• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanoclusters Au19Pd and Au19Pt Catalyzing CO Oxidation: a Density Functional Study①

    2019-01-05 07:48:28ZHANGJingYUWeiLingZHOUShengHuLIYiZHANGYongFnCHENWenKi
    結(jié)構(gòu)化學(xué) 2018年12期

    ZHANG Jing YU Wei-Ling ZHOU Sheng-Hu LI Yi ZHANG Yong-Fn CHEN Wen-Ki, b, c

    ?

    Nanoclusters Au19Pd and Au19Pt Catalyzing CO Oxidation: a Density Functional Study①

    ZHANG JingaYU Wei-LingaZHOU Sheng-HuaaLI YiaZHANG Yong-FanaCHEN Wen-Kaia, b, c②

    a(350116)b(350116)c(610005)

    The gold atoms on the Au20clusterhad been substituted by the palladium and platinum atoms to obtain the doped clusters with more stable geometries as a function of the bind energy and interaction energy in the previous study. Therefore, we investigated the catalytic activities of the Au19Pd and Au19Pt clusters for CO oxidation along the Langmuir-Hinshelwood mechanism. It is found that the coadsorption of CO and O2on the doped clusters is obviously stronger than on the Au20cluster, especially on the doped atom, which makes potential energy of the transition state lower than the total energy of the reactants so that it can promote CO oxidation. The reaction on these doped clusters with the heteroatom on the vertex is more difficult. However, the Au19Pd (S) is more prone to catalyzing the CO oxidation, in which the rate-limiting step has thelower energy barrier of 38.84 kJ/mol for this study. Therefore, the single atom can be modified to change the catalytic activity of the cluster for the CO oxidation. Meanwhile, the different sites on the clusters have different strengths of activity for the reaction.

    bimetallic cluster, catalytic activity, CO oxidation, density functional theory;

    1 INTRODUCTION

    Note that the noble metals are widely used as catalysts in recent years. However, it is a very tough problem how to use them efficiently because of their limited resources[1]. It is found that bimetallic cataly- sts can largely improve the efficiency and selectivity of catalytic process instead of monometallic cataly- sts, which can be explained by the concepts of “ensemble” or “geometric” and “l(fā)igand” or “electronic” effect in electrochemistry and heterogenous cataly- sis[1, 2]. Therefore, the surface composition of bime- tallic alloys hinders the formation of inhibited species in the reaction, and the bimetallic systempossesses a special overall catalytic activity via the modification of electronic structure. Meanwhile, it is feasible to make full use of noble metals and improve their catalytic activities by means of size control[3, 4]. Recently, metallic nanocluster with so unique shape and size exhibits unusual physical and chemical properties that have many applications in the fields of magnetic, optical and electronic mate-rials, photocatalyts, catalysts, drug delivery and so on, which have been of great interest and intensely researched[5-9]. It is especially found that bimetallic nanoclusters have been particularly attractive because of the improvement of catalytic pro- perties[10-12]. And bimetallic catalysts also have been investigated to obtain the relationship between the metal structure and catalytic activity[13].

    The gold clusters with metal impurity have attracted considerable attention on the basis of experimental and theoretical researches, and there are many potential applications in catalysis, mole- cular electronics, material science, and biomedical diagnosis[14-21]. The presence of heteroatom in the doped gold clusters coordinates the electronic and geometric properties of these bimetallic clusters so as to alter their chemical reactivity in a desirable manner[22, 23]. The theoretical studies illustrate the influence of heteroatoms on the chemical reactivity of these bimetallic clusters, which has been proved by experiments[15, 16, 24-31]. Moreover, it is found that alkali or transition metal atoms can beselected as heteroatoms doped in the cluster, which can signifi- cantly improve the catalytic activity of the host gold cluster[25, 26, 28-32].

