• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Chemistry Study on Benzimidazoledithi Derivatives’ Selective Pre-enrichment of Cadmium Cation①

    2019-01-05 09:34:26LIShoYunGENGChoYANGZiHengYANGXiCHENXiuMinCHENXiuHuMAWenHui
    結(jié)構(gòu)化學(xué) 2018年12期

    LI Sho-Yun② GENG Cho YANG Zi-Heng YANG Xi CHEN Xiu-Min CHEN Xiu-Hu MA Wen-Hui②

    ?

    Quantum Chemistry Study on Benzimidazoledithi Derivatives’ Selective Pre-enrichment of Cadmium Cation①

    LI Shao-Yuana② GENG ChaoaYANG Zi-HengbYANG XicCHEN Xiu-MinaCHEN Xiu-HuabMA Wen-Huia②

    a(650093)b(650091)c(650093)

    This work reports the mechanism of benzimidazoledithi (BDT) derivatives’ selec- tive pre-enrichment of Cd2+under the stimulation of glutathione (GSH).The geometric and electronic properties of five BDT-M2+complexes (M = Cd, Cu, Hg, Pb, Co) havebeen investigated using density functional theory (DFT) at the B3LYP/6-311G (d,p) level with the GAUSSIAN 09 package program. The results show that BDT ligand exhibits alternative behaviors to different metal ions with the binding affinity in the order of Cu2+> Cd2+> Pb2+> Hg2+> Co2+. After adding the BDT-M2+complex into the GSH solution, the new S–S bonds can be formed, resulting with benzimidazole-metal ions (MBI-M2+) falling off into the GSH solution. Furthermore, the weak interaction between the new glutathione derivative (GSHD) and MBI-M2+were found. However, the strong chelation was detected between GSHD and MBI-M2+(M = Cu, Pb, Hg, Co) to hinder the adsorbed Cu2+, Pb2+and Hg2+, Co2+completely falling into the GSH solution, which suggests porous silicon composite modified by BDT has a certain selective pre-enrichment of Cd2+ion.

    benzimidazoledithi (BDT) derivatives, selective pre-enrichment, glutathione, cadmium ion, density functional theory;

    1 INTRODUCTION

    Cadmium ion, a kind of serious environmental pollution, limits the biggest content national stan- dards (China) for heavy metal residues in food, such as 0.03 mg/kg, fruit; 0.05 mg/kg, vegetables and 0.005 mg/L, drinking water. Therefore, the trace detection of Cd2+in the environmental samples is paid close attention[1, 2]. However, most conventional instrument analysis techniques are not enough sensitive such as emission spectrometry, spectro- photometry, and polarography because the content of cadmium ion in the samples is low. Its composition is complex and the components may cause a dis- turbance in different test methods. For these reasons, it is preliminarily essential to pre-enrich and separate the trace cadmium ions from matrix in water[3, 4]. Generally speaking, the high efficient and high selective separation of metal ions depends on the solid phase carrier and chelating group of the enriched material. It is important to obtain the new enri- chment materials with high selectivity in the trace of heavy metal cadmium field.

    Pyridine disulfide can react with mercapto drugs, target ligands and other functional molecules and is broken off to form the by-products with new disul- fide bonds under mild conditions[5, 6]due to the chemical sensitivity of disulfide bonds, which can be reduced and split by the specific reductant such as GSH and dithiothreonol (DTT)[7, 8]. In addition, the reductant with the concentration of millimoles can split the disulfide bond[9]. This feature is referred to as stimuli response, which has been widely con- cerned and become one of hot researches in the targeted drug delivery and biological separation fields[10, 11]. 2-Mercapto benzimidazole and its derivatives, a highly efficient chelating agent of metal ion, are frequently used to pre-enrich the precious metal ions[12],or detect the toxic heavy metal ions[13]. As shown in Fig. 1, with the organic covalent coupling technology, we “grafted” the benzimidazoledithi derivatives (BDT) with the stimulate response to the nano-porous silicon surface of the huge specific surface area, and obtained a composite functional material, which can selectively enrich the cadmium ion[14].

    Fig. 1. Scheme for the preparation of BDT-PS

    The electron density has replaced the wave func- tion as the research of basic amount in the density functional theory (DFT). DFT calculation methods have been successfully applied in various chemical issues such as the molecular structure and property, spectrum, energy spectrum, catalyst, reaction mecha- nism, reaction kinetics and thermodynamics, struc- tures of the transition state, the activation barrier and so on[15-20]. Among them, a number of studies have proven that the computational values with B3LYP method are consistent with the experimental ones. In the work, the chelating adsorption capacity, as well as the desorption property under the GSH stimulus response, of five BDT-M2+complexes (M = Cd, Cu, Hg, Pb, Co) havebeen investigated using DFT at the B3LYP/6-311G (d,p) level with the GAUSSIAN 09 package program. In essence, we revealed the mechanism of BDT to pre-enrich selectively the heavy metal cadmium ions.

    2 EXPERIMENTAL AND COMPUTATIONAL METHODS

    2. 1 Pre-enrichment metal ions of BDT-PS

    The process of enrichment of trace metals adopted the vibration absorption method. The BDT-PS composite was immersed in the M2+(M = Cd, Cu, Hg, Pb, Co) solution (50 mL beaker) with con- centrations of 0.05 ppm at room temperature, respec- tively. After five hours, the BDT-PS was transferred into the GSH solution (3 mL). The soak time lasted up to 12 hours to ensure the complete reaction between GSH and the disulfide bonds of BDT- PS-M2+. The concentration of metal ions in the GSH solution was analyzed with the atomic absorption spectrometer.

