IMA2 and HClare formed.

    Secondly, with nucleophilic addition reaction of compound IMA2 and phosphorus oxytrichloride (Re2), compound IMA3 was prepared. In the process of forming IMA3, the P(1) of phosphorus oxytrichloride transfers to the O(4) atom of OH in IMA2, while the H(4) atom of OH in IMA2 transfers to the Cl(1) of Re2. As listed in Table 1, the activation energy is 125.46 kJ·mol-1for the reaction from complex IMA2 to TSA3. To verify the process, we have located the ring transition state TSA3 (Fig. 5). For the TSA3 structure, the only imaginary frequency is 130.70·cm-1(Table 1). The analysis on the vibration modes indicates that this imaginary frequency is associated with Cl(1)–H(4) and P(1)–O(4) stretching motions. As listed in Figs. 3, 4, and 5, the O(4)–H(4) bonds are 0.0970 and 0.2266 nm in IMA2 and TSA3, respectively. The P(1)–Cl(1) bonds are 0.2028 and 0.2994 nm in Re2 and TSA3, respectively. The O(4)–P(1) bonds are 0.3450 and 0.1620 nm in TSA3 and IMA3, respectively. The bond lengths of O(4)–H(4) and P(1)–Cl(1) are increased, while that of O(4)–P(1) is decreased, respectively. Obviously, the O(4)–H(4) and P(1)–Cl(1) bonds are partly broken, and the O(4)–P(1) bond is partly formed in TSA3. After the transition state TSA3, and intermediate IMA3 and HClare formed.

    Subsequently, the IMA3 is isomerized. Rotating aroundC(2)–N(1) bond,IMA4 is prepared through transition state TSA4. In this process, the activation energy is 28.29 kJ·mol-1, the heat of reaction is 24.14 kJ·mol-1, and the only imaginary frequency is 73.67cm-1, as shown in Table 1.

    Finally, the IMA4 is isomerized. The imino H(3) atom transfers to the phenolic hydroxyl O(4) atom, and carbonyl O(1) crashes to C(3) on the benzene ring. Through a six-membered ring transition state TSA5, the main product P2 and by-product P1 are prepared. In this process, the activation energy is 71.92 kJ·mol-1, the heat of reaction is 67.77 kJ·mol-1, and the only imaginary frequency is 489.10cm-1, as shown in Table 1. The C(3)–O(4) bonds are 0.1406 and 0.2394 nm in IMA4 and TSA5, respectively. The N(1)–H(3) bonds are 0.1015 and 0.1030 nm in IMA4 and TSA5, respectively. The O(4)–H(3) bonds are 0.3098 and 0.0978 nm in TSA3 and P1, respectively. The C(3)–O(1) bonds are 0.2377 and 0.1379 nm in TSA5 and P2, respectively. The C(1)–N(1) bonds are 0.1392, 0.1311, and 1298 nm in IMA4, TSA5, and P2, respectively. The C(1)–O(1) bonds are 0.1222, 0.1237, and 1391 nm in IMA4, TSA5, and P2, respectively. The bond lengths of N(1)–H(3), C(3)–O(4), and C(1)–O(1) are increased, while those of C(3)–O(1), O(4)–H(3), and C(1)–N(1) are decreased, respectively. Obviously, the N(1)– H(3), C(3)–O(4), and C(1)–O(1) bonds are partly broken, and the C(3)–O(1), O(4)–H(3), and C(1)– N(1) bonds are partly formed in TSA5.

    Fig. 4. Geometric parameters of the intermediates (Bond length in nm)

    Fig. 5. Geometric parameters of the transition states (Bond length in nm)

    3. 1. 2 Analysis of chemical reaction mechanism of path B

    In path B,-aminophenol (Re3) forms P2, in order of three stages of nucleophilic addition, acylation, and cyclization. Similarly, in path A, our calculations indicate that the whole reaction process consists of four steps, during which three interme- diates and four transition states are formed, too.