    Goldcan be in conjunction with transition metals like platinum[9, 33-44]or palladium as a useful alloying metal because of its relatively low reactivity in many catalytic reactions. Platinum has many applications including CO/NOoxidation, syngas reformation, and petroleum refinement as an excellent catalyst. And also palladium served as catalyst for CO oxidation and Suzuki reaction in the form of monometal and bimetal[45, 46]. It is found that gold nanoparticles possess high catalytic activity for oxidation reactions[47-51], which is demonstrated by the study about the CO oxidation on the gold nanocluster under low temperature in 1989[49]. The catalytic activities of Au–Pt nanoparticles are superior to those nanoclusters containing gold or platinum alone, which is indicated by recent theoretical studies[52]. Therefore, Pt-doped gold clusters have attracted special attention because of many potential application in catalysis[53]and high catalytic activities for a lot of reactions. There are several studies about the interaction between CO molecule and Pt-doped small gold clusters with up to 13 atoms[20, 21, 27, 28, 54]. Note that many studies indicate that the presence of platinum atom could promote the CO adsorption on the gold cluster, in which the platinum site is more prone to CO adsorption. In general, the platinum in gold clusters enhances the catalytic activity for CO oxidation. Among various bimetallic systems, Au–Pd alloy nanoparticles have also attracted particular attention as catalysts in a number of reactions like CO oxidation, acetylene cyclotrimerization, the synthe- sis of vinyl acetate monomer, and selective oxidation of alcohols to aldehydes[55-57]. Thereby, we have rationally improved the catalytic activity of Au–Pd alloy as a function of a deeper understanding of physical reasons.

    In the magical world of gold clusters, there is a gold cluster containing 20 gold atoms (Au20) which is enough chemically inert and a highly stable cluster with a tetrahedral pyramidal structure on the basis ofinitio DFT-based calculation[58, 59]and experimental studies like far-infrared vibrational spectroscopy and photoelectron spectroscopy. Fur- thermore, we have consulted review paper written by Kryachko and Remacle, regarding the properties of magic gold cluster Au20. There is a large energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) for Au20cluster, which is superior to that of C60to manifest that Au20cluster should be a chemically inert and stable cluster.Moreover, the gold atom located at the surface, vertex and edge of the Au20cluster with a tetrahedral structure could be substituted with the platinum and palladium atoms, respectively, which could not obviously change the original geometry of the Au20cluster and obtain more stable geometries on the basis of the previous study.

    In this study, we have firstly obtained the Au19Pt and Au19Pd clusters, in which the platinum and palladium atoms substitute with the gold atom of Au20cluster, respectively. Then we have detailedly investigated the catalytic activities of Au19Pt and Au19Pd clusters for CO oxidation along the Langmuir-Hinshelwood reaction pathway. Therefore, the calculated results involved in the reaction to the Au19Pt and Au19Pd clusters are obtained via DFT-based calculation so as to compare with that on the Au20cluster to obtain some information about the influence of different doped atoms located at different sites on the catalytic activity of cluster.

    2 COMPUTATIONAL METHOD

    To investigate the catalytic activities of the Au19Pt and Au19Pd clusters for CO oxidation, the program package Dmol3of Materials Studio of Accelrys[60]Inc has been performed to optimize geometries and searchtransition states. Generalized gradient appro- ximation (GGA) with exchange-correlation func- tional proposed by Perdew, Burke and Ernzerhof (PBE) is performed.The DFT semicore pseudopo- tential is employed for the core electrons of gold, platinum and palladium atoms, and the double- numerical basis with polarization functions (DNP) has been also employed in the calculation. During geometrical optimization, the energy, maximum force, and maximum displacement for convergence tolerance are 2.0′10-5Hartree, 0.004 Hartree/? and 0.005 ?, respectively.The transition states are determined by the complete LST/QST method, which means linear synchronous transition and quadratic synchronous transition, respectively. And the RMS convergence, charge mixing and spin mixing are 0.01, 0.1 and 0.2, respectively, in the process of transition state search. Furthermore, every transition state structure has a single imaginary frequency, which is in accordance with the reaction pathway.The Fermi smearing method for a window size is set as 0.005 Hartree, and it is 4.5 ? for the orbital cutoff range, which could accelerate the convergence. Meanwhile, every atom on the cluster is relaxed in the calculation.

    And also we calculate the adsorption energy of gas molecule on the cluster using the following equation:ads=system–(cluster+CO/O2), whereadsis the adsorption energy for the system,systemmeans the total energy of the substrate and gas molecule together,clusterpresents the energy of the substrate, andCO/O2is the energy of the CO or O2molecule alone.

    3 RESULTS AND DISCUSSION

    A gold atom on the Au20cluster with a tetrahedral pyramidal structure could be modified to palladium or platinum atom, as shown in Fig. 1, which does not obviously change the geometry after optimization and also makes the structure more stable as a function of the bind energy and interaction energy in the previous study. Although the stabilities of Au19Pd clusters increase in the order of Au19Pd (S) > Au19Pd (E) > Au19Pd (V), it is in accordance with the stabilities of Au19Pt clusters via DFT-based calculation. Therefore, we have investigated the catalytic activities of these clusters for CO oxidation as a function of the Langmuir-Hinshelwood mecha- nism in order to compare with the Au20cluster.