    2. 2 Computational methods

    In order to ascertain the selective pre-enrichment mechanism of BDT-PS to Cd2+cation, we employed the Gaussian view (Gaussian company) to set up the initial configuration of BDT molecules and five BDT-M2+complexes (M = Cd, Cu, Hg, Pb, Co). All optimized geometries and vibrational frequencies were performed using the DFT method at the B3LYP/6–311G (d,p) level with the Gaussian09 package[21]. By this way, some properties of com- plexes were obtained including the optimized geo- metries, vibration frequency of the frontier mole- cular orbital energy level, frontier molecular orbital, charge distribution, configurational energy (Δ), etc.

    3 RESULTS AND DISCUSSION

    3. 1 Geometrical structure of BDT

    Fig. 3 shows the optimized geometry of BDT molecule at the DFT-B3LYP/6-311G (d, p) level, the computing convergence precision selected a default value in the program, and the geometrical structure was determined with minimum point of energy surface (no imaginary vibration frequency), sugges- ting that the structure is the most stable.

    Fig. 2. Schematic diagram of the metal ions enrichment of BDT-PS under the stimuli of GSH

    Fig. 3. Optimized geometry of BDT

    Table 1 lists the selected structural parameter of optimized BDT. M. Aida et. al[22] have drawn a conclusion that the disulfide bond length is closely related with its structure. When the dihedral angle is 90°, the disulfide bond length is around 2.14 ?. As can be seen from Table 2, in the BDT ligand, the bond length of S(16)–S(15) is 2.1123(5) ? and the dihedral angle of C(17)–S(16)–S(15)–C(7) is 90°, which agree well with M. Aida’s conclusion. In addition, the bond length of C(7)–N(14) is shorter than that of C(7)–N(12), showing C(7)–N(14) is a double bond. The shorter distance also presents the combination of C(7) and N(14) is obviously stronger than that of C(7) and N(12) atoms, which can be attributed to part of the electrons N(12) flowing to the H(13) atoms. Meanwhile, compared with S(15)–C(7)–N(12) (120°), the bond angle of S(15)– C(7)–N(14) is increased to 126° under the strong action of N(14). As can be seen from all dihedral angles, the benzimidazole group is coplanar. Further- more, bond lengths of C–N and C–C are shorter than the normal single bond[23] and the average bond lengths also suggest the participation of N atoms in the π conjugation.

    Table 2. Selected Bond Lengths of BDT and BDT-M2+ (?)

    3. 2 Molecular orbital analysis

    N, S and O atoms of BDT ligand as the base can chelate with metal ions (the acid) to obtain new complexes. It is well known that the HOMO and LUMO play an especially important role in explaining the chemical reactivity. HOMO energy corresponds organic molecules to donate electronic power[26], and its components correspond to the center atoms of chemical reaction. However, LUMO energy associates with the ability of ligand to accept electrons.

    To investigate the chelating ability of BDT, we employed the Gaussian 09 software to calculate the highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) of BDT, as shown in Fig. 4. The results displayed HOMO and LUMO energies of BDT were –0.237 and –0.066 a.u., respectively. The higher HOMO energy indicates the elec- tron donor ability of BDT molecule is stronger, while the lower and negative LUMO energy exhibits BDT has strong ability to accept the feedback electrons. Furthermore, we find that HOMO of BDT is mainly composed ofpandorbitals from C, N(14) and S(16) of the imidazole group, and LUMO is made up by theorbital from N atoms, as well asandfrom S atoms of the imidazole group. Hence, it can be seen that N and S atoms are the active coordination sites of BDT ligand and the metal cation.

    3. 3 Geometries of BDT-M2+

    In order to study the coordination process of BDT and the heavy metal ions (M2+), the total optimized stable geometries of BDT-M2+were obtained. After chelating different metal cations, the disulfide group of BDT will generate significant transformations. Table 3 lists the selected bond lengths of BDT and BDT-M2+. As we can see, N and S atoms of the BDT ligand are most likely atoms that can mainly bond with the metal ions, which is basically consistent with the result of previous frontier orbital analysis. The shorter bond lengths of N(14)–Cu (1.9091(3) ?) and N(14)–Pb (2.4726(2) ?) indicate that stable covalent bonds exist between Cu2+or Pb2+and N(14) atoms. In addition, Pb2+cation can also form the covalent bond with the S(16) atom, which con- tributes to the stability of the BDT-M2+complexes. Expect Cu2+and Pb2+, metal cations Cd2+, Co2+and Hg2+mainly bond with the S(15) atoms and their combining abilities are not equal to that of Pb2+and Cu2+cations by comparison to the bond length. Thus, five kinds of metal cations combine the BDT by chelating order where Pb2+, Cu2+ions occupy the first place best, Cd2+cation comes second, and Hg2+and Co2+cations take third place.

    Fig. 4. HOMO and LUMO orbitals of BDT

    Table 3. Natural Population Analysis (NPA) of Selected Atoms in BDT and BDT-M2+

    In order to in-depth study the contribution of charge distribution and charge transfer of BDT-M2+to their coordination structures and geometry energies, we probed into the natural population analysis (NPA) of BDT-M2+(M = Cd, Cu, Hg, Pb, Co), and list the natural charges of selected atoms in Table 4. Compared with the BDT ligand, the charge distributions of N(14), S(15) and S(16) atoms have greatly changed in the BDT-M2+complexes, indica- ting that the charge transfer occurred between the ligand and metal ions due to the redistribution of charge. To sum up, the order of charge transfer between the metal cations and N, S atoms of BDT is as follows: Cu2+>Pb2+>Cd2+>Hg2+>Co2+, which is basically in good accordance with the bonds of BDT-M2+.