    Firstly, similar to forming IMA3 in path A, with nucleophilic addition reaction of-aminophenol (Re3) and phosphorus oxytrichloride (Re2), com- pound IMB2 was prepared. In the process of forming IMB2, the P(1) of phosphorus oxytri- chloride transfers to the O(4) atom of OH in-aminophenol (Re3), while the H(4) atom of OH in-aminophenol (Re3) transfers to the Cl(1) of Re2. As listed in Table 1, the activation energy is 153.58 kJ·mol-1for the reaction. To verify the process, we have located the ring transition state TSB2 (Fig. 5). For the TSB2 structure, the only imaginary frequency is 212.40cm-1(Table 1). The analysis on the vibration modes indicates that this imaginary frequency is associated with Cl(1)–H(4) and P(1)–O(4) stretching motions. The O(4)–H(4) bonds are 0.0971 and 0.1472 nm in Re3 and TSB2, respectively. The P(1)–Cl(1) bonds are 0.2028 and 0.2965 nm in Re2 and TSB2, respectively. The O(4)–P(1) bonds are 0.2854 and 0.1607 nm in TSB2 and IMB2, respectively. The bond lengths of O(4)–H(4) and P(1)–Cl(1) are increased, while that of O(4)–P(1) is decreased, respectively. Obviously, the O(4)–H(4) and P(1)–Cl(1) bonds are partly broken, and the O(4)–P(1) bond is partly formed in TSB2. After the transition state TSB2, the intermediates IMB2 and HClare formed. Compared with path A, the bond length of O(4)–P(1) is much shorter because there is a hydrogen bond between O(3) of phosphorus oxytrichloride and amino H(3) of-aminophenol.

    Secondly, similar to forming IMA2 in path A, with the acylation reaction of compounds IM1 and IMB2, compound IMB3 was prepared. In the process of forming IMB3, the NH2of IMB2 reacts with the C(1)–Cl(1) of IM1. The H atom of NH2transfers to Cl(1), while the NH of NH2transfers to C(1). The acylation reaction occurs easily because the activation energy for the reaction from complex IMB3 to TSB3 is 105.50 kJ·mol-1. As listed in Table 1, the heat of reaction is –3.27 kJ·mol-1, and the only imaginary frequency is 422.00cm-1. The N(1)–H(2) bonds are 0.1015 and 0.1067 nm in IMB2 and TSB3, respectively. The C(1)–Cl(1) bonds are 0.1829 and 0.2481 nm in IM1 and TSB3, respectively. The C(1)–N(1) bonds are 0.1898 and 0.1396 nm in TSB3 and IMB3, respectively. The bond lengths of N(1)– H(2) and C(1)–Cl(1) are increased by 0.0052 and 0.0652 nm, while that of C(1)–N(1) is decreased by 0.0502 nm, respectively. Obviously, the N(1)–H(2) and C(1)–Cl(1) bonds are partly broken, and the C(1)–N(1) bond is partly formed in TSB3. After the transition state TSB3, intermediates IMB3 and HClare formed.

    Subsequently,the IMB3 is isomerized, and the imino proton H(3) transfers to the carbonyl O(1), thus papering compound IMB4 through a four- membered ring transition state TSB4. In this process, the activation energy is 192.85 kJ·mol-1,the heat of reaction is 49.26 kJ·mol-1and the only imaginary frequency is 1730.70cm-1, as shown in Table 1. The C(1)–O(1) bonds are 0.1226, 0.1294, and 0.1368 nm in IMB3, TSB4, and IMB4, respectively. The C(1)–N(1) bonds are 0.1396, 0.1327, and 0.1277 nm in IMB3, TSB4, and IMB4, respectively. The N(1)–H(3) bonds are 0.1019 and 0.1335 nm in IMB3 and TSB4, respectively. The O(1)–H(3) bonds are 0.1332 and 0.0974 nm in TSB4 and IMB4, respectively. The bond lengths of N(1)–H(3) and C(1)–O(1) are increased, while those of C(1)–N(1) and O(1)–H(3) are decreased, respectively. Meanwhile, the C(1)=N(1) is formed.

    Finally, the IMB4 is isomerized, the hydroxy H(3) atom transfers to the phenolic hydroxyl O(3) atom, and the hydroxy O(1) crashes to C(3) on the benzene ring. Through a six-membered ring transition state TSB5, the main product P2 and the by-product P1 are prepared. In this process, the activation energy is 188.60 kJ·mol-1,the heat of reaction is –33.86 kJ·mol-1, and the only imaginary frequency is 343.90cm-1, as shown in Table 1. The C(3)–O(4) bonds are 0.1411 and 0.2114 nm in IMB4 and TSB5, respectively. The O(1)–H(3) bonds are 0.0974 and 0.1091 nm in IMB4 and TSB5, respectively. The O(3)–H(3) bonds are 0.1384 and 0.0978 nm in TSB5 and P1, respectively. The C(3)–O(1) bonds are 0.2146 and 0.1379 nm in TSB5 and P2, respectively. The bond lengths of O(1)–H(3) and C(3)–O(4) are increased, while those of C(3)–O(1) and O(3)–H(3) are decreased, respectively.

    The configuration parameters of the reaction processes are shown in Figs. 3, 4 and 5, respectively.