    Fig. 1. Optimized geometries of Au19X (X = Pt, Pd) clusters

    Note that CO adsorption on these doped clusters is an elementary step in this reaction, which has been firstly studied according to Langmuir-Hinshel- wood channel. The CO adsorption energies on the doped clusters have been indicated in Table 1. It is found that CO adsorption on the heteroatom is much stronger than that on other gold atoms of the doped cluster, which is in accordance with the previous study. And also it is noted that the CO is more prone to be on the vertex of the Au20cluster with the adsorption energy to be –83.94 kJ/mol, which is much weaker than that on the heteroatom located at the doped cluster, as shown in Fig. 1. Therefore, both of the palladium and platinum atoms on these clusters can promote CO adsorption in this study, especially the latter. Furthermore, the doped atoms at different sites of the cluster influence the CO adsorption, which suggests that CO is more prone to be on the heteroatom located at the vertex and edge of the doped cluster, respectively. Instead, CO adsorption in the reaction can’t totally determine catalytic activity of the cluster. The coadsorption for CO and O2on the cluster is also a crucial step for CO oxidation as a function of the previous study. Thereby, we have further studied the catalytic activities of these clusters via DFT-based calculation.

    Table 1. Adsorption Energies of CO Molecule on the Au19Pd and Au19Pt Clusters, in Which the Adsorption Sites Are as a Function of Fig. 1, Respectively

    Therefore, Figs. 2 and 3 present the energy profiles without considering the energy of the bare substrates and reaction coordinates for the first CO oxidation on the Au19Pd and Au19Pt clusters, respectively, in which the bond lengths of the molecules on the clusters are changing along the reaction channel and the calculated results are shown in Table 3 in detail. The bond distances of CO and O2are 1.14 and 1.23 ?, respectively, which are elongated to 1.16and 1.24 ? so that both CO and O2are activated after adsorption on the Au19Pd clusters. And also it is found that O2adsorption has no obvious influence on the bond distance of CO on the clusters, but can make the systems more stable. Meanwhile, the O2adsorption on the Au20cluster with CO could lower the stability of the system and coadsorption of CO and O2on the Au20cluster is much weaker than that on the Au19Pd clusters. Furthermore, the Au19Pd (V) is more prone to enhance the coadsorption of CO and O2than other two Au19Pd clusters. Meanwhile, the coadsorption of CO and O2on the Au19Pt clusters is in accordance with that on the Au19Pd clusters. However, it has been obtained that the Au19Pt clusters can facilitate the coadsorption of CO and O2more obviously, especially the Au19Pt (V) cluster, in comparison with the Au19Pd clusters. In general, these clusters shown in Fig. 1 can distinctly enhance the coadsorption of CO and O2, which make potential energy of the transition state lower than the total energy of the reactants so that it is enough to promote the first CO oxidation. Then the middle state is firstly generated by the CO and O2coadsorption on these clusters, in which the doped cluster with the heteroatom on the surface or edge catalyzes the formation of the middle state in the reaction more obviously. And also the catalytic activity of the palladium-doped cluster on the clusters is similar to that of the platinum-doped cluster for the production of the middle state. Furthermore, we have obtained that the Au20cluster possesses higher catalytic activity for the formation of the middle state with the energy barrier of 11.58 kJ/mol than those doped clusters shown in Fig. 1, in which theenergy barriers are 38.84 and 35.10 kJ/mol on Au19Pd (S) and Au19Pt (E) clusters, respectively. However, the decomposition of the middle state on the Au20cluster needs to surmount the energy barrier of 41.49 kJ/mol, which is a rate-limiting step in a complete reaction process and obviously more difficult than on the Au19Pd (S) and Au19Pt (S) with the energy barriers of 2.18 and 16.16 kJ/mol, respectively. Thereby, the palladium or platinum on the surface of the cluster is more prone to facilitating the decomposition of the middle state, especially the Au19Pd(S). That indicates that the single atom on the cluster is modified to change the catalytic activity of the substrate. Moreover, the doped atom located at different sites of the cluster has obvious influence on the activity of the substrate in the reaction process.