    Table 4. Energies of HOMO, HULO and the Energy Gaps of Different Metal Ions

    3. 4 Chelation ability of BDT-M2+ complexes

    In order to determine the match degree of binding energy between ligand BDT and different metal ions, B3LYP/6-31+G (d, p) was employed to calculate the HOMO and LUMO of five metal ions, and the results are shown in Fig. 5. Wang et al.[27]have reported that the energy matching degree can been proved by the energy difference (Δl) of HOMO of BDT and LUMO of metal ions, as well as the energy difference (Δ2) of HOMO of metal ions and LUMO of BDT[28]. Table 5 presents theenergies of HOMO, LUMO and the energy gap of different metal ions. Owing to the small difference of Δl, binding of BDT with metal ions can be identified as the "soft is close to soft" process. Hence, for metal ions, the softer the acidity is, namely, the higher the LUMO energy is, the more energy matching with BDT ligands, that is, the order of BDT energy matching with metal ions follows by Hg2+>Pb2+>Cd2+>Cu2+>Co2+. Compared with the above order of charge transfer, Hg2+and Cu2+cations are found to interchange in the order of energy matching. The reason may be that besides energy matching, the symmetry of spatial structure is the other key factor in the coordination process of metal ion and BDT ligand. Based on the outermost electronHg (51062) and Cu atoms (31041), when they lose two electrons to form ions, the outermost electrons layer turned into 510and 39. Due to the full electron state of outermost orbital of Hg2+, when chelated, its outermost electrons are so stable that they are difficult to interact with the BDT ligand, resulting in the less charge transfer between Hg2+and the BDT ligand. On the contrary, the outermost electron of Cu2+cations is not full state, and vacant orbitals are very good to accept electrons from the ligand. Therefore, the charge transfer is more between them to form stable chemical bonds, and BDT shows strong adsorption capacity for Cu2+cation.

    Fig. 5. Energy of the HOMO, LUMO of BDT and different metal ions (M2+)

    Table 5. Energies of HOMO, HULO and the Energy Gap of BDT-M2+

    Fukui[29]suggested in the frontier orbital theory that energy difference Δ= (LUMO–HOMO) is very important to the stability index, that is, the greater Δvalue is, the more stable the molecule, the worse the activity in the chemical reaction; the smaller Δvalue is, the better the activity in the chemical reaction. The related theory has been confirmed by a large number of prior studies[30, 31]. So, it is speculated that the better the stability of BDT-M2+is, the more impossible the BDT and M2+bond will be. We can estimate the coordination ability of BDT- M2+with their stability. Table 6 shows the energies of HOMO (HOMO), HULO (LUMO) and the energy gap of BDT-M2+(Δ). As can be seen from Table 6, the higherHOMOvalues indicate electrons are easy to transfer from the highest occupied orbital of ligand to the central metal cation to form complexes. The lower and negativeHOMOvalues point out the complexes are stable and not easy to lose electrons but to accept electrons, which has also been verified by the lowerLUMOvalues. The order Δvalues of BDT-M2+follows by: [BDT-Cu2+]>[BDT-Pb2+]>[BDT-Cd2+]>[BDT-Hg2+] >[BDT-Co2+], suggesting the chelating ability of BDT to Cu2+, Pb2+, Cd2+, Hg2+and Co2+decreases in turn. The result agrees with those of the bond length and NPA.

    3. 5 Stimulus response behavior of BDT

    To calculate the disulfide bond fracture of BDT under the GSH action, Fig. 6 shows the optimized geometry of BDT-GSH at the DFT-B3LYP/6-311G (d,p) level. The computing convergence precision selected a default value in the program, and the geometrical structure was determined with minimum point of energy surface (no imaginary vibration frequency), suggesting that the structure is the most stable. As can be obviously seen, after adding the BDT ligand into the GSH solution, the thiol (-SH) of GSH can affect the disulfide bond (S–S) of BDT ligand and "split" S–S bond to make the benzimi- dazole group (MBI) fall off from the BDT molecules. The new S(51)–S(50) bond is formed between the thiol (-SH) of GSH and the BDT ligand, and compared with that of S(15)–S(16) in the BDT ligand (2.1123(5) ?), S(51)–S(50) bond length slightly reduces to 2.0929(0) ?, which indicates that the new disulfide bond is stronger. Meanwhile, the S(49) atoms from the detached MBI are far away from the S(50) and S(51) atoms, where the bond lengths are 4.0117(6) and 5.8106(3) ?, respectively. The conclusion also confirms that the benzimidazole group disconnects from the BDT ligand under the action of GSH.

    Fig. 6. Optimized geometries of 2-mercap to BDT after adding GSH

    Fig. 7. Optimized geometries of five BDT-M2+complexes after adding GSH

    In addition, we established the initial and optimi- zed geometries of BDT-M2+after adding the GSH, as shown in Fig. 7. Comparing with the optimized structures, we found, for the different BDT-M2+system, GSH has almost "attacked" the disulfide bond of the BDT ligand and the new disulfide bond linked GSH to BDT molecules to obtain the new GSH derivative (GSHD). However, after BDT–Cd2+reacts with GSH, the deciduous MBI–Cd2+molecu- lar fragments entered the GSH solution due to the weaker bond with SGHD. On the contrary, after the BDT-M2+(M = Hg, Pb, Cu, Co ) react with GSH, the loss of MBI-M2+will continue to chelate part of atoms of GSHD to prevent the fragments from entering into the solution. Therefore, we can draw a conclusion that the BDT ligand can pre-enrich selectively the Cd2+cation in response to GSH stimulation, which is basically consistent with the enrichment experiments.

