• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on the Reaction Mechanism of o-Aminophenol, Acetic Acid and Phosphorus Oxytrichloride One-pot to Form 2-Methyl Benzoxazole①

    2019-01-05 09:34:26ZHANGFuLan
    結(jié)構(gòu)化學(xué) 2018年12期

    ZHANG Fu-Lan

    ?

    Theoretical Study on the Reaction Mechanism of-Aminophenol, Acetic Acid and Phosphorus Oxytrichloride One-pot to Form 2-Methyl Benzoxazole①

    ZHANG Fu-Lan②

    (408003)

    The reaction mechanism of-aminophenol, acetic acid and phosphorus oxytrichlo- ride in one-pot to form 2-methyl benzoxazole was studied by density functional theory. The geometries of the reactants, transition states, intermediates and products were optimized at the GGA/PW91/DNP level. Vibration analysis was carried out to confirm the transition state structure. Two possible reaction pathways were investigated in this study. The result indicates that the reaction Re→TS1→IM1→TSA2→IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→P2is the main pathway, the activation energy of which is the lowest. Re→TS1→IM1 is the rate-limiting step, with the activation energy being 221.54 kJ·mol-1and the reaction heat being 10.06 kJ·mol-1. The dominant product predicted theoretically is in agreement with the experiment results.

    -aminophenol, acetic acid, phosphorus oxytrichloride, 2-methyl benzoxazole, density functional, reaction mechanism;

    1 INTRODUCTION

    Heterocyclic compounds exist widely in nature. It is the largest number of organic compounds. Benzo- xazoleis a kind of nitrogenous heterocyclic compounds which have been widely used. It is important for pilot skeleton and maternal in organic synthesis. Study on the synthesis of these com- pounds is one of the focuses in recent twenty years, because it has many physiological activities, drug activities, and so on[1, 2]. For example, they have been widely applied by antimicrobial[3], anticon- vulsant[4], antifungal[5], anti-inflammation[6], antitu- mor[7, 8], and so forth. According to relevant research, benzoxazoles were used as heat-resistant materials, because they have high heat resistance and corrosion resistance[9]. They have been widely applied by fluorescent brightener and scintillator[10, 11].

    In recent years, benzoxazoles are so widely used, and their synthesis reaction has become attractive in chemistry. There are many ways in the high-yield synthesis of benzoxazoles[12-17]. In particular, Tang. developed a new way[17], as shown in Fig. 1. Four new series of 2-alkyl, 2-aryl and 2-styryl benzoxazoles were synthesized by using-amino- phenol, acetic acid and phosphorus oxytrichloride in refluxing CHCl3in one-pot. Compared with the traditional methods, this method has the advantages of mild reaction conditions, simple operation, good yields, and easily available reaction substrate.However, the mechanism of these reactions still remains unclear. To make a better understanding of these reactions, we investigated the typical reaction mechanism of-aminophenol, acetic acid and phosphorus oxytrichloride one-pot to form 2-methyl benzoxazole by density functional theory (DFT). I hope that the research can provide a theoretical base for the synthesis of benzoxazoles. The computa- tional details are described in the next section. In section 3, we present the calculated results and discuss the reaction mechanism, followed by a conclusion in section 4.

    Fig. 1. Synthesis of 2-methyl benzoxazole

    2 CALCULATION METHODS

    All calculations have been performed using Dmol3code[18, 19]as implemented in Accelrys Materials Studio 5.0. The generalized gradient approximation (GGA) with the Perdew-Wang (PW91)[20]exchange-correlation functional is selected in the DFT calculations. All electrons are computationally inexpensive with good approxima- tion for elements with atomic numbers less than 21. The convergence criteria for geometry optimization are 2×10-5hartree, 0.004 hartree/?, 0.005 ?, and 1 × 10-5hartree for the energy, force, displacement, and selfconsistent field (SCF) density, respectively. Dmol3utilizes a basis set of numeric atomic func- tions, which are exact solutions to the Kohn-Sham equations for the atom[21]. The basis set of double numerical plus polarization (DNP) is used throughout the study.

    Preliminary transition state geometries are obtained using the integrated linear synchronous transit/quadratic synchronous transit (LST/QST) method[22]. All structures identified as stationary points are subject to full-frequency analysis to verify their classification as equilibrium geometries (zero imaginary frequencies) or transition states (one imaginary frequency). The solvent effects of species have also been acquired by COMSO.

    3 RESULTS AND DISCUSSION

    In this work, we have explored the reaction of acetic acid (Re1), phosphorus oxytrichloride (Re2), and-aminophenol (Re3), as shown in Fig. 2.The total energies, relative energies and frequencies of different compounds are listed in Table 1. The corresponding geometries of the reactants and products are shown in Fig. 3. The corresponding geometries of the intermediates and transition states are shown in Figs. 4 and 5, respectively. Thediagram of relative energies along the channels of reactions is shown in Fig. 6.

    Fig. 2. Processes for the synthesis of 2-methyl benzoxazole

    Table 1. Total Energies (E(a.u.)), Relative Energies (Erel/(kJ·mol-1))–and Frequencies ν (cm-1) of the Stationary Points on the Reaction Paths

    Fig. 3. Geometric parameters of the reactants and products (Bond length in nm and bond angle in degree)

    3. 1 Reaction mechanism analysis

    The reaction mechanism ofacetic acid (Re1),phosphorus oxytrichloride (Re2), and-amino- phenol (Re3) one-pot to form 2-methyl benzoxazole was studied by density functional theory at the GGA/PW91/DNP level. The first stage is that acetic acid and phosphorus oxytrichloride formed IM1, which is the substitution reaction. In the step, the hysroxyl bond of Re1 is replaced by the Cl(1) atom of Re2. Through a ring transition state TS1, IM1 and P1 are prepared. In this process, the activation energy is 221.54 kJ·mol-1, the heat of reaction is 10.06 kJ·mol-1and the only imaginary frequency is 255.60cm-1, as shown in Table 1.