    Fig. 2. Energy profile and reaction coordinates for the first CO molecule oxidation on the Au19Pd clusters

    Fig. 3. Energy profile and reaction coordinates for the first CO molecule oxidation on the Au19Pt clusters

    Table 2. Comparison of the Adsorption Energy, Energy Barrier (Eband Eb2) and Reaction Energy (ΔEr1and ΔEr2) in the Process of the Intermediate States Producing and Decomposing, Respectively, with Literature Values along the Corresponding Reaction Pathways, in Which All Energies Are Given in kJ/mol

    adenotes these results obtained by Gao Y.[59]

    The second CO reacts with the residual oxygen atom along the LH reaction mechanism, as illustra- ted in Figs. 4 and 5. It is noted that the formation of the second CO2on the Au20cluster is spontaneous along the ER channel. Meanwhile, it is found that the second CO adsorption is strong as the first CO adsorption on these clusters, which promotes the CO oxidation. Furthermore, both Au19Pd (V) and Au19Pt (V) with the residual oxygen atoms are more prone to facilitating the CO adsorption. However, it is found that the second CO oxidation on Au19Pt (V) and Au19Pd (V) needs to surmount very high energy barriers of 217.94 and 257.21 kJ/mol, respectively, which are obviously higher than that on other clusters so as to hinder the reaction. Therefore, the doped cluster with heteroatom located at the surface and edge is better to promote the second CO oxida- tion, especially the Au19Pd (S) with a low energy barrier of 34.92 kJ/mol and high exothermicity of 218.64 kJ/mol.

    Fig. 4. Energy profile and reaction coordinates for the second CO molecule oxidation on the Au19Pd clusters

    Fig. 5. Energy profile and reaction coordinates for the second CO molecule oxidation on the Au19Pt clusters

    Table 3. Calculated Adsorption Energy, Energy Barrier (Eb) and Reaction Energy (ΔEr) along the LH Reaction Pathway for the Second CO Molecule Oxidation on the Cluster, in Which All Energies Are Given in kJ/mol

    4 CONCLUSION

    In summary, the gold atoms on the Au20cluster had been modified to the palladium or platinum atom to obtain a stable geometry via interaction energy in the previous study. Therefore, we have investigated the catalytic activities of Au19Pd and Au19Pt clusters for CO oxidation along the LH reaction channel. Firstly, the CO and O2coadsorp- tion on these doped clusters is stronger than that on the Au20cluster. And also the rate-limiting step on the Au20cluster is the intermediate state decom- position with an energy barrier of 41.5 kJ/mol. Instead, the formation of the middle state on the Au19Pd (S) cluster is the rate-limiting step with the lower energy barrier of 38.84 kJ/mol in this study, which is accelerated by the strong coadsorption of gas molecules and high exothermicity. Therefore, the Au19Pd (S) possesses higher catalytic activities than the Au20cluster in a complete CO oxidation. Note that the Au19Pt clusters can be more prone to enhance the adsorption of CO and O2. However, the reaction on these clusters is more difficult than on the Au19Pd clusters. Thus, the single atom on the cluster is modified to change the catalytic activity of the substrate in the reaction. Furthermore, the doped clusters with the heteroatom located at the vertexpromote the coadsorption of CO and O2but hinder the reaction with larger energy barrier. It has been shown that the doped atom on different sites of the clusterhave obvious influence on the activity of the substrate. Finally, the Au19Pd with the palladium atom on the surface of the cluster is a superior catalyst for CO oxidation. Moreover, it hopes that our theoretical study provides a clue for further investigation on the catalytic activities of Au19Pd and Au19Pt clusters on the suitable support for CO oxidation.

    (1) Chen, M.;Kumar, D.;Yi, C. W.;Goodman, D.W.The promotional effect of gold in catalysis by palladiumgold2005,310,291-293.

    (2) Bligaard, T.;N?rskov, J.K.Ligand effects in heterogeneous catalysis and electrochemistry2007,52,5512-5516.

    (3) Haruta, M.;Yamada, N.;Kobayashi, T.;Iijima, S.Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide1989,115,301-309.

    (4) Valden, M.;Lai, X.;Goodman, D.W.Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties1998,281,1647-1650.

    (5) Burda, C.;Chen, X.;Narayanan, R.;El-Sayed, M.A.Chemistry and properties of nanocrystals of different shapes2005,105,1025-1102.

    (6) Jin, R.;Cao, Y.;Mirkin, C.A.;Kelly, K.;Schatz, G.C.;Zheng, J.Photoinduced conversion of silver nanospheres to nanoprisms2001,294,1901-1903.