    4 CONCLUSION

    Density functional theory (DFT) at the B3LYP/6- 311G (d,p) level has been performed for five BDT-M2+complexes. The mechanism of BDT derivatives to pre-enrich selectively Cd2+cation under the stimulation of GSH was investigated, and the conclusions are as follows:

    (1) The HOMO-LUMO and NPA of BDT indicate that N, S atoms of BDT as the active site can combine with metal ions to build the BDT-M2+complex; compared with the bond length and frontier orbital energy gaps of five BDT-M2+complexes, the BDT ligands show selectivity coordination characteristics with different metal ions with the coordination ability order as follows: Cu2+>Pb2+>Cd2+>Hg2+>Co2+.

    (2) The computation results showed before chelating the heavy metal ions, the disulfide bond (S–S) of the BDT ligands will be “attacked” by the -SH of GSH, then the MBI group falls off, a new S–S bond is to build, and GSH will replace MBI to form a new GSH derivatives (GSHD); after chela- ting the heavy metal ions, the addition of GSH will also construct a new S–S bond between GSH and BDT-M2+to obtain the MBI-M2+group. It is worth mentioning that only in the MBI-Cd2+group, the deciduous MBI can not chelate GSHD, while the other four MBI-M2+can combine GSHD so as to prevent the metal ions from entering into the solution. Hence, we think porous silicon composite modified by BDT has a certain selective pre- enrichment of Cd2+cation.

    (1) Xiao, M.; Fu, Q.; Shen, H.; Chen, Y.; Xiao, W.; Yan, D.; Tang, X.; Zhong, Z.; Tang, Y. A turn-on competitive immunochromatographic strips integrated with quantum dots and gold nano-stars for cadmium ion detection.2017,178, 644-649.

    (2) Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X.; Perman, J. A.; Ma, S. A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection.2017,5, 8385-8393.

    (3) Deng, G. X.; Li, K. Z.; Cheng, X. M.; Gu, Z. H.; Lu, C. Q.; Zhu, X. Red mud as oxygen carrier for chemical looping combustion of methane: reactivity and cyclic performance.2018, 39, 327-336.

    (4) Gao, C. Y.; Tong, J. H.; Bian, C.; Sun, J. Z.; Li, Y.; Wang, J. F.; Gong, S.; Hui, Y.; Xia, S. H. Electroanalytical sensing of trace Cd(Ⅱ) usingbismuth modified boron doped diamond electrode.2018, 39, 447-454.

    (5) Oishi, M.; Hayama, T.; Akiyama, Y.; Takae, S.; Harada, A.; Yamasaki, Y.; Nagatsugi, F.; Sasaki, S.; Nagasaki, Y.; Kataoka, K. Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: polyion complex (PIC) micelles based on poly (ethylene glycol)-SS-oligodeoxynucleotide conjugate.2005, 6, 2449-2454.

    (6) Bulmus, V.; Woodward, M.; Lin, L; Murthy, N.; Stayton, P.; Hoffman, A. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs.2003, 93, 105-120.

    (7) Wang, Y.; Lu, J.; Tang, L.; Chang, H.; Li, J. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds.2009, 81, 9710-9715.

    (8) Qiu, B.; Stefanos, S.; Ma, J.; Lalloo, A.; Perry, B. A.; Leibowitz, M. J.; Sinko P. J.; Stein S. A hydrogel prepared by in situ cross-linking of a thiol-containing poly(ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery.2003, 24, 11-18.

    (9) Wang, S.; Zhou, Y.; Guan, W.; Ding, B. Preparation and characterization of stimuli-responsive magnetic nanoparticles.2008,3, 289-294.

    (10) Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery.2013, 12, 991-1003.

    (11) Wu, W.; Lin, Z. F.; Liu, Y. P.; Xu, X. Y.; Ding, C. M.; Li, J. S. Thermoresponsive hydrogels based on a phosphorylated star-shaped copolymer: mimicking the extracellular matrix for in situ bone repair.2017, 5, 425-434.

    (12) Xue, G.; Lu, Y. Various adsorption states of 2-mercaptobenzimidazole on the surfaces of gold and silver studied by surface enhanced Raman scattering.1994, 10, 967-969.

    (13) Pourreza, N.; Ghanemi, K. Determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry after solid phase extraction on agar modified with 2-mercaptobenzimidazole.2009, 161, 982-987.

    (14) Zhang, M. L.; Zhang, Z. H.; Luo, L. J.; Yang, X.; Liu, Y. N.; Nie, L. H. Preparation and adsorption properties of magnetic Fe3O4@SiO2@CS cadmium ion-imprinted polymer.2011, 32, 2763-2768.

    (15) Xu, F.; Shi, X.; Zhang, Q.; Wang, W. Mechanism for the growth of polycyclic aromatic hydrocarbons from the reactions of naphthalene with cyclopentadienyl and indenyl.2016, 162, 345-354.

    (16) Xiao, R.; Noerpel, M.; Luk, H. L.; Wei, Z.; Spinney, R. Thermodynamic and kinetic study of ibuprofen with hydroxyl radical: a density functional theory approach.2014,114, 74-83.

    (17) Zhuang, S.; Wang, H.; Ding, K.; Wang, J.; Pan, L.; Lu, Y.; Liu, Q.; Zhang, C. Interactions of benzotriazole UV stabilizers with human serum albumin: atomic insights revealed by biosensors, spectroscopies and molecular dynamics simulations.2016, 144, 1050-1059.

    (18) Qu, R.; Liu, H.; Feng, M.; Yang, X. Wang, Z. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones.2012, 57, 2442-2455.

    (19) Zeng, X.; Qu, R.; Feng, M.; Chen, J.; Wang, L.; Wang, Z. Photodegradation of polyfluorinated dibenzo--dioxins (PFDDs) in organic solvents: experimental and theoretical Studies.2016, 50, 8128-8134.