    3. 2 Energy analysis

    As shown in Fig. 6, the microcosmic reaction mechanism of-aminophenol, acetic acid and phosphorus oxytrichloride has two possible reaction pathways in the gas phase.The first stage is that acetic acid and phosphorus oxytrichloride formed IM1, which is the substitution reaction. In this process, the formation of intermediate IM1 is so difficult because the activation energy for the reaction from Re to TS1 is 221.54 kJ·mol-1, and Re→TS1→IM1 is the rate-limiting step in the whole reaction process. Subsequently, the results show the two possible reaction pathways from the interme- diate IM1 to the 2-methyl benzoxazole. In path A, IMA2→TSA3→IMA3 is the rate-limiting step and the activation energy is 125.46 kJ·mol-1. In path B, IMB3→TSB4→IMB4 is the rate-limiting step and the activation energy is 192.85 kJ·mol-1. By contrast, it is better to choose path A in the course of forming P2. On the other hand, in the salvation of CHCl3,IM1→TSA2→IMA2 is the rate-limiting step and the activation energy is 270.86 kJ·mol-1in path A, while IMB3→TSB4→IMB4 is the rate-limiting step and the activation energy is 357.47 kJ·mol-1in path B. Path A is also the superior path in these two paths.

    Fig. 6. Diagram of relative energies along the channels of the reactions

    Through the preceding analyses we can conclude that the main pathway of the microcosmic reaction mechanism of-aminophenol, acetic acid and phos- phorus oxytrichloride is Re→TS1→IM1→TSA2→ IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→ P2. The activation energy of Re→TS1→IM1, the rate-control step, in the pathway is lower by two feasible reaction pathways. The energy barrier and the heat of formation of the rate-limiting stepare 221.54 and 10.06 kJ?mol-1, respectively. The P2 is the main product of this reaction, which is in good accordance with the experiment[17].

    4 CONCLUSION

    The microcosmic reaction mechanism of-amino- phenol, acetic acid and phosphorus oxytrichloride has been investigated in refluxing CHCl3in one-pot to form 2-methyl benzoxazole by density functional theory (DFT) at the GGA/PW91/DNP level. We optimize the geometric configurations of reactants, intermediates, transition states, and products. The energy analysis calculation approves the authenticity of intermediates and transition states. According to our calculations we found two feasible reaction pathways. The main pathway of the reaction is Re→TS1→IM1→TSA2→IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→P2. The rate-limiting step is Re→TS1→IM1, for which the energy barrier and the heat of formation of are 221.54 and 10.06 kJ?mol-1, respectively. The energy barrier of the rate-limiting step is higher, so this reaction must be heated, which is in agreement with the experimental conditions under microwave irradiation[17]. The dominant product predicted theoretically is 2-methyl benzoxazole, which is in agreement with the experi- mental results in reference[17].

    (1) Seenaiah, D.; Reddy, P. R.; Reddy, G. M.; Padmaja, A.; Padmavathi, V.; Siva Krishna, N. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole.2014, 77, 1-7.

    (2) Kaur, A.; Wakode, S.; Pathak, D. P. Benzoxazole: the molecule of diverse pharmacological importance.2015, 7, 16-23.

    (3) Temiz-Arpaci, O.; Aki-Sener, E.; Yal?in, I.; Altanlar, N. Synthesis and antimicrobial activity of some 2-[-substituted-phenyl]benzoxazol- 5-yl-arylcarboxyamides.() 2002, 335, 283-288.

    (4) Tan, Y. D.; He, X. Y.; Rao, B. Q.; Cheng, B. B.; Song, M. X.; Deng, X. Q. Synthesis and evaluation of the anticonvulsant activities of triazole-containing benzo[]oxazoles.2016, 36, 2449-2455.

    (5) Modiya, P. R.; Patel, C. N. Synthesis and screening of antibacterial and antifungal activity of 5-chloro-1,3-benzoxazol-2(3h)-one derivatives.. 2012, 2, 29-38.

    (6) Iyer, V. B.; Gurupadayya, B. M.; Sairam, K. V.; Inturi, B.; Chandan, R. S.; Tengli, A. K. Anti-inflammatory activity of 1,3,4-oxadiazoles derived from benzoxazole.2015, 2, 233-241.

    (7) Paramashivappa, R.; Phani Kumar, P.; Subba Rao, P. V.; Srinivasa Rao, A.Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors.2003, 13, 657-660.

    (8) Wang, J.; Zhang, L.; Yao, Q. Z. Synthesis and anti-tumor activities of novel pyrazole derivatives containing 1,3,4-oxadiazole.2014, 22, 730-733.

    (9) Wee, D.; Yoo, S.; Kang, Y. H.; King, Y. H.; Ka, J. W.; Cho, S. Y.; Lee, C.; Ryu, J.; Yi, M. Y.; Jang, K. S.Poly(imide-benzoxazole)gate insulators with high thermal resistance for solution processed flexible indium-zinc oxide thin-film transistors.2014, 2, 6395-6401.