    (7) Sulman, E.;Matveeva, V.;Doluda, V.;Nicoshvili, L.;Bronstein, L.;Valetsky, P.;Tsvetkova, I.Nanostructured catalysts for the synthesis of vitamin intermediate products2006,39,187-190.

    (8) Schmid, G.Large clusters and colloids:metals in the embryonic state1992,92,1709-1727.

    (9) Lee, A.F.;Baddeley, C.J.;Hardacre, C.;Ormerod, R.M.;Lambert, R.M.;Schmid, G.;West, H.Structural and catalytic properties of novel Au/Pd bimetallic colloid particles: EXAFS, XRD, and acetylene coupling1995,99,6096-6102.

    (10) Toshima, N.;Yonezawa, T.;Kushihashi, K.Polymer-protected palladium-platinum bimetallic clusters: preparation, catalytic properties and structural considerations1993,89,2537-2543.

    (11) Harada, M.;Asakura, K.;Toshima, N.Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride1993,97,5103-5114.

    (12) Wang, Y.;Toshima, N.Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures1997,101,5301-5306.

    (13) Sinfelt, J.H.Structure of bimetallic clusters1987,20,134-139.

    (14) Li, X.;Kiran, B.;Cui, L. F.;Wang, L. S.Magnetic properties in transition-metal-doped gold clusters: M@ Au6(M = Ti, V, Cr)2005,95,253401,1-4.

    (15) De Haeck, J.;Veldeman, N.;Claes, P.;Janssens, E.;Andersson, M.;Lievens, P.Carbon monoxide adsorption on silver doped gold clusters2011,115,2103-2109.

    (16) Lin, L.;Lievens, P.;Nguyen, M.T.Theoretical study of CO adsorption on yttrium-doped gold clusters AuY (=1~9)2010,498,296-301.

    (17) Chen, H.T.;Chang, J.G.;Ju, S.P.;Chen, H.L.First-principle calculations on CO oxidation catalyzed by a gold nanoparticle2010,31,258-265.

    (18) Koyasu, K.;Mitsui, M.;Nakajima, A.;Kaya, K.Photoelectron spectroscopy of palladium-doped gold cluster anions; AuPd(= 1~4)2002,358,224-230.

    (19) Zhou, S. H.; Yu, W. L.; Zhang, J.; Li, Y.; Zhang, Y. F.; Chen, W. K. A density functional study for the reaction mechanism of CO oxidation on the copper cluster.2018, 37, 1379-1392.

    (20) Tian, W.Q.;Ge, M.;Gu, F.;Yamada, T.;Aoki, Y.Binary clusters aupt and Au6Pt: structure and reactivity within density functional theory2006,110,6285-6293.

    (21) Yuan, D.;Wang, Y.;Zeng, Z.Geometric, electronic, and bonding properties of AuM (= 1~7, M = Ni, Pd, Pt) clusters2005,122,114310,1-11.

    (22) Mondal, K.;Ghanty, T.K.;Banerjee, A.;Chakrabarti, A.;Kamal, C.Density functional investigation on the structures and properties of Li atom doped Au20cluster2013,111,725-734.

    (23) Qian, H.;Jiang, D. E.;Li, G.;Gayathri, C.;Das, A.;Gil, R.R.;Jin, R.Monoplatinum doping of gold nanoclusters and catalytic application2012,134,16159-16162.

    (24) Molina, L.;Hammer, B.The activity of the tetrahedral Au20cluster: charging and impurity effects2005,233,399-404.

    (25) Nhat, P.V.;Tai, T.B.;Nguyen, M.T.Theoretical study of AunV-CO,= 1~14: the dopant vanadium enhances CO adsorption on gold clusters2012,137,164312,1-12.

    (26) Ge, Q.;Song, C.;Wang, L.A density functional theory study of CO adsorption on Pt–Au nanoparticles2006,35,247-253.

    (27) Morrow, B.H.;Resasco, D.E.;Striolo, A.;Nardelli, M.B.CO adsorption on noble metal clusters: local environment effects2011,115,5637-5647.

    (28) Beletskaya, A.V.;Pichugina, D.A.;Shestakov, A.F.;Kuz’menko, N.E.Formation of H2O2on Au20and Au19Pd clusters: understanding the structure effect on the atomic level2013,117,6817-6826.

    (29) Le, H.T.;Lang, S.M.;De Haeck, J.;Lievens, P.;Janssens, E.Carbon monoxide adsorption on neutral and cationic vanadium doped gold clusters2012,14,9350-9358.