    The C(1)–O(2) bonds are 0.1370 and 0.1958 nm in Re1 and TS1, respectively. The P(1)–Cl(1) bonds are 0.2028 and 0.2428 nm in Re2 and TS1, respectively. The C(1)–Cl(1) bonds are 0.2230 and 0.1829 nm in TS1 and IM1, respectively. The O(2)–P(1) bonds are 0.1814 and 0.1612 nm in TS1 and P1, respectively. The bond lengths of C(1)–O(2) and P(1)–Cl(1) are increased by 0.0588 and 0.0300 nm, while those of C(1)–Cl(1) and O(2)–P(1) are decreased by 0.0401 and 0.0202 nm, respectively. Obviously, the C(1)–O(2) and P(1)–Cl(1) bonds are partly broken, and the C(1)–Cl(1) and O(2)–P(1) bonds are partly formed in TS1. After the transition state TS1, intermediate IM1 and product P1 are formed.

    In the second stage, there are two possible reac- tion pathways from intermediate IM1 to the products P1 and P2: in paths A and B. The two reaction pathways are discussed as follows.

    3. 1. 1 Analysis of the chemical reaction mechanism of path A

    In path A,-aminophenol (Re3) form P2, in order of three stages of acylation, nucleophilic addition, and cyclization. Our calculations indicate that the whole reaction process consists of four steps, during which three intermediates and four transition states are formed.

    Firstly, with acylation reaction of compound IM1 and-aminophenol (Re3), compound IMA2 was prepared. In the process of forming IMA2, the NH2of Re3 reacts with the C(1)–Cl(1) of IM1. The H atom of NH2transfers to Cl(1), while the NH of NH2transfers to C(1). The acylation reaction occurs easily because the activation energy for the reaction from complex IM1 to TSA2 is 18.85 kJ·mol-1. As listed in Table 1, the heat of reaction is –30.14 kJ·mol-1and the only imaginary frequency is 146.30i cm-1. The N(1)–H(2) bonds are 0.1015 and 0.1419 nm in Re3 and TSA2, respectively. The C(1)–Cl(1) bonds are 0.1829 and 0.2477 nm in IM1 and TSA2, respectively. The C(1)–N(1) bonds are 0.2901 and 0.1382 nm in TSA2 and IMA2, respec- tively. The bond lengths of N(1)–H(2) and C(1)–Cl(1) are increased by 0.0404 and 0.0648 nm, while that of C(1)–N(1) is decreased by 0.1519 nm, respectively. Obviously, the N(1)–H(2) and C(1)– Cl(1) bonds are partly broken, and the C(1)–N(1) bond is partly formed in TSA2. After the reaction surpasses the transition state TSA2, the interme- diates IMA2 and HClare formed.

    Secondly, with nucleophilic addition reaction of compound IMA2 and phosphorus oxytrichloride (Re2), compound IMA3 was prepared. In the process of forming IMA3, the P(1) of phosphorus oxytrichloride transfers to the O(4) atom of OH in IMA2, while the H(4) atom of OH in IMA2 transfers to the Cl(1) of Re2. As listed in Table 1, the activation energy is 125.46 kJ·mol-1for the reaction from complex IMA2 to TSA3. To verify the process, we have located the ring transition state TSA3 (Fig. 5). For the TSA3 structure, the only imaginary frequency is 130.70·cm-1(Table 1). The analysis on the vibration modes indicates that this imaginary frequency is associated with Cl(1)–H(4) and P(1)–O(4) stretching motions. As listed in Figs. 3, 4, and 5, the O(4)–H(4) bonds are 0.0970 and 0.2266 nm in IMA2 and TSA3, respectively. The P(1)–Cl(1) bonds are 0.2028 and 0.2994 nm in Re2 and TSA3, respectively. The O(4)–P(1) bonds are 0.3450 and 0.1620 nm in TSA3 and IMA3, respectively. The bond lengths of O(4)–H(4) and P(1)–Cl(1) are increased, while that of O(4)–P(1) is decreased, respectively. Obviously, the O(4)–H(4) and P(1)–Cl(1) bonds are partly broken, and the O(4)–P(1) bond is partly formed in TSA3. After the transition state TSA3, and intermediate IMA3 and HClare formed.

    Subsequently, the IMA3 is isomerized. Rotating aroundC(2)–N(1) bond,IMA4 is prepared through transition state TSA4. In this process, the activation energy is 28.29 kJ·mol-1, the heat of reaction is 24.14 kJ·mol-1, and the only imaginary frequency is 73.67cm-1, as shown in Table 1.

    Finally, the IMA4 is isomerized. The imino H(3) atom transfers to the phenolic hydroxyl O(4) atom, and carbonyl O(1) crashes to C(3) on the benzene ring. Through a six-membered ring transition state TSA5, the main product P2 and by-product P1 are prepared. In this process, the activation energy is 71.92 kJ·mol-1, the heat of reaction is 67.77 kJ·mol-1, and the only imaginary frequency is 489.10cm-1, as shown in Table 1. The C(3)–O(4) bonds are 0.1406 and 0.2394 nm in IMA4 and TSA5, respectively. The N(1)–H(3) bonds are 0.1015 and 0.1030 nm in IMA4 and TSA5, respectively. The O(4)–H(3) bonds are 0.3098 and 0.0978 nm in TSA3 and P1, respectively. The C(3)–O(1) bonds are 0.2377 and 0.1379 nm in TSA5 and P2, respectively. The C(1)–N(1) bonds are 0.1392, 0.1311, and 1298 nm in IMA4, TSA5, and P2, respectively. The C(1)–O(1) bonds are 0.1222, 0.1237, and 1391 nm in IMA4, TSA5, and P2, respectively. The bond lengths of N(1)–H(3), C(3)–O(4), and C(1)–O(1) are increased, while those of C(3)–O(1), O(4)–H(3), and C(1)–N(1) are decreased, respectively. Obviously, the N(1)– H(3), C(3)–O(4), and C(1)–O(1) bonds are partly broken, and the C(3)–O(1), O(4)–H(3), and C(1)– N(1) bonds are partly formed in TSA5.