    (10) Dick, P. F.; Coelho, F. L.; Rodembusch, F. S.; Campo, L. F. Amphiphilic ESIPT benzoxazole derivatives as prospective fluorescent membrane probes.2014, 55, 3024-3029.

    (11) Ge, G. Z. Synthesis of bis(2-benzoxazolyl) ethylene series fluorescent brighteners.2017, 54, 24-28.

    (12) Xiao, L. W.; Gao, H. J.; Kong, J.; Liu, G. X.; Peng, X. X.; Wang, S. J. Progress in the synthesis of 2-substituted benzoxazoles derivatives.2014, 34, 1048-1060.

    (13) Sharma, H.; Sing, N.; Jang, D. O. A ball-milling strategy for the synthesis of benzothiazole, benzimidazole and benzoxazole derivatives under solvent-free conditions.2014, 16, 4922-4930.

    (14) Anand, M.; Ranjitha, A.; Himaja, M. Silica sulfuric acid catalyzed microwave-assisted synthesis of substituted benzoxazoles and their antimicrobial activity.2011, 2, 211-213.

    (15) Endo, Y.; Backvall, J. E. Biomimetic oxidative coupling of benzylamines and 2-aminophenols: synthesis of enzoxazoles.2012, 18, 13609-13613.

    (16) Mao, Z. F.; Wang, Z.; Xu, Z. Q.; Huang, F.; Yu, Z. K.; Wang, R. Copper(II)-mediated dehydrogenative cross-coupling of heteroarenes.2012, 14, 3854-3857.

    (17) Tang, Y. L.; Du, Z. B.; Jiang, G. F. A one-pot synthetic route to substituted benzoxazoles.() 2016, 47, 408-413.

    (18) Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules.1990, 92, 508-517.

    (19) Delley, B. From molecules to solids with the DMol3approach.2000, 113, 7756-7764.

    (20) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy.1992, 45, 13244-13249.

    (21) Delley, B. Modern density functional theory: a tool for chemistry, in: theoretical and computational chemistry, Eds.: Seminario, J. M.; Politzer, P. Elsevier, Amsterdam 1995, 2.

    (22) Halgren, T. A.; Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states.. 1977, 49, 225-232.

    3 April 2018;

    13 August 2018

    the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1601215) and the Ministry of Education “Chunhui Plan” (Z2016177)