    (30) Torres, M.B.;Fernández, E.M.;Balbas, L.C.Theoretical study of oxygen adsorption on pure Aun+and doped MAun+cationic gold clusters for M = Ti, Fe and= 3~72008,112,6678-6689.

    (31) Jena, N.K.;Chandrakumar, K.;Ghosh, S.K.Theoretical investigation on the structure and electronic properties of hydrogen-and alkali-metal-doped gold clusters and their interaction with CO: enhanced reactivity of hydrogen-doped gold clusters2009,113,17885-17892.

    (32) Toshima, N.;Harada, M.;Yamazaki, Y.;Asakura, K.Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride1992,96,9927-9933.

    (33) Turkevich, J.;Kim, G.Palladium: preparation and catalytic properties of particles of uniform size1970,169,873-879.

    (34) Mizukoshi, Y.;Okitsu, K.;Maeda, Y.;Yamamoto, T.A.;Oshima, R.;Nagata, Y.Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution1997,101,7033-7037.

    (35) Mizukoshi, Y.;Fujimoto, T.;Nagata, Y.;Oshima, R.;Maeda, Y.Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method2000,104,6028-6032.

    (36) Schmid, G.;Lehnert, A.;Malm, J.O.;Bovin, J.O.Ligand-stabilized bimetallic colloids identified by hrtem and edx1991,30,874-876.

    (37) Faji?n, J.L.;Cordeiro, M.N.D.;Gomes, J.R.DFT study of the CO oxidation on the Au (321) surface2008,112,17291-17302.

    (38) Davis, R.J.;Boudart, M.Structure of supported pdau clusters determined by X-ray absorption spectroscopy1994,98,5471-5477.

    (39) Boennemann, H.;Endruschat, U.;Tesche, B.;Rufinska, A.;Lehmann, C.W.;Wagner, F.E.;Filoti, G.;Parvulescu, V.;Parvulescu, V.I.An SiO2embedded nanoscopic Pd/Au alloy colloid2000,2000,819-822.

    (40) Yonezawa, T.;Toshima, N.Mechanistic consideration of formation of polymer-protected nanoscopic bimetallic clusters1995,91,4111-4119.

    (41) Toshima, N.;Yonezawa, T.Bimetallic nanoparticles—novel materials for chemical and physical applications1998,22,1179-1201.

    (42) Guczi, L.;Beck, A.;Horvath, A.;Koppány, Z.;Stefler, G.;Frey, K.;Sajo, I.;Geszti, O.;Bazin, D.;Lynch, J.AuPd bimetallic nanoparticles onTiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation2003,204,545-552.

    (43) Miyaura, N.;Suzuki, A.Palladium-catalyzed cross-coupling reactions of organoboron compounds1995,95,2457-2483.

    (44) Henglein, A.Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles1989,89,1861-1873.

    (45) Leutwyler, W.K.;Bürgi, S.L.;Burgl, H.Semiconductor clusters, nanocrystals, and quantum dots1996,271,933-937.

    (46) Haruta, M.;Daté, M.Advances in the catalysis of au nanoparticles2001,222,427-437.

    (47) Daniel, M. C.;Astruc, D.Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology2004,104,293-346.

    (48) Astruc, D.;Lu, F.;Aranzaes, J.R.Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis2005,44,7852-7872.

    (49) Bond, G.C.The electronic structure of platinum-gold alloy particles2007,51,63-68.

    (50) Sadek, M.M.;Wang, L.Effect of adsorption site, size, and composition of Pt/Au bimetallic clusters on the CO frequency: a density functional theory study2006,110,14036-14042.

    (51) Baddeley, C.J.;Tikhov, M.;Hardacre, C.;Lomas, J.R.;Lambert, R.M.Ensemble effects in the coupling of acetylene to benzene on a bimetallic surface: a study with Pd {111}/Au1996,100,2189-2194.

    (52) Enache, D.I.;Edwards, J.K.;Landon, P.;Solsona-Espriu, B.;Carley, A.F.;Herzing, A.A.;Watanabe, M.;Kiely, C.J.;Knight, D.W.;Hutchings, G.J.Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2catalysts2006,311,362-365.

    (53) Zeng, Q.S.;Sun, B.Z.;Zhao, W.N.;Lin, H.X.;Li, Y.;Chen, W.K.Adsorption of Co2B2and Ni2B2clusters on the TiO2(110) surface: a density functional study2013,32,341-348.

    (54) Li, J.;Li, X.;Zhai, H. J.;Wang, L. S.Au20: a tetrahedral cluster2003,299,864-867.