    Fig. 4. Geometric parameters of the intermediates (Bond length in nm)

    Fig. 5. Geometric parameters of the transition states (Bond length in nm)

    3. 1. 2 Analysis of chemical reaction mechanism of path B

    In path B,-aminophenol (Re3) forms P2, in order of three stages of nucleophilic addition, acylation, and cyclization. Similarly, in path A, our calculations indicate that the whole reaction process consists of four steps, during which three interme- diates and four transition states are formed, too.

    Firstly, similar to forming IMA3 in path A, with nucleophilic addition reaction of-aminophenol (Re3) and phosphorus oxytrichloride (Re2), com- pound IMB2 was prepared. In the process of forming IMB2, the P(1) of phosphorus oxytri- chloride transfers to the O(4) atom of OH in-aminophenol (Re3), while the H(4) atom of OH in-aminophenol (Re3) transfers to the Cl(1) of Re2. As listed in Table 1, the activation energy is 153.58 kJ·mol-1for the reaction. To verify the process, we have located the ring transition state TSB2 (Fig. 5). For the TSB2 structure, the only imaginary frequency is 212.40cm-1(Table 1). The analysis on the vibration modes indicates that this imaginary frequency is associated with Cl(1)–H(4) and P(1)–O(4) stretching motions. The O(4)–H(4) bonds are 0.0971 and 0.1472 nm in Re3 and TSB2, respectively. The P(1)–Cl(1) bonds are 0.2028 and 0.2965 nm in Re2 and TSB2, respectively. The O(4)–P(1) bonds are 0.2854 and 0.1607 nm in TSB2 and IMB2, respectively. The bond lengths of O(4)–H(4) and P(1)–Cl(1) are increased, while that of O(4)–P(1) is decreased, respectively. Obviously, the O(4)–H(4) and P(1)–Cl(1) bonds are partly broken, and the O(4)–P(1) bond is partly formed in TSB2. After the transition state TSB2, the intermediates IMB2 and HClare formed. Compared with path A, the bond length of O(4)–P(1) is much shorter because there is a hydrogen bond between O(3) of phosphorus oxytrichloride and amino H(3) of-aminophenol.

    Secondly, similar to forming IMA2 in path A, with the acylation reaction of compounds IM1 and IMB2, compound IMB3 was prepared. In the process of forming IMB3, the NH2of IMB2 reacts with the C(1)–Cl(1) of IM1. The H atom of NH2transfers to Cl(1), while the NH of NH2transfers to C(1). The acylation reaction occurs easily because the activation energy for the reaction from complex IMB3 to TSB3 is 105.50 kJ·mol-1. As listed in Table 1, the heat of reaction is –3.27 kJ·mol-1, and the only imaginary frequency is 422.00cm-1. The N(1)–H(2) bonds are 0.1015 and 0.1067 nm in IMB2 and TSB3, respectively. The C(1)–Cl(1) bonds are 0.1829 and 0.2481 nm in IM1 and TSB3, respectively. The C(1)–N(1) bonds are 0.1898 and 0.1396 nm in TSB3 and IMB3, respectively. The bond lengths of N(1)– H(2) and C(1)–Cl(1) are increased by 0.0052 and 0.0652 nm, while that of C(1)–N(1) is decreased by 0.0502 nm, respectively. Obviously, the N(1)–H(2) and C(1)–Cl(1) bonds are partly broken, and the C(1)–N(1) bond is partly formed in TSB3. After the transition state TSB3, intermediates IMB3 and HClare formed.

    Subsequently,the IMB3 is isomerized, and the imino proton H(3) transfers to the carbonyl O(1), thus papering compound IMB4 through a four- membered ring transition state TSB4. In this process, the activation energy is 192.85 kJ·mol-1,the heat of reaction is 49.26 kJ·mol-1and the only imaginary frequency is 1730.70cm-1, as shown in Table 1. The C(1)–O(1) bonds are 0.1226, 0.1294, and 0.1368 nm in IMB3, TSB4, and IMB4, respectively. The C(1)–N(1) bonds are 0.1396, 0.1327, and 0.1277 nm in IMB3, TSB4, and IMB4, respectively. The N(1)–H(3) bonds are 0.1019 and 0.1335 nm in IMB3 and TSB4, respectively. The O(1)–H(3) bonds are 0.1332 and 0.0974 nm in TSB4 and IMB4, respectively. The bond lengths of N(1)–H(3) and C(1)–O(1) are increased, while those of C(1)–N(1) and O(1)–H(3) are decreased, respectively. Meanwhile, the C(1)=N(1) is formed.

    Finally, the IMB4 is isomerized, the hydroxy H(3) atom transfers to the phenolic hydroxyl O(3) atom, and the hydroxy O(1) crashes to C(3) on the benzene ring. Through a six-membered ring transition state TSB5, the main product P2 and the by-product P1 are prepared. In this process, the activation energy is 188.60 kJ·mol-1,the heat of reaction is –33.86 kJ·mol-1, and the only imaginary frequency is 343.90cm-1, as shown in Table 1. The C(3)–O(4) bonds are 0.1411 and 0.2114 nm in IMB4 and TSB5, respectively. The O(1)–H(3) bonds are 0.0974 and 0.1091 nm in IMB4 and TSB5, respectively. The O(3)–H(3) bonds are 0.1384 and 0.0978 nm in TSB5 and P1, respectively. The C(3)–O(1) bonds are 0.2146 and 0.1379 nm in TSB5 and P2, respectively. The bond lengths of O(1)–H(3) and C(3)–O(4) are increased, while those of C(3)–O(1) and O(3)–H(3) are decreased, respectively.