    . Born in 1976, lecture, majoring in quantum chemistry. E-mail: cjsy0606@163.com

    10.14102/j.cnki.0254-5861.2011-2032

    乱人伦中国视频| 日产精品乱码卡一卡2卡三| 成人国产麻豆网| 高清av免费在线| 日本爱情动作片www.在线观看| 国产片特级美女逼逼视频| 韩国高清视频一区二区三区| 少妇 在线观看| videos熟女内射| 18+在线观看网站| 精品熟女少妇av免费看| 国产伦精品一区二区三区视频9| 有码 亚洲区| 高清欧美精品videossex| 熟妇人妻不卡中文字幕| h视频一区二区三区| 看十八女毛片水多多多| 欧美bdsm另类| 我要看日韩黄色一级片| 麻豆乱淫一区二区| 久久亚洲国产成人精品v| 高清午夜精品一区二区三区| 尾随美女入室| 亚洲一区二区三区欧美精品| 成人特级av手机在线观看| 我要看黄色一级片免费的| 亚洲av免费高清在线观看| 久久 成人 亚洲| 中国国产av一级| 国产亚洲最大av| 高清不卡的av网站| 在线亚洲精品国产二区图片欧美 | 欧美一级a爱片免费观看看| 国产成人一区二区在线| 三级国产精品欧美在线观看| 日本vs欧美在线观看视频 | 午夜免费观看性视频| 久久女婷五月综合色啪小说| 欧美精品人与动牲交sv欧美| 成人国产麻豆网| 国产成人免费观看mmmm| 中文字幕av电影在线播放| 另类精品久久| 久久精品国产亚洲av涩爱| 免费高清在线观看视频在线观看| 国产日韩一区二区三区精品不卡 | 亚洲欧美中文字幕日韩二区| 久久精品熟女亚洲av麻豆精品| av.在线天堂| 久久精品久久久久久噜噜老黄| 校园人妻丝袜中文字幕| 蜜桃久久精品国产亚洲av| kizo精华| 人妻夜夜爽99麻豆av| 国产一区二区在线观看av| 视频中文字幕在线观看| 亚洲精品第二区| 中文在线观看免费www的网站| 大陆偷拍与自拍| 日韩不卡一区二区三区视频在线| 一边亲一边摸免费视频| 日韩亚洲欧美综合| 精品视频人人做人人爽| 久久久久久久久久久久大奶| 国产极品粉嫩免费观看在线 | 欧美精品一区二区大全| 亚洲一级一片aⅴ在线观看| 亚洲,一卡二卡三卡| 男男h啪啪无遮挡| 99热这里只有是精品在线观看| 成人美女网站在线观看视频| 亚洲国产日韩一区二区| 制服丝袜香蕉在线| 国产精品一区二区在线观看99| 国产免费一级a男人的天堂| 国产精品一区二区在线观看99| 在线观看免费日韩欧美大片 | 欧美另类一区| 黄色视频在线播放观看不卡| 亚洲精品一区蜜桃| 夜夜看夜夜爽夜夜摸| 婷婷色综合大香蕉| 少妇的逼好多水| 亚洲综合精品二区| av在线老鸭窝| 国产在线视频一区二区| 伊人亚洲综合成人网| 日韩大片免费观看网站| 日韩免费高清中文字幕av| 三上悠亚av全集在线观看 | 日韩中文字幕视频在线看片| 国模一区二区三区四区视频| 亚洲不卡免费看| 99re6热这里在线精品视频| 国产黄频视频在线观看| 久久 成人 亚洲| 超碰97精品在线观看| 国产精品国产av在线观看| 永久网站在线| 黑人高潮一二区| 亚洲婷婷狠狠爱综合网| 欧美一级a爱片免费观看看| 大陆偷拍与自拍| 黑人高潮一二区| 久久久久网色| av专区在线播放| 国产有黄有色有爽视频| 色婷婷av一区二区三区视频| 亚洲高清免费不卡视频| 国产亚洲av片在线观看秒播厂| 日本黄大片高清| 亚洲av男天堂| 人人澡人人妻人| 妹子高潮喷水视频| 亚洲丝袜综合中文字幕| 欧美精品一区二区大全| 搡老乐熟女国产| 嘟嘟电影网在线观看| 伦精品一区二区三区| 日本与韩国留学比较| 成人漫画全彩无遮挡| 狂野欧美白嫩少妇大欣赏| 97超碰精品成人国产| 国产午夜精品久久久久久一区二区三区| 成人影院久久| 麻豆精品久久久久久蜜桃| 夜夜爽夜夜爽视频| 欧美激情极品国产一区二区三区 | 99九九在线精品视频 | 国产精品成人在线| 久久ye,这里只有精品| 精品人妻熟女av久视频| 高清视频免费观看一区二区| 3wmmmm亚洲av在线观看| 免费观看的影片在线观看| 久久久a久久爽久久v久久| av天堂中文字幕网| 成人国产av品久久久| 亚洲av二区三区四区| 午夜免费男女啪啪视频观看| 少妇被粗大的猛进出69影院 | 久久鲁丝午夜福利片| 亚洲精品aⅴ在线观看| 99久久精品热视频| 国产 精品1| 精品99又大又爽又粗少妇毛片| 日韩熟女老妇一区二区性免费视频| 极品人妻少妇av视频| 国内精品宾馆在线| 国产中年淑女户外野战色| 内地一区二区视频在线| 日韩欧美 国产精品| 