    (55) Wang, J.;Wang, G.;Zhao, J.Structures and electronic properties of Cu20, Ag20, andAu20clusters with density functional method2003,380,716-720.

    (56) Gruene, P.;Rayner, D.M.;Redlich, B.;van der Meer, A.F.;Lyon, J.T.;Meijer, G.;Fielicke, A.Structures of neutral Au7, Au19, and Au20clusters in the gas phase2008,321,674-676.

    (57) Kryachko, E.S.;Remacle, F.The magic gold cluster Au202007,107,2922-2934.

    (58) Mondal, K.;Banerjee, A.;Ghanty, T.K.Structural and chemical properties of subnanometer-sized bimetallic Au19Pt cluster2014,118,11935-11945.

    (59) Gao, Y.;Shao, N.;Pei, Y.;Chen, Z.;Zeng, X.C.Catalytic activities of subnanometer gold clusters (Au16–Au18, Au20, and Au27–Au35) for CO oxidation2011,5,7818-7829.

    (60) Delley, B. From molecules to solids with the DMol3 approach.2000, 18, 7756-7764.

    4 April 2018;

    19 September 2018

    the National Natural Science Foundation of China (Nos. 51574090, 21773030) and Natural Science Foundation of Fujian Province (2017J01409)

    . Professor, majoring in computation chemistry. E-mail: wkchen@fzu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1943