    The configuration parameters of the reaction processes are shown in Figs. 3, 4 and 5, respectively.

    3. 2 Energy analysis

    As shown in Fig. 6, the microcosmic reaction mechanism of-aminophenol, acetic acid and phosphorus oxytrichloride has two possible reaction pathways in the gas phase.The first stage is that acetic acid and phosphorus oxytrichloride formed IM1, which is the substitution reaction. In this process, the formation of intermediate IM1 is so difficult because the activation energy for the reaction from Re to TS1 is 221.54 kJ·mol-1, and Re→TS1→IM1 is the rate-limiting step in the whole reaction process. Subsequently, the results show the two possible reaction pathways from the interme- diate IM1 to the 2-methyl benzoxazole. In path A, IMA2→TSA3→IMA3 is the rate-limiting step and the activation energy is 125.46 kJ·mol-1. In path B, IMB3→TSB4→IMB4 is the rate-limiting step and the activation energy is 192.85 kJ·mol-1. By contrast, it is better to choose path A in the course of forming P2. On the other hand, in the salvation of CHCl3,IM1→TSA2→IMA2 is the rate-limiting step and the activation energy is 270.86 kJ·mol-1in path A, while IMB3→TSB4→IMB4 is the rate-limiting step and the activation energy is 357.47 kJ·mol-1in path B. Path A is also the superior path in these two paths.

    Fig. 6. Diagram of relative energies along the channels of the reactions

    Through the preceding analyses we can conclude that the main pathway of the microcosmic reaction mechanism of-aminophenol, acetic acid and phos- phorus oxytrichloride is Re→TS1→IM1→TSA2→ IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→ P2. The activation energy of Re→TS1→IM1, the rate-control step, in the pathway is lower by two feasible reaction pathways. The energy barrier and the heat of formation of the rate-limiting stepare 221.54 and 10.06 kJ?mol-1, respectively. The P2 is the main product of this reaction, which is in good accordance with the experiment[17].

    4 CONCLUSION

    The microcosmic reaction mechanism of-amino- phenol, acetic acid and phosphorus oxytrichloride has been investigated in refluxing CHCl3in one-pot to form 2-methyl benzoxazole by density functional theory (DFT) at the GGA/PW91/DNP level. We optimize the geometric configurations of reactants, intermediates, transition states, and products. The energy analysis calculation approves the authenticity of intermediates and transition states. According to our calculations we found two feasible reaction pathways. The main pathway of the reaction is Re→TS1→IM1→TSA2→IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→P2. The rate-limiting step is Re→TS1→IM1, for which the energy barrier and the heat of formation of are 221.54 and 10.06 kJ?mol-1, respectively. The energy barrier of the rate-limiting step is higher, so this reaction must be heated, which is in agreement with the experimental conditions under microwave irradiation[17]. The dominant product predicted theoretically is 2-methyl benzoxazole, which is in agreement with the experi- mental results in reference[17].

    (1) Seenaiah, D.; Reddy, P. R.; Reddy, G. M.; Padmaja, A.; Padmavathi, V.; Siva Krishna, N. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole.2014, 77, 1-7.

    (2) Kaur, A.; Wakode, S.; Pathak, D. P. Benzoxazole: the molecule of diverse pharmacological importance.2015, 7, 16-23.

    (3) Temiz-Arpaci, O.; Aki-Sener, E.; Yal?in, I.; Altanlar, N. Synthesis and antimicrobial activity of some 2-[-substituted-phenyl]benzoxazol- 5-yl-arylcarboxyamides.() 2002, 335, 283-288.

    (4) Tan, Y. D.; He, X. Y.; Rao, B. Q.; Cheng, B. B.; Song, M. X.; Deng, X. Q. Synthesis and evaluation of the anticonvulsant activities of triazole-containing benzo[]oxazoles.2016, 36, 2449-2455.

    (5) Modiya, P. R.; Patel, C. N. Synthesis and screening of antibacterial and antifungal activity of 5-chloro-1,3-benzoxazol-2(3h)-one derivatives.. 2012, 2, 29-38.

    (6) Iyer, V. B.; Gurupadayya, B. M.; Sairam, K. V.; Inturi, B.; Chandan, R. S.; Tengli, A. K. Anti-inflammatory activity of 1,3,4-oxadiazoles derived from benzoxazole.2015, 2, 233-241.

    (7) Paramashivappa, R.; Phani Kumar, P.; Subba Rao, P. V.; Srinivasa Rao, A.Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors.2003, 13, 657-660.

    (8) Wang, J.; Zhang, L.; Yao, Q. Z. Synthesis and anti-tumor activities of novel pyrazole derivatives containing 1,3,4-oxadiazole.2014, 22, 730-733.

    (9) Wee, D.; Yoo, S.; Kang, Y. H.; King, Y. H.; Ka, J. W.; Cho, S. Y.; Lee, C.; Ryu, J.; Yi, M. Y.; Jang, K. S.Poly(imide-benzoxazole)gate insulators with high thermal resistance for solution processed flexible indium-zinc oxide thin-film transistors.2014, 2, 6395-6401.

    (10) Dick, P. F.; Coelho, F. L.; Rodembusch, F. S.; Campo, L. F. Amphiphilic ESIPT benzoxazole derivatives as prospective fluorescent membrane probes.2014, 55, 3024-3029.