亚洲精品国产成人久久av| 99视频精品全部免费 在线| 久久免费观看电影| 97在线视频观看| 91精品国产九色| 最近中文字幕2019免费版| 日韩av免费高清视频| 国产亚洲一区二区精品| 伦理电影大哥的女人| 97超视频在线观看视频| 亚洲精品成人av观看孕妇| 不卡视频在线观看欧美| 啦啦啦在线观看免费高清www| 女性被躁到高潮视频| 亚洲无线观看免费| 97超视频在线观看视频| 三级国产精品片| 亚洲经典国产精华液单| 成人影院久久| 中文字幕免费在线视频6| 日本-黄色视频高清免费观看| 伦理电影免费视频| 久久久久久久久久久丰满| 高清午夜精品一区二区三区| 一级毛片久久久久久久久女| 亚洲第一av免费看| 3wmmmm亚洲av在线观看| 国产美女午夜福利| 色网站视频免费| 国产精品欧美亚洲77777| 丝袜在线中文字幕| 日本免费在线观看一区| 日韩成人av中文字幕在线观看| 内地一区二区视频在线| 这个男人来自地球电影免费观看 | 99热全是精品| 国产精品一区二区在线观看99| 日韩av免费高清视频| 男人狂女人下面高潮的视频| 久久人妻熟女aⅴ| 丰满乱子伦码专区| 91成人精品电影| 国产精品国产三级专区第一集| 六月丁香七月| 亚洲性久久影院| 女人精品久久久久毛片| 另类精品久久| 男的添女的下面高潮视频| 免费观看性生交大片5| 观看免费一级毛片| 欧美日韩精品成人综合77777| 亚洲四区av| 国产精品99久久久久久久久| 中文精品一卡2卡3卡4更新| 超碰97精品在线观看| 免费观看av网站的网址| 中国国产av一级| 精品亚洲成a人片在线观看| 这个男人来自地球电影免费观看 | 丝瓜视频免费看黄片| 久久久久久久久久久久大奶| 一级毛片我不卡| 另类亚洲欧美激情| 色吧在线观看| 狂野欧美白嫩少妇大欣赏| 久久久精品免费免费高清| 午夜免费观看性视频| 夜夜看夜夜爽夜夜摸| 偷拍熟女少妇极品色| 中文字幕人妻熟人妻熟丝袜美| 亚洲一区二区三区欧美精品| 人妻人人澡人人爽人人| 人人妻人人爽人人添夜夜欢视频 | 妹子高潮喷水视频| 91久久精品电影网| 好男人视频免费观看在线| 国产在线男女| 亚洲国产欧美在线一区| 丝瓜视频免费看黄片| 日韩av在线免费看完整版不卡| 嫩草影院入口| 蜜桃在线观看..| 亚洲av.av天堂| 国产精品一二三区在线看| 高清午夜精品一区二区三区| 91在线精品国自产拍蜜月| 成人综合一区亚洲| av免费在线看不卡| 欧美3d第一页| 亚洲av欧美aⅴ国产| 啦啦啦视频在线资源免费观看| 久久久精品免费免费高清| 精品久久久久久电影网| 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 久久久久精品性色| 人人妻人人澡人人爽人人夜夜| 亚洲精品国产成人久久av| 国产日韩欧美亚洲二区| 99热国产这里只有精品6| 少妇人妻精品综合一区二区| 成人毛片60女人毛片免费| 日日摸夜夜添夜夜爱| 欧美变态另类bdsm刘玥| 九色成人免费人妻av| 黑人巨大精品欧美一区二区蜜桃 | 免费av不卡在线播放| 伦理电影免费视频| 日韩电影二区| 精品久久久久久电影网| 中文字幕免费在线视频6| 午夜日本视频在线| 日本猛色少妇xxxxx猛交久久| 国产高清国产精品国产三级| 边亲边吃奶的免费视频| 亚洲天堂av无毛| 精品午夜福利在线看| 18禁在线无遮挡免费观看视频| 97在线人人人人妻| 高清黄色对白视频在线免费看 | 99热6这里只有精品| 蜜桃在线观看..| 亚洲中文av在线| 男人舔奶头视频| 自拍欧美九色日韩亚洲蝌蚪91 | 大陆偷拍与自拍| 丰满人妻一区二区三区视频av| 中文乱码字字幕精品一区二区三区| 久久婷婷青草| 中文欧美无线码| 日日摸夜夜添夜夜爱| 国产乱人偷精品视频| 亚洲av日韩在线播放| 国产亚洲最大av| 男人狂女人下面高潮的视频| 女人久久www免费人成看片| 日韩制服骚丝袜av| 欧美 亚洲 国产 日韩一| 精品一品国产午夜福利视频| 日韩av不卡免费在线播放| 欧美日韩视频高清一区二区三区二| 丝瓜视频免费看黄片| 日本黄大片高清| 18禁在线播放成人免费| 亚洲三级黄色毛片| 国产亚洲5aaaaa淫片| 欧美另类一区| av国产精品久久久久影院| 国产精品一二三区在线看| 日韩在线高清观看一区二区三区| 在线观看av片永久免费下载| 日韩三级伦理在线观看| 美女cb高潮喷水在线观看| 国产乱人偷精品视频| 寂寞人妻少妇视频99o| 极品人妻少妇av视频| 亚洲成人手机| 高清在线视频一区二区三区| 久久99一区二区三区| 国产精品一区二区在线不卡| 