    (20) Chen, J.; Qu, R.; Pan, X.; Wang, Z. Oxidative degradation of triclosan by potassium permanganate: kinetics, degradation products, reaction mechanism and toxicity evaluation.2016, 103, 215-223.

    (21) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Petersson, G. A.2009.

    (22) Aida, M.; Nagata, C. AnMO study on the disulfide bond: properties concerning the characteristic SS dihedral angle.1986, 70, 73-80.

    (23) Yang, G.; Long, X. Y. A quantum chemistry study on the electronic structure of mercapto flotation reagents and its coordination with metal ions.2001, 22, 86-90.

    (24) Pearson, R. G. Hard and soft acids and bases.1963, 85, 3533-3539.

    (25) Pearson, R. G.; Songstad, J. Application of the principle of hard and soft acids and bases to organic chemistry.1967, 89, 1827-1836.

    (26) Liu, G. Y.; Zhan, J. H.; Zhong, H.; Xia, L. Y.; Wang, S. Theory study on chemical reactivity of 2-mercaptobenzothiazole,2-mercaptobenzoxazole and 2-mercaptobenzimidazole in solution.2010, 20, 2248-2253.

    (27) Zhong, H.; Wang, S.; Qiu, Y.; Wang, A.Synthesis of chelating resin PETU and its adsorption to Ag(I).2007, 7, 689-693.

    (28) Qiu, Y.; Zhang, Q.; Wang, S. Preparation of felt-metal supported modified polyvinyl alcohol composite hydrophilic ultrafiltration membrane.2005,12, 448-452.

    (29) Fukui, K. Formulation of the reaction coordinate.1970, 74, 4161-4163.

    (30) Shi, J.; Qu, R.; Feng, M.; Wang, X.; Wang, L.; Yang, S.; Wang, Z. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations.2015, 49, 4209-4217.

    (31) Qu, R.; Liu, J.; Li, C.; Wang, L.; Wang, Z.; Wu, J. Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids.2016, 104, 34-43.

    27 March 2018;

    25 August 2018

    ① This work was supported by the National Natural Science Foundation of China (No. 51504117, 61764009, 51762043), Yunnan Youth Fund Project (2016FD037), Talent Development Program of KUST (KKSY201563032) and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_17R48)