    (11) Ge, G. Z. Synthesis of bis(2-benzoxazolyl) ethylene series fluorescent brighteners.2017, 54, 24-28.

    (12) Xiao, L. W.; Gao, H. J.; Kong, J.; Liu, G. X.; Peng, X. X.; Wang, S. J. Progress in the synthesis of 2-substituted benzoxazoles derivatives.2014, 34, 1048-1060.

    (13) Sharma, H.; Sing, N.; Jang, D. O. A ball-milling strategy for the synthesis of benzothiazole, benzimidazole and benzoxazole derivatives under solvent-free conditions.2014, 16, 4922-4930.

    (14) Anand, M.; Ranjitha, A.; Himaja, M. Silica sulfuric acid catalyzed microwave-assisted synthesis of substituted benzoxazoles and their antimicrobial activity.2011, 2, 211-213.

    (15) Endo, Y.; Backvall, J. E. Biomimetic oxidative coupling of benzylamines and 2-aminophenols: synthesis of enzoxazoles.2012, 18, 13609-13613.

    (16) Mao, Z. F.; Wang, Z.; Xu, Z. Q.; Huang, F.; Yu, Z. K.; Wang, R. Copper(II)-mediated dehydrogenative cross-coupling of heteroarenes.2012, 14, 3854-3857.

    (17) Tang, Y. L.; Du, Z. B.; Jiang, G. F. A one-pot synthetic route to substituted benzoxazoles.() 2016, 47, 408-413.

    (18) Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules.1990, 92, 508-517.

    (19) Delley, B. From molecules to solids with the DMol3approach.2000, 113, 7756-7764.

    (20) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy.1992, 45, 13244-13249.

    (21) Delley, B. Modern density functional theory: a tool for chemistry, in: theoretical and computational chemistry, Eds.: Seminario, J. M.; Politzer, P. Elsevier, Amsterdam 1995, 2.

    (22) Halgren, T. A.; Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states.. 1977, 49, 225-232.

    3 April 2018;

    13 August 2018

    the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1601215) and the Ministry of Education “Chunhui Plan” (Z2016177)