久久久久久久国产电影| 精品熟女少妇av免费看| 丰满乱子伦码专区| 狠狠精品人妻久久久久久综合| 你懂的网址亚洲精品在线观看| 午夜激情久久久久久久| 麻豆精品久久久久久蜜桃| 国产黄片美女视频| 久久久国产一区二区| 性色av一级| 精品国产一区二区三区久久久樱花| 爱豆传媒免费全集在线观看| tube8黄色片| 亚洲国产精品专区欧美| 亚洲不卡免费看| 亚洲熟女精品中文字幕| 极品教师在线视频| 精品久久久久久久久亚洲| 国产69精品久久久久777片| 一级,二级,三级黄色视频| 精品一区二区三区视频在线| 交换朋友夫妻互换小说| 亚洲精品日本国产第一区| 欧美区成人在线视频| 久久韩国三级中文字幕| 久久久久国产网址| 久久 成人 亚洲| 看免费成人av毛片| 亚洲,一卡二卡三卡| 亚洲久久久国产精品| 亚洲国产精品一区三区| 亚洲无线观看免费| 青青草视频在线视频观看| 在线播放无遮挡| av一本久久久久| a级一级毛片免费在线观看| 国产一区亚洲一区在线观看| 国产色婷婷99| 有码 亚洲区| 久久狼人影院| 国产成人精品婷婷| 成年女人在线观看亚洲视频| 亚洲欧洲日产国产| 欧美一级a爱片免费观看看| 免费不卡的大黄色大毛片视频在线观看| 亚洲图色成人| 国产成人免费观看mmmm| 亚洲不卡免费看| 国产黄色免费在线视频| 一级毛片久久久久久久久女| 热re99久久精品国产66热6| 国产免费又黄又爽又色| 免费观看在线日韩| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩精品成人综合77777| 建设人人有责人人尽责人人享有的| 2022亚洲国产成人精品| 亚洲精品成人av观看孕妇| 亚洲一区二区三区欧美精品| 国产中年淑女户外野战色| 亚洲精品aⅴ在线观看| 成年人午夜在线观看视频| 高清黄色对白视频在线免费看 | 国产黄频视频在线观看| 婷婷色av中文字幕| 69精品国产乱码久久久| 中文字幕制服av| 日韩伦理黄色片| 成年av动漫网址| 成人国产麻豆网| 午夜精品国产一区二区电影| 人人妻人人澡人人看| 亚洲精品乱码久久久v下载方式| 精品国产一区二区久久| 又爽又黄a免费视频| 久久久久久久久大av| 国产亚洲av片在线观看秒播厂| 亚洲一级一片aⅴ在线观看| tube8黄色片| 在线观看三级黄色| 午夜视频国产福利| 国产精品女同一区二区软件| 十八禁网站网址无遮挡 | av.在线天堂| 亚洲va在线va天堂va国产| 欧美日韩一区二区视频在线观看视频在线| 女性被躁到高潮视频| 欧美精品一区二区大全| 麻豆乱淫一区二区| 免费观看a级毛片全部| 中文字幕制服av| 日韩不卡一区二区三区视频在线| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲5aaaaa淫片| 久久精品久久久久久久性| 成人黄色视频免费在线看| 中文字幕亚洲精品专区| 99热网站在线观看| 欧美97在线视频| 九色成人免费人妻av| 久久久欧美国产精品| 久久综合国产亚洲精品| 国产黄片美女视频| 男人和女人高潮做爰伦理| 纵有疾风起免费观看全集完整版| 三级国产精品片| 亚洲熟女精品中文字幕| 精品亚洲乱码少妇综合久久| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 国产精品女同一区二区软件| 三级经典国产精品| 一本大道久久a久久精品| 成年美女黄网站色视频大全免费 | 免费人成在线观看视频色| 免费久久久久久久精品成人欧美视频 | 2022亚洲国产成人精品| 免费看av在线观看网站| 亚洲美女视频黄频| 成人美女网站在线观看视频| av一本久久久久| 麻豆成人av视频| 精品少妇久久久久久888优播| 女人久久www免费人成看片| 欧美日韩国产mv在线观看视频| 黑丝袜美女国产一区| 欧美 亚洲 国产 日韩一| 美女大奶头黄色视频| 丝袜脚勾引网站| 免费高清在线观看视频在线观看| 久热久热在线精品观看| 久久久久久久久大av| 日本欧美视频一区| 久久影院123| 久久久久国产网址| 欧美日韩国产mv在线观看视频| 亚洲第一区二区三区不卡| 熟女人妻精品中文字幕| 自拍偷自拍亚洲精品老妇| 亚洲av不卡在线观看| 色婷婷av一区二区三区视频| 国产免费又黄又爽又色| 亚洲欧洲日产国产| 人妻一区二区av| 久久国产亚洲av麻豆专区| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 黄色配什么色好看| 日本vs欧美在线观看视频 | 久久鲁丝午夜福利片| 亚洲精品乱久久久久久| 