    E-mail: lsy415808550@163.com

    10.14102/j.cnki.0254-5861.2011-2015

    一级毛片 在线播放| 国产免费一级a男人的天堂| 大陆偷拍与自拍| 汤姆久久久久久久影院中文字幕| 国产精品一及| 国产精品久久久久久av不卡| 成人二区视频| 久久亚洲国产成人精品v| 高清午夜精品一区二区三区| 久久久久精品久久久久真实原创| 精品少妇久久久久久888优播| 黄色怎么调成土黄色| 黄色欧美视频在线观看| 少妇人妻 视频| av在线观看视频网站免费| 亚洲经典国产精华液单| 国产av一区二区精品久久 | 中文精品一卡2卡3卡4更新| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美在线一区| 夫妻午夜视频| 在线观看美女被高潮喷水网站| 久久影院123| 国产精品嫩草影院av在线观看| 亚洲精品一区蜜桃| 欧美日韩综合久久久久久| 久久久久精品久久久久真实原创| 欧美成人一区二区免费高清观看| videos熟女内射| h日本视频在线播放| 亚洲天堂av无毛| 18禁在线播放成人免费| 99热这里只有是精品在线观看| 日本欧美视频一区| 亚洲欧美精品自产自拍| 国产精品国产三级国产av玫瑰| 嫩草影院入口| 最近最新中文字幕大全电影3| 人人妻人人澡人人爽人人夜夜| av国产免费在线观看| 成人18禁高潮啪啪吃奶动态图 | 丰满乱子伦码专区| 日韩一区二区三区影片| 国产毛片在线视频| av播播在线观看一区| 青春草亚洲视频在线观看| 狂野欧美白嫩少妇大欣赏| 日韩电影二区| 我的老师免费观看完整版| 亚洲av男天堂| 色婷婷久久久亚洲欧美| av在线老鸭窝| 男的添女的下面高潮视频| 欧美精品国产亚洲| 我要看黄色一级片免费的| 亚洲国产精品国产精品| 久久人妻熟女aⅴ| 在线观看三级黄色| 国产成人aa在线观看| 久久精品熟女亚洲av麻豆精品| 国产成人精品久久久久久| 国产伦精品一区二区三区视频9| 91久久精品国产一区二区成人| 美女高潮的动态| 乱码一卡2卡4卡精品| 免费黄色在线免费观看| 国产极品天堂在线| 久久精品国产自在天天线| 成人黄色视频免费在线看| 丰满人妻一区二区三区视频av| 啦啦啦在线观看免费高清www| 国产精品欧美亚洲77777| 又粗又硬又长又爽又黄的视频| 日韩av免费高清视频| 午夜福利在线在线| a级毛色黄片| 性色av一级| av线在线观看网站| 久久精品国产a三级三级三级| 99久久精品一区二区三区| 国产成人精品福利久久| 亚洲精品亚洲一区二区| 久久国产乱子免费精品| 嫩草影院入口| videos熟女内射| 天堂中文最新版在线下载| 汤姆久久久久久久影院中文字幕| 亚洲av成人精品一二三区| 婷婷色麻豆天堂久久| 国产乱来视频区| av女优亚洲男人天堂| 男人狂女人下面高潮的视频| 99热这里只有是精品50| 十八禁网站网址无遮挡 | 国产男女超爽视频在线观看| 亚洲av国产av综合av卡| 偷拍熟女少妇极品色| 婷婷色av中文字幕| 女性生殖器流出的白浆| 日韩av免费高清视频| 免费黄色在线免费观看| 国产成人一区二区在线| 日韩精品有码人妻一区| 五月天丁香电影| a级一级毛片免费在线观看| 夜夜看夜夜爽夜夜摸| 永久网站在线| 日日摸夜夜添夜夜添av毛片| 欧美 日韩 精品 国产| 高清欧美精品videossex| 熟妇人妻不卡中文字幕| 人妻制服诱惑在线中文字幕| 人妻夜夜爽99麻豆av| 久久精品久久久久久噜噜老黄| 深夜a级毛片| 久久影院123| 建设人人有责人人尽责人人享有的 | 亚洲综合色惰| 国产男女内射视频| 成人影院久久| 99久久综合免费| 三级国产精品片| 中文字幕久久专区| 久久亚洲国产成人精品v| 亚洲无线观看免费| 亚洲欧美精品专区久久| 国产v大片淫在线免费观看| 久久精品国产亚洲av涩爱| 亚洲欧洲国产日韩| 丝袜脚勾引网站| 91狼人影院| 亚洲熟女精品中文字幕| 国产精品久久久久成人av| 成年女人在线观看亚洲视频| 婷婷色综合大香蕉| 老司机影院成人| 小蜜桃在线观看免费完整版高清| 亚洲天堂av无毛| 欧美日韩国产mv在线观看视频 | 久久久精品94久久精品| 成年av动漫网址| av.在线天堂| 男女边吃奶边做爰视频| 中文字幕免费在线视频6| 在线天堂最新版资源| 夫妻午夜视频| 高清毛片免费看| 久久人妻熟女aⅴ| 亚洲精品国产成人久久av| 香蕉精品网在线| 色网站视频免费| 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 亚洲av国产av综合av卡| 国产在视频线精品| 99re6热这里在线精品视频| 久久99热这里只有精品18| 国产精品熟女久久久久浪| 欧美变态另类bdsm刘玥| 日韩精品有码人妻一区| 国产精品99久久99久久久不卡 | 亚洲无线观看免费| 最近最新中文字幕免费大全7| 久久久久网色| 欧美激情极品国产一区二区三区 | 国产又色又爽无遮挡免| 久久久久久伊人网av| 熟女人妻精品中文字幕| 成人亚洲欧美一区二区av| 亚洲国产欧美人成| 中文字幕制服av| 亚洲国产高清在线一区二区三| 国产精品欧美亚洲77777| 国产v大片淫在线免费观看| 精品国产露脸久久av麻豆| 欧美少妇被猛烈插入视频| 国产精品伦人一区二区| 高清午夜精品一区二区三区| 久久久久久久精品精品| 日韩电影二区| 国产伦精品一区二区三区视频9| 国产淫片久久久久久久久| 国产毛片在线视频| 国产成人精品婷婷| 高清毛片免费看| av网站免费在线观看视频| 综合色丁香网| 精品久久久噜噜| 亚洲精品,欧美精品| av国产精品久久久久影院| 国产一区有黄有色的免费视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久午夜乱码| 80岁老熟妇乱子伦牲交| 亚洲av男天堂| 欧美成人一区二区免费高清观看| 内地一区二区视频在线| 一级毛片电影观看| 亚洲,一卡二卡三卡| 18禁在线无遮挡免费观看视频| 三级国产精品片| 中文字幕人妻熟人妻熟丝袜美| 欧美+日韩+精品| 国产黄色免费在线视频| 一级二级三级毛片免费看| 免费在线观看成人毛片| 国产成人午夜福利电影在线观看| 久久热精品热| 91久久精品国产一区二区三区| 国产精品一区www在线观看| 中文资源天堂在线| 免费久久久久久久精品成人欧美视频 | 少妇人妻精品综合一区二区| 美女视频免费永久观看网站| 又黄又爽又刺激的免费视频.