    . Born in 1976, lecture, majoring in quantum chemistry. E-mail: cjsy0606@163.com

    10.14102/j.cnki.0254-5861.2011-2032

    久久 成人 亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 免费无遮挡裸体视频| 亚洲专区中文字幕在线| 国产麻豆成人av免费视频| www.999成人在线观看| 妹子高潮喷水视频| 可以在线观看的亚洲视频| 国内揄拍国产精品人妻在线 | 亚洲国产欧美网| 亚洲人成网站高清观看| 成人18禁在线播放| 天堂影院成人在线观看| 精品一区二区三区av网在线观看| 一本精品99久久精品77| 亚洲av片天天在线观看| 熟妇人妻久久中文字幕3abv| 国产精品电影一区二区三区| 亚洲avbb在线观看| 精品午夜福利视频在线观看一区| 人妻久久中文字幕网| 中文字幕精品亚洲无线码一区 | 香蕉国产在线看| 性色av乱码一区二区三区2| 久久久国产精品麻豆| 亚洲,欧美精品.| 欧美大码av| 久久久精品欧美日韩精品| 制服丝袜大香蕉在线| 欧美成人一区二区免费高清观看 | 国产成人精品久久二区二区免费| 久久精品国产综合久久久| 国产成人精品久久二区二区免费| 欧美乱码精品一区二区三区| 日本一区二区免费在线视频| 老汉色∧v一级毛片| 久久久久亚洲av毛片大全| 国内揄拍国产精品人妻在线 | 久久人人精品亚洲av| 国产又色又爽无遮挡免费看| 久久精品aⅴ一区二区三区四区| 免费av毛片视频| 国产欧美日韩精品亚洲av| 变态另类丝袜制服| 亚洲一码二码三码区别大吗| 亚洲aⅴ乱码一区二区在线播放 | 国产主播在线观看一区二区| 在线看三级毛片| e午夜精品久久久久久久| 日韩欧美国产在线观看| 成人三级做爰电影| 亚洲中文日韩欧美视频| 国产99白浆流出| 亚洲专区中文字幕在线| 亚洲国产看品久久| 91成人精品电影| avwww免费| 一区二区日韩欧美中文字幕| 亚洲第一青青草原| 国产亚洲欧美在线一区二区| 久久久精品欧美日韩精品| 在线视频色国产色| 可以免费在线观看a视频的电影网站| 久久这里只有精品19| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产一区二区精华液| 午夜免费鲁丝| 一级毛片女人18水好多| 中文字幕av电影在线播放| 精品国产国语对白av| 女人爽到高潮嗷嗷叫在线视频| 老司机深夜福利视频在线观看| 黄色成人免费大全| 久久热在线av| 99在线人妻在线中文字幕| 黄片小视频在线播放| 淫秽高清视频在线观看| 一本久久中文字幕| 亚洲av电影不卡..在线观看| 窝窝影院91人妻| 国产精品98久久久久久宅男小说| 午夜福利高清视频| 91麻豆精品激情在线观看国产| 极品教师在线免费播放| 国产成人影院久久av| 99热6这里只有精品| 欧美另类亚洲清纯唯美| 观看免费一级毛片| 日日爽夜夜爽网站| 一级毛片精品| 中文字幕久久专区| 亚洲精品中文字幕一二三四区| 免费女性裸体啪啪无遮挡网站| 啪啪无遮挡十八禁网站| 精品熟女少妇八av免费久了| 成人18禁在线播放| 曰老女人黄片| 嫩草影视91久久| 一区二区日韩欧美中文字幕| 亚洲性夜色夜夜综合| 1024手机看黄色片| 91大片在线观看| 91在线观看av| 国产精品亚洲一级av第二区| 国产精品免费视频内射| 最好的美女福利视频网| 深夜精品福利| 搡老妇女老女人老熟妇| 两性夫妻黄色片| 大香蕉久久成人网| 97超级碰碰碰精品色视频在线观看| 免费在线观看亚洲国产| 热99re8久久精品国产| 国产亚洲欧美98| svipshipincom国产片| 高潮久久久久久久久久久不卡| 制服人妻中文乱码| xxx96com| 亚洲国产欧美网| 婷婷亚洲欧美| 搡老熟女国产l中国老女人| 国产亚洲精品一区二区www| 999久久久精品免费观看国产| 国产亚洲精品第一综合不卡| 999久久久国产精品视频| 国产成人欧美在线观看| 亚洲精品国产一区二区精华液| 国产1区2区3区精品| 成人精品一区二区免费| 老司机深夜福利视频在线观看| 国产视频一区二区在线看| 亚洲精品一卡2卡三卡4卡5卡| 成在线人永久免费视频| 久久久久久久精品吃奶| 最新在线观看一区二区三区| 日日夜夜操网爽| 韩国av一区二区三区四区| 国产乱人伦免费视频| 精品一区二区三区视频在线观看免费| 欧美又色又爽又黄视频| 日本 av在线| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品久久国产高清桃花| 香蕉国产在线看| 在线永久观看黄色视频| 久久久国产欧美日韩av| 久久婷婷成人综合色麻豆| 91成人精品电影| www.999成人在线观看| 老鸭窝网址在线观看| 免费看日本二区| 真人做人爱边吃奶动态| 一级黄色大片毛片| 国产爱豆传媒在线观看 | 欧美性长视频在线观看| av天堂在线播放| 露出奶头的视频| 麻豆国产av国片精品| 国产精品久久电影中文字幕| 韩国av一区二区三区四区| 亚洲自拍偷在线| 一二三四社区在线视频社区8| 啪啪无遮挡十八禁网站| 99久久综合精品五月天人人| 在线观看免费午夜福利视频| 日韩成人在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 日韩三级视频一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 欧美黑人精品巨大| 亚洲 国产 在线| 一级毛片高清免费大全| 亚洲电影在线观看av| 亚洲国产看品久久| 成在线人永久免费视频| 高清毛片免费观看视频网站| 99热这里只有精品一区 | 一本综合久久免费| 每晚都被弄得嗷嗷叫到高潮| 在线永久观看黄色视频| 国产精品av久久久久免费| 黄色视频,在线免费观看| 最近最新免费中文字幕在线| 欧美日韩福利视频一区二区| 欧美一级a爱片免费观看看 | 日本免费一区二区三区高清不卡| 精品乱码久久久久久99久播| 在线观看午夜福利视频| 久久精品国产99精品国产亚洲性色| 精品国内亚洲2022精品成人| 国产午夜福利久久久久久| 他把我摸到了高潮在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产99久久九九免费精品| 