99热6这里只有精品| 色网站视频免费| 偷拍熟女少妇极品色| 亚洲av不卡在线观看| 日本黄大片高清| 视频中文字幕在线观看| 午夜影院在线不卡| 国产精品偷伦视频观看了| 国产精品熟女久久久久浪| 亚洲久久久国产精品| 色吧在线观看| 久久精品夜色国产| 在线天堂最新版资源| 一本久久精品| 男人舔奶头视频| 午夜精品国产一区二区电影| 国产精品国产三级国产av玫瑰| 亚洲av成人精品一区久久| 噜噜噜噜噜久久久久久91| 国产精品一区二区三区四区免费观看| 2021少妇久久久久久久久久久| 亚洲精品自拍成人| 亚洲国产成人一精品久久久| xxx大片免费视频| 久久毛片免费看一区二区三区| 日韩成人av中文字幕在线观看| 亚洲成人av在线免费| 精品人妻熟女av久视频| 国产熟女午夜一区二区三区 | 不卡视频在线观看欧美| 久久影院123| 黄色欧美视频在线观看| videos熟女内射| 美女大奶头黄色视频| 好男人视频免费观看在线| 久久女婷五月综合色啪小说| 一二三四中文在线观看免费高清| 国产伦理片在线播放av一区| 久久综合国产亚洲精品| 国产在线免费精品| 国产高清有码在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 嫩草影院新地址| 97超碰精品成人国产| 亚洲欧洲精品一区二区精品久久久 | 18禁动态无遮挡网站| 亚州av有码| 久久久欧美国产精品| 少妇猛男粗大的猛烈进出视频| 寂寞人妻少妇视频99o| 国产亚洲一区二区精品| 亚洲美女视频黄频| 国产伦精品一区二区三区四那| 亚洲色图综合在线观看| av福利片在线观看| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 97在线视频观看| 两个人免费观看高清视频 | 亚洲三级黄色毛片| 黄色怎么调成土黄色| 插逼视频在线观看| 国产精品一二三区在线看| 美女国产视频在线观看| 日韩在线高清观看一区二区三区| 欧美日韩国产mv在线观看视频| 亚洲av欧美aⅴ国产| 中文字幕制服av| 国产亚洲欧美精品永久| 国产精品一区二区三区四区免费观看| 麻豆成人午夜福利视频| av福利片在线| 观看免费一级毛片| 一级毛片 在线播放| 观看免费一级毛片| 精品一区在线观看国产| 国产av精品麻豆| 韩国高清视频一区二区三区| 久久久久视频综合| 亚洲国产日韩一区二区| 国产精品一区www在线观看| 日本午夜av视频| 美女中出高潮动态图| 日日爽夜夜爽网站| 久久久亚洲精品成人影院| 乱人伦中国视频| 中国国产av一级| 夜夜看夜夜爽夜夜摸| 婷婷色av中文字幕| 国产国拍精品亚洲av在线观看| 大香蕉久久网| 亚洲欧美一区二区三区国产| 亚洲国产精品专区欧美| 人妻一区二区av| 一本一本综合久久| 99热国产这里只有精品6| 国产av一区二区精品久久| 王馨瑶露胸无遮挡在线观看| 只有这里有精品99| 在线观看一区二区三区激情| 校园人妻丝袜中文字幕| 91久久精品电影网| 国产在线一区二区三区精| 亚洲av电影在线观看一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 国产精品伦人一区二区| 日本猛色少妇xxxxx猛交久久| 黄色日韩在线| 久久精品久久久久久久性| 777米奇影视久久| 五月开心婷婷网| 一级黄片播放器| 日韩三级伦理在线观看| 岛国毛片在线播放| 亚洲精品成人av观看孕妇| 一本—道久久a久久精品蜜桃钙片| 精品人妻熟女毛片av久久网站| 丝袜脚勾引网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品999| 高清欧美精品videossex| 最黄视频免费看| 日韩欧美一区视频在线观看 | 亚洲激情五月婷婷啪啪| 国产亚洲av片在线观看秒播厂| 日本爱情动作片www.在线观看| 国内少妇人妻偷人精品xxx网站| 高清在线视频一区二区三区| 日韩成人av中文字幕在线观看| av网站免费在线观看视频| 十八禁高潮呻吟视频 | 亚洲第一区二区三区不卡| 中文字幕制服av| 搡老乐熟女国产| 寂寞人妻少妇视频99o| 蜜桃久久精品国产亚洲av| 欧美性感艳星| 91久久精品电影网| 国产日韩欧美亚洲二区| 啦啦啦中文免费视频观看日本| 亚洲精品乱码久久久久久按摩| 丝袜喷水一区| 91精品国产国语对白视频| 亚洲精品,欧美精品| 免费人成在线观看视频色| 成人无遮挡网站| 五月伊人婷婷丁香| 亚洲精华国产精华液的使用体验| 国产精品熟女久久久久浪| 亚洲国产av新网站| 人妻一区二区av| 日韩 亚洲 欧美在线|