| 啦啦啦中文免费视频观看日本| 97精品久久久久久久久久精品| 欧美成人午夜免费资源| 久久久久国产网址| 国产一区二区在线观看日韩| 日本爱情动作片www.在线观看| 久久久久久久大尺度免费视频| 国产精品一区二区三区四区免费观看| av播播在线观看一区| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看| 亚洲精品色激情综合| 亚洲精品中文字幕在线视频 | av天堂中文字幕网| 午夜免费鲁丝| 人妻 亚洲 视频| 国产精品av视频在线免费观看| 久久精品夜色国产| 午夜福利网站1000一区二区三区| av国产精品久久久久影院| 久久婷婷青草| 爱豆传媒免费全集在线观看| 久久久久久久久久久丰满| 国产精品国产三级专区第一集| 一区二区三区乱码不卡18| 91精品一卡2卡3卡4卡| 高清日韩中文字幕在线| 男人狂女人下面高潮的视频| 亚洲精品久久久久久婷婷小说| 一区二区三区免费毛片| 日韩国内少妇激情av| 国产国拍精品亚洲av在线观看| 午夜精品国产一区二区电影| 国产黄色免费在线视频| 国产精品嫩草影院av在线观看| 看免费成人av毛片| 超碰av人人做人人爽久久| 夜夜爽夜夜爽视频| 99热网站在线观看| 蜜桃久久精品国产亚洲av| 日韩一本色道免费dvd| 噜噜噜噜噜久久久久久91| 久久99热6这里只有精品| 国产有黄有色有爽视频| 国产男人的电影天堂91| 欧美3d第一页| 亚洲激情五月婷婷啪啪| 老司机影院成人| 黄色日韩在线| 久久影院123| 欧美成人午夜免费资源| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| 国产免费一级a男人的天堂| 欧美成人a在线观看| 色5月婷婷丁香| xxx大片免费视频| 纯流量卡能插随身wifi吗| 男女边摸边吃奶| 最后的刺客免费高清国语| 伊人久久精品亚洲午夜| 国产男女内射视频| 黄色欧美视频在线观看| 十分钟在线观看高清视频www | 国产 一区 欧美 日韩| 欧美日韩精品成人综合77777| 在线免费观看不下载黄p国产| 午夜福利在线观看免费完整高清在| 久久国产亚洲av麻豆专区| 亚洲欧美成人精品一区二区| 欧美国产精品一级二级三级 | 五月开心婷婷网| 亚洲精品国产色婷婷电影| 国产精品麻豆人妻色哟哟久久| 国内揄拍国产精品人妻在线| 如何舔出高潮| 一区二区三区精品91| 亚洲精品日本国产第一区| 99精国产麻豆久久婷婷| av卡一久久| 精品少妇黑人巨大在线播放| 国产精品女同一区二区软件| 尾随美女入室| 日韩强制内射视频| 人妻 亚洲 视频| 亚洲国产欧美在线一区| 国产日韩欧美在线精品| 一本—道久久a久久精品蜜桃钙片| 在线亚洲精品国产二区图片欧美 | 永久免费av网站大全| 欧美xxxx黑人xx丫x性爽| 亚洲在久久综合| 在线观看国产h片| 大又大粗又爽又黄少妇毛片口| 一级毛片 在线播放| 精品99又大又爽又粗少妇毛片| 91aial.com中文字幕在线观看| 乱系列少妇在线播放| 日本黄大片高清| 性色avwww在线观看| 色综合色国产| 国产精品久久久久久av不卡| 人人妻人人澡人人爽人人夜夜| 日本爱情动作片www.在线观看| 熟女av电影| 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 一边亲一边摸免费视频| 精品视频人人做人人爽| 2018国产大陆天天弄谢| 美女中出高潮动态图| 亚洲av.av天堂| 精品99又大又爽又粗少妇毛片| 亚洲天堂av无毛| 久久精品久久久久久久性| 在线观看av片永久免费下载| 最近的中文字幕免费完整| 身体一侧抽搐| 亚洲国产精品成人久久小说| 久久热精品热| 国产精品久久久久久精品电影小说 | 视频中文字幕在线观看| 国产成人一区二区在线| 精品少妇久久久久久888优播| 亚洲国产精品999| 久久久国产一区二区| 国产亚洲av片在线观看秒播厂| 日韩制服骚丝袜av| 亚洲精品国产av蜜桃| 3wmmmm亚洲av在线观看| 纯流量卡能插随身wifi吗| 一区在线观看完整版| 妹子高潮喷水视频| 精品人妻视频免费看| 美女高潮的动态| 自拍偷自拍亚洲精品老妇| 97精品久久久久久久久久精品| 国产爱豆传媒在线观看| 国产 精品1| av在线蜜桃| 女性被躁到高潮视频| 三级国产精品欧美在线观看| 亚洲欧美中文字幕日韩二区| 亚洲av欧美aⅴ国产| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 最后的刺客免费高清国语| 亚洲成人av在线免费| 97热精品久久久久久| 久久久久久久久久久免费av| 能在线免费看毛片的网站| 美女脱内裤让男人舔精品视频| 午夜老司机福利剧场| 人人妻人人澡人人爽人人夜夜| 大片免费播放器 马上看| 国产精品一区二区在线观看99| 国产成人免费无遮挡视频| 女性生殖器流出的白浆| 精品久久久精品久久久| 身体一侧抽搐| 51国产日韩欧美| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 一个人免费看片子| 亚洲av日韩在线播放| av免费在线看不卡| 在线免费十八禁| 99国产精品免费福利视频| 亚洲国产欧美在线一区| 亚洲国产成人一精品久久久| av网站免费在线观看视频| 久久韩国三级中文字幕| 99久久精品一区二区三区| 亚洲av男天堂| 亚洲精品中文字幕在线视频 | 亚洲,欧美,日韩| 国产亚洲91精品色在线| 欧美成人午夜免费资源| 国产精品国产三级专区第一集| 高清欧美精品videossex| 国产在线免费精品| 国国产精品蜜臀av免费| 精品亚洲乱码少妇综合久久| 日本与韩国留学比较| 麻豆成人午夜福利视频| 亚洲av国产av综合av卡| 国产一级毛片在线| 日韩制服骚丝袜av| 欧美一级a爱片免费观看看| 欧美精品国产亚洲| 国产精品人妻久久久久久| 欧美性感艳星| 性高湖久久久久久久久免费观看| 一本久久精品| 国产女主播在线喷水免费视频网站| 国产人妻一区二区三区在| 22中文网久久字幕| 超碰97精品在线观看| 最黄视频免费看| 亚洲图色成人| 各种免费的搞黄视频| 亚洲丝袜综合中文字幕| 舔av片在线| 人人妻人人爽人人添夜夜欢视频 | 免费观看的影片在线观看| 国产免费福利视频在线观看| 国产精品99久久99久久久不卡 | 又爽又黄a免费视频| 国产精品偷伦视频观看了| 热99国产精品久久久久久7| .