一区二区三区激情视频| 欧美+亚洲+日韩+国产| 一区福利在线观看| 制服丝袜大香蕉在线| 国产亚洲欧美98| 韩国av一区二区三区四区| 无遮挡黄片免费观看| 国产精品久久视频播放| 久久国产亚洲av麻豆专区| 男人舔女人下体高潮全视频| 美女 人体艺术 gogo| 国产精品99久久99久久久不卡| 久久精品国产清高在天天线| 91国产中文字幕| 日韩欧美在线二视频| 最新美女视频免费是黄的| 欧美成人一区二区免费高清观看 | 午夜影院日韩av| 国产精品av久久久久免费| 在线看三级毛片| 国产亚洲精品综合一区在线观看 | 丰满的人妻完整版| 99riav亚洲国产免费| 最近最新中文字幕大全电影3 | 免费高清视频大片| 国产熟女午夜一区二区三区| 看免费av毛片| 老汉色∧v一级毛片| 国内揄拍国产精品人妻在线 | 国内精品久久久久久久电影| 国产av一区在线观看免费| 熟妇人妻久久中文字幕3abv| 悠悠久久av| 在线免费观看的www视频| 亚洲av美国av| 亚洲av熟女| 在线看三级毛片| 日日爽夜夜爽网站| 黄网站色视频无遮挡免费观看| 丰满的人妻完整版| 亚洲精华国产精华精| 午夜精品久久久久久毛片777| 91老司机精品| 侵犯人妻中文字幕一二三四区| 国内揄拍国产精品人妻在线 | 亚洲av电影不卡..在线观看| 老司机深夜福利视频在线观看| 亚洲全国av大片| 国产精品二区激情视频| 国产av又大| 国产精品电影一区二区三区| 国产精品久久久久久亚洲av鲁大| 免费高清在线观看日韩| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产高清在线一区二区三 | 在线观看免费午夜福利视频| 国产亚洲精品一区二区www| 成人三级黄色视频| 99久久无色码亚洲精品果冻| 正在播放国产对白刺激| 黄网站色视频无遮挡免费观看| 色综合亚洲欧美另类图片| 黄色视频不卡| 麻豆av在线久日| 狂野欧美激情性xxxx| 国产伦一二天堂av在线观看| 97人妻精品一区二区三区麻豆 | 好男人在线观看高清免费视频 | 亚洲av电影不卡..在线观看| 麻豆成人av在线观看| 90打野战视频偷拍视频| 欧美中文综合在线视频| 超碰成人久久| 久久久久久久久久黄片| 在线看三级毛片| 少妇 在线观看| av有码第一页| 99热6这里只有精品| 国产免费男女视频| 亚洲一区二区三区色噜噜| 亚洲成人国产一区在线观看| 亚洲色图 男人天堂 中文字幕| 日本在线视频免费播放| 不卡av一区二区三区| 国产男靠女视频免费网站| 女生性感内裤真人,穿戴方法视频| av福利片在线| 午夜久久久在线观看| 色老头精品视频在线观看| 色在线成人网| 黄频高清免费视频| 法律面前人人平等表现在哪些方面| 国产熟女xx| 亚洲精品在线观看二区| 亚洲熟妇熟女久久| 欧美色欧美亚洲另类二区| 国产精品一区二区免费欧美| 动漫黄色视频在线观看| 亚洲精品色激情综合| 午夜免费激情av| 高潮久久久久久久久久久不卡| 亚洲中文字幕一区二区三区有码在线看 | 欧美人与性动交α欧美精品济南到| 亚洲天堂国产精品一区在线| 精品不卡国产一区二区三区| 精品乱码久久久久久99久播| 久久精品成人免费网站| 亚洲男人的天堂狠狠| 久热爱精品视频在线9| 国产欧美日韩一区二区三| 一级片免费观看大全| 精品久久久久久久久久免费视频| 国语自产精品视频在线第100页| 精华霜和精华液先用哪个| 亚洲精品久久国产高清桃花| 真人做人爱边吃奶动态| 午夜福利高清视频| 极品教师在线免费播放| 亚洲男人的天堂狠狠| 99国产精品一区二区三区| 大型黄色视频在线免费观看| 欧美黑人欧美精品刺激| 亚洲人成伊人成综合网2020| 欧美乱码精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 美女高潮喷水抽搐中文字幕| 好男人在线观看高清免费视频 | 男女做爰动态图高潮gif福利片| 日韩高清综合在线| 中文在线观看免费www的网站 | 国语自产精品视频在线第100页| 日韩欧美一区视频在线观看| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 大型黄色视频在线免费观看| 亚洲国产欧洲综合997久久, | 亚洲精品中文字幕在线视频| 国产成年人精品一区二区| 18美女黄网站色大片免费观看| 久久热在线av| 又黄又粗又硬又大视频| 一a级毛片在线观看| 在线观看午夜福利视频| 国产精品久久电影中文字幕| 欧美精品啪啪一区二区三区| 午夜视频精品福利| 亚洲性夜色夜夜综合| 观看免费一级毛片| 女人被狂操c到高潮| 亚洲专区字幕在线| 国产真人三级小视频在线观看| 狠狠狠狠99中文字幕| e午夜精品久久久久久久| 不卡av一区二区三区| 男女床上黄色一级片免费看| 99热这里只有精品一区 | 日韩欧美一区二区三区在线观看| 亚洲国产精品成人综合色| xxx96com| 国产精品影院久久| 国产成人精品无人区| xxx96com| 国产男靠女视频免费网站| 变态另类丝袜制服| 成年女人毛片免费观看观看9| 日韩欧美 国产精品| 久久中文看片网| 午夜激情福利司机影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲久久久国产精品| 校园春色视频在线观看| 久久欧美精品欧美久久欧美| 麻豆av在线久日| 黑人操中国人逼视频| 国产成年人精品一区二区| 久久香蕉激情| 国产在线精品亚洲第一网站| 成人国产一区最新在线观看| 好男人在线观看高清免费视频 | 日本免费a在线| 中文字幕最新亚洲高清| 黄色 视频免费看| 一个人观看的视频www高清免费观看 | 国产1区2区3区精品| 91字幕亚洲| 国产三级黄色录像| 国产久久久一区二区三区| 国产精品影院久久| 别揉我奶头~嗯~啊~动态视频| 99国产精品一区二区三区| 午夜福利一区二区在线看| 禁无遮挡网站| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久 | 亚洲自偷自拍图片 自拍| 欧美黑人欧美精品刺激| aaaaa片日本免费| 亚洲国产高清在线一区二区三 | 久久伊人香网站| 999久久久国产精品视频| 亚洲黑人精品在线| 亚洲五月色婷婷综合| 久久久久九九精品影院| 日韩欧美 国产精品| 女警被强在线播放| 村上凉子中文字幕在线| 午夜福利成人在线免费观看| 香蕉av资源在线| 高清在线国产一区| 97人妻精品一区二区三区麻豆 | 免费电影在线观看免费观看| 男女做爰动态图高潮gif福利片| 麻豆国产av国片精品| 超碰成人久久| 亚洲无线在线观看| 国产日本99.