国产精品久久| 久久综合国产亚洲精品| 亚洲av成人精品一区久久| 亚洲精品自拍成人| 大香蕉97超碰在线| 亚洲成色77777| 日本爱情动作片www.在线观看| 人人妻人人看人人澡| 亚洲av福利一区| 国产在线一区二区三区精| 亚洲成人中文字幕在线播放| 麻豆乱淫一区二区| 日韩av免费高清视频| 国产大屁股一区二区在线视频| 黄片wwwwww| 国产精品久久久久久精品古装| 久久精品人妻少妇| 日韩亚洲欧美综合| 欧美日韩综合久久久久久| 在线观看免费高清a一片| 国产成人午夜福利电影在线观看| 久久久久视频综合| 熟妇人妻不卡中文字幕| 街头女战士在线观看网站| 国产黄色视频一区二区在线观看| 男女免费视频国产| 日韩欧美精品免费久久| 尾随美女入室| 亚洲精品国产色婷婷电影| 国产精品国产三级国产av玫瑰| 十八禁网站网址无遮挡 | 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| 久久99蜜桃精品久久| 少妇熟女欧美另类| 久久人妻熟女aⅴ| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 能在线免费看毛片的网站| 久久女婷五月综合色啪小说| 欧美zozozo另类| 看免费成人av毛片| 国精品久久久久久国模美| 亚洲国产日韩一区二区| 久久青草综合色| 99国产精品免费福利视频| 国产精品精品国产色婷婷| 18+在线观看网站| 亚洲精品国产成人久久av| 亚洲人成网站在线观看播放| 一级毛片电影观看| 赤兔流量卡办理| 欧美另类一区| 人人妻人人看人人澡| 国产亚洲最大av| 国产午夜精品一二区理论片| 国产男女内射视频| 成年女人在线观看亚洲视频| 一边亲一边摸免费视频| 青春草视频在线免费观看| 啦啦啦在线观看免费高清www| 国产免费又黄又爽又色| 中文精品一卡2卡3卡4更新| 精品久久久噜噜| xxx大片免费视频| 美女中出高潮动态图| 久久人人爽人人爽人人片va| 成人一区二区视频在线观看| 亚洲国产欧美在线一区| 日本黄色片子视频| 国产午夜精品久久久久久一区二区三区| 建设人人有责人人尽责人人享有的 | av在线观看视频网站免费| 亚洲人与动物交配视频| 久久精品人妻少妇| 免费在线观看成人毛片| av在线观看视频网站免费| 色视频www国产| 91aial.com中文字幕在线观看| 一级av片app| 国产亚洲5aaaaa淫片| 建设人人有责人人尽责人人享有的 | 国产一区二区三区av在线| 国产亚洲一区二区精品| freevideosex欧美| 韩国av在线不卡| 亚洲精品,欧美精品| 超碰97精品在线观看| 午夜福利在线在线| 国产亚洲一区二区精品| 少妇人妻一区二区三区视频| 久热久热在线精品观看| 日本色播在线视频| 中文字幕制服av| 日本wwww免费看| videos熟女内射| 亚洲精品色激情综合| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 新久久久久国产一级毛片| 久久久久视频综合| 亚洲三级黄色毛片| 国产精品免费大片| 国产伦精品一区二区三区四那| 激情五月婷婷亚洲| 日韩在线高清观看一区二区三区| 成人漫画全彩无遮挡| 涩涩av久久男人的天堂| 亚洲av男天堂| 99热这里只有是精品50| 高清av免费在线| av专区在线播放| 激情 狠狠 欧美| 在线精品无人区一区二区三 | 国产成人freesex在线| 久久99热这里只频精品6学生| 日韩国内少妇激情av| 在线观看免费高清a一片| 黑丝袜美女国产一区| 国产精品久久久久成人av| 中文天堂在线官网| 秋霞在线观看毛片| 亚洲av中文av极速乱| 建设人人有责人人尽责人人享有的 | 日韩伦理黄色片| 欧美成人午夜免费资源| 一级毛片 在线播放| 成人综合一区亚洲| 激情五月婷婷亚洲| 欧美+日韩+精品| av在线播放精品| 99精国产麻豆久久婷婷| 在现免费观看毛片| 这个男人来自地球电影免费观看 | 日产精品乱码卡一卡2卡三| 性色av一级| 日韩精品有码人妻一区| 99久久人妻综合| 久久久久视频综合| 少妇的逼水好多| 午夜免费鲁丝| av福利片在线观看| 在现免费观看毛片| 午夜日本视频在线| 久热久热在线精品观看| 国产伦精品一区二区三区视频9| 国产亚洲av片在线观看秒播厂| 2018国产大陆天天弄谢| 欧美高清成人免费视频www| 一级二级三级毛片免费看| 看免费成人av毛片| 精品久久久精品久久久| 国产精品一区二区性色av| 97精品久久久久久久久久精品| 国产免费一级a男人的天堂| 秋霞在线观看毛片| 国产极品天堂在线| 亚洲国产成人一精品久久久| 成人国产av品久久久| 亚洲无线观看免费| 亚洲色图综合在线观看| 99精国产麻豆久久婷婷| 国产淫片久久久久久久久| 男的添女的下面高潮视频| 干丝袜人妻中文字幕| 亚洲欧美成人综合另类久久久| 国产日韩欧美亚洲二区| 一边亲一边摸免费视频| 中国三级夫妇交换| 国产色爽女视频免费观看| 亚洲欧洲日产国产| 国产精品人妻久久久久久| 午夜免费鲁丝| 在线精品无人区一区二区三 | 国产精品一区二区在线观看99| 热99国产精品久久久久久7| 久久久午夜欧美精品| 国产爽快片一区二区三区| 可以免费在线观看a视频的电影网站| 欧美精品高潮呻吟av久久| 啦啦啦在线观看免费高清www| 亚洲视频免费观看视频| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 午夜91福利影院| 久久久亚洲精品成人影院| 蜜桃国产av成人99| 一级毛片 在线播放| 久久毛片免费看一区二区三区| 亚洲精品av麻豆狂野|