免费观看| 久久久久久人人人人人| 午夜福利在线观看吧| 色老头精品视频在线观看| 国产精品爽爽va在线观看网站 | 亚洲五月色婷婷综合| 日日干狠狠操夜夜爽| 久久精品亚洲精品国产色婷小说| 亚洲av电影在线进入| 窝窝影院91人妻| 变态另类丝袜制服| 久久久久久久久免费视频了| 在线观看一区二区三区| 最新在线观看一区二区三区| 男人舔奶头视频| 日本一区二区免费在线视频| 成年版毛片免费区| 18禁美女被吸乳视频| 亚洲 欧美一区二区三区| 91麻豆精品激情在线观看国产| 亚洲精品国产一区二区精华液| 中文字幕高清在线视频| 亚洲自拍偷在线| 老司机午夜十八禁免费视频| 女同久久另类99精品国产91| 久久人妻福利社区极品人妻图片| 男女那种视频在线观看| 久久久久久免费高清国产稀缺| 久久国产精品影院| 亚洲久久久国产精品| 亚洲国产毛片av蜜桃av| 天天躁狠狠躁夜夜躁狠狠躁| 国内久久婷婷六月综合欲色啪| 黄片小视频在线播放| 看免费av毛片| 极品教师在线免费播放| 欧美精品亚洲一区二区| 午夜精品在线福利| 欧美又色又爽又黄视频| 精品久久久久久成人av| 欧美黄色片欧美黄色片| 亚洲av成人一区二区三| 久久久久久久精品吃奶| 黄网站色视频无遮挡免费观看| 最近在线观看免费完整版| 欧美又色又爽又黄视频| 亚洲男人的天堂狠狠| 久久久久久久久久黄片| 亚洲av成人一区二区三| 亚洲国产精品成人综合色| 亚洲电影在线观看av| 日韩有码中文字幕| 亚洲国产精品999在线| 欧美国产日韩亚洲一区| 欧美激情极品国产一区二区三区| 免费在线观看视频国产中文字幕亚洲| 日韩高清综合在线| 此物有八面人人有两片| 亚洲国产中文字幕在线视频| 天堂√8在线中文| 亚洲一区二区三区不卡视频| 最近最新免费中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 国产成人欧美在线观看| 亚洲,欧美精品.| 热re99久久国产66热| 亚洲一码二码三码区别大吗| 亚洲精品国产区一区二| 成人国语在线视频| 久久中文看片网| 热re99久久国产66热| 大型av网站在线播放| 久久狼人影院| 国产精品一区二区免费欧美| 极品教师在线免费播放| 亚洲五月色婷婷综合| 女警被强在线播放| 男人舔女人下体高潮全视频| 看免费av毛片| 狠狠狠狠99中文字幕| 亚洲电影在线观看av| av福利片在线| 人人妻,人人澡人人爽秒播| 精品一区二区三区四区五区乱码| 国内少妇人妻偷人精品xxx网站 | 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影 | 亚洲真实伦在线观看| 日韩有码中文字幕| 欧美日韩黄片免| 中文字幕另类日韩欧美亚洲嫩草| 国产成人av激情在线播放| 欧美黑人精品巨大| 亚洲欧美精品综合久久99| 国产又爽黄色视频| 成人三级做爰电影| 成人三级黄色视频| 亚洲成人久久爱视频| 麻豆久久精品国产亚洲av| 久久久久久久精品吃奶| 热re99久久国产66热| 黄色视频不卡| 久久久久久久久免费视频了| 午夜a级毛片| 狂野欧美激情性xxxx| 久久欧美精品欧美久久欧美| 很黄的视频免费| 嫩草影视91久久| 97超级碰碰碰精品色视频在线观看| 欧美日本亚洲视频在线播放| 女人被狂操c到高潮| 美女午夜性视频免费| 午夜福利成人在线免费观看| 亚洲欧美日韩无卡精品| 亚洲欧美激情综合另类| 999久久久国产精品视频| 亚洲五月婷婷丁香| 黄网站色视频无遮挡免费观看| 国产精华一区二区三区| 老司机靠b影院| 麻豆成人午夜福利视频| 99久久久亚洲精品蜜臀av| 国产精品美女特级片免费视频播放器 | 黑丝袜美女国产一区| 91在线观看av| 亚洲精品中文字幕一二三四区| 免费无遮挡裸体视频| 在线观看午夜福利视频| 国产精品一区二区精品视频观看| 禁无遮挡网站| 97人妻精品一区二区三区麻豆 | 色综合亚洲欧美另类图片| 人人妻人人看人人澡| 欧美黑人巨大hd| 97碰自拍视频| 亚洲天堂国产精品一区在线| 久久中文字幕一级| 国产一区二区三区视频了| 久久久久国产一级毛片高清牌| 国产欧美日韩精品亚洲av| 欧美激情久久久久久爽电影| 国产精品美女特级片免费视频播放器 | 成年版毛片免费区| 国产成人一区二区三区免费视频网站| 在线永久观看黄色视频| av电影中文网址| 香蕉国产在线看| 中文字幕人成人乱码亚洲影| 国产激情偷乱视频一区二区| 日韩av在线大香蕉| 久久久久久九九精品二区国产 | 国产视频一区二区在线看| 最新在线观看一区二区三区| 国产精品一区二区三区四区久久 | av在线天堂中文字幕| 精品国产超薄肉色丝袜足j| 亚洲欧美精品综合久久99| 久久香蕉国产精品| 国产精品免费视频内射| 成年免费大片在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品合色在线| 99久久国产精品久久久| 日韩欧美一区二区三区在线观看| 搡老熟女国产l中国老女人| 久久性视频一级片| 美女午夜性视频免费| 一级毛片高清免费大全| 国产成人影院久久av| 美女大奶头视频| 国产精品野战在线观看| 丝袜人妻中文字幕| 国产精品久久久av美女十八| 日日摸夜夜添夜夜添小说| 久久精品成人免费网站| 国产亚洲精品第一综合不卡| 看免费av毛片| 国产精品久久视频播放| 久久国产乱子伦精品免费另类| 啦啦啦韩国在线观看视频| 久久天躁狠狠躁夜夜2o2o| 亚洲自拍偷在线| 99精品在免费线老司机午夜| 18美女黄网站色大片免费观看| 久久久国产欧美日韩av| 成人欧美大片| 麻豆av在线久日| 亚洲国产精品999在线| 国产1区2区3区精品| 俺也久久电影网| 亚洲国产精品sss在线观看| 国产激情偷乱视频一区二区| 午夜免费激情av| 男人舔女人下体高潮全视频| 91在线观看av| 麻豆成人午夜福利视频| 国产欧美日韩一区二区三| 无限看片的www在线观看| 日韩有码中文字幕| 国产精品免费一区二区三区在线| 欧美乱码精品一区二区三区| 欧美人与性动交α欧美精品济南到| 黄色女人牲交| 亚洲va日本ⅴa欧美va伊人久久| 热99re8久久精品国产| 88av欧美|