    久久精品91蜜桃| 韩国av在线不卡| 中出人妻视频一区二区| x7x7x7水蜜桃| 中亚洲国语对白在线视频| 日日啪夜夜撸| 搞女人的毛片| 久久精品国产鲁丝片午夜精品 | 成年免费大片在线观看| 国产伦人伦偷精品视频| 夜夜爽天天搞| 免费搜索国产男女视频| 99久久精品热视频| 国产一区二区激情短视频| 99在线人妻在线中文字幕| 欧美日韩乱码在线| 国产精品久久久久久av不卡| 别揉我奶头~嗯~啊~动态视频| 国产中年淑女户外野战色| 国产一区二区三区在线臀色熟女| 欧美成人性av电影在线观看| 性插视频无遮挡在线免费观看| 日本欧美国产在线视频| 三级毛片av免费| 女的被弄到高潮叫床怎么办 | 久久精品国产清高在天天线| 国产男人的电影天堂91| 有码 亚洲区| 亚洲av第一区精品v没综合| 久久久久九九精品影院| 国产精品美女特级片免费视频播放器| bbb黄色大片| 夜夜夜夜夜久久久久| 久久草成人影院| 亚洲成av人片在线播放无| 成人av一区二区三区在线看| 国产男靠女视频免费网站| 日日撸夜夜添| 国产男人的电影天堂91| 美女cb高潮喷水在线观看| 国内久久婷婷六月综合欲色啪| 又黄又爽又免费观看的视频| av在线观看视频网站免费| 综合色av麻豆| 99热6这里只有精品| 真人做人爱边吃奶动态| 在线观看av片永久免费下载| 亚洲av一区综合| 夜夜夜夜夜久久久久| 色5月婷婷丁香| 欧美又色又爽又黄视频| 日韩强制内射视频| 国产成人av教育| 窝窝影院91人妻| 国产女主播在线喷水免费视频网站 | 自拍偷自拍亚洲精品老妇| 麻豆国产97在线/欧美| 国产精品嫩草影院av在线观看 | 婷婷六月久久综合丁香| 色播亚洲综合网| 97超级碰碰碰精品色视频在线观看| 欧美高清成人免费视频www| 久久久午夜欧美精品| 国产一区二区亚洲精品在线观看| 亚洲成a人片在线一区二区| netflix在线观看网站| 成人国产一区最新在线观看| 久久久久久大精品| 国内精品久久久久久久电影| 亚洲国产日韩欧美精品在线观看| 午夜福利18| 一级毛片久久久久久久久女| 精品99又大又爽又粗少妇毛片 | 久久久国产成人免费| 男女那种视频在线观看| 两个人的视频大全免费| 女生性感内裤真人,穿戴方法视频| 99在线视频只有这里精品首页| 久久久精品大字幕| 久久热精品热| 我要看日韩黄色一级片| 如何舔出高潮| 永久网站在线| 狂野欧美激情性xxxx在线观看| 乱系列少妇在线播放| 日韩一区二区视频免费看| 91久久精品电影网| 亚洲自偷自拍三级| 简卡轻食公司| 搞女人的毛片| 久久精品夜夜夜夜夜久久蜜豆| 丝袜美腿在线中文| 在线播放国产精品三级| 日韩中文字幕欧美一区二区| 九九热线精品视视频播放| 麻豆成人午夜福利视频| 欧美潮喷喷水| 一级黄色大片毛片| 亚洲经典国产精华液单| 国产午夜精品论理片| 在线观看免费视频日本深夜| 日本免费一区二区三区高清不卡| 悠悠久久av| 久久婷婷人人爽人人干人人爱| 欧美日韩中文字幕国产精品一区二区三区| 一个人观看的视频www高清免费观看| 能在线免费观看的黄片| 琪琪午夜伦伦电影理论片6080| 美女高潮喷水抽搐中文字幕| 狂野欧美激情性xxxx在线观看| 久久久久九九精品影院| 两人在一起打扑克的视频| 一本精品99久久精品77| 国产伦在线观看视频一区| 99久久久亚洲精品蜜臀av| 久久国产乱子免费精品| 色精品久久人妻99蜜桃| 国产久久久一区二区三区| 在线观看免费视频日本深夜| a级毛片a级免费在线| 久久99热6这里只有精品| 一个人看视频在线观看www免费| 少妇丰满av| 久久久久国内视频| 国产探花在线观看一区二区| 深夜a级毛片| 亚洲五月天丁香| 国产精品一区二区免费欧美| 2021天堂中文幕一二区在线观| 搡老妇女老女人老熟妇| 国产av一区在线观看免费| 日本黄大片高清| 变态另类丝袜制服| 男人狂女人下面高潮的视频| 国产精品久久久久久久电影| 久久久久久国产a免费观看| x7x7x7水蜜桃| 亚洲成人免费电影在线观看| 黄色视频,在线免费观看| 老司机福利观看| 熟女电影av网| 免费大片18禁| 国产av一区在线观看免费| 亚洲中文字幕一区二区三区有码在线看| 精品久久久久久久久av| 又爽又黄无遮挡网站| 老熟妇乱子伦视频在线观看| 少妇的逼好多水| 99热这里只有是精品在线观看| 老熟妇乱子伦视频在线观看| 综合色av麻豆| 日韩欧美在线二视频| 国产午夜福利久久久久久| 亚洲国产欧美人成| 91麻豆av在线| 999久久久精品免费观看国产| 淫秽高清视频在线观看| 女的被弄到高潮叫床怎么办 | 国产麻豆成人av免费视频| 亚洲最大成人中文| 免费不卡的大黄色大毛片视频在线观看 | 性欧美人与动物交配| h日本视频在线播放| 免费高清视频大片| 欧美丝袜亚洲另类 | 久久国内精品自在自线图片| 国产精品亚洲美女久久久| 丰满的人妻完整版| 免费在线观看成人毛片| 免费av不卡在线播放| 亚洲av成人av| 蜜桃亚洲精品一区二区三区| 亚洲性久久影院| 12—13女人毛片做爰片一| 九九久久精品国产亚洲av麻豆| 乱人视频在线观看| 欧美xxxx性猛交bbbb| 十八禁国产超污无遮挡网站| 久久精品国产亚洲av涩爱 | 一本久久中文字幕| 亚洲男人的天堂狠狠| 久久精品国产亚洲av涩爱 | 可以在线观看毛片的网站| 免费观看在线日韩| 国产精品一及| 亚洲av熟女| 免费看日本二区| 国产精品人妻久久久久久| av在线蜜桃| 久久久久久久久久黄片| videossex国产| 日本在线视频免费播放| 成人av一区二区三区在线看| 97热精品久久久久久| 国产欧美日韩精品一区二区| 久久久成人免费电影| 热99re8久久精品国产| 人妻制服诱惑在线中文字幕| a级毛片免费高清观看在线播放| 精品无人区乱码1区二区| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩中文字幕国产精品一区二区三区| 久99久视频精品免费| 99久久精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 精品国产三级普通话版| 最近中文字幕高清免费大全6 | 国产精品久久电影中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 美女大奶头视频| 欧美激情在线99| 精品午夜福利视频在线观看一区| 久久精品国产亚洲av涩爱 | 啦啦啦韩国在线观看视频| 成年女人看的毛片在线观看| 精品乱码久久久久久99久播| 在线观看午夜福利视频| 精品午夜福利视频在线观看一区| 此物有八面人人有两片| www.www免费av| 亚洲国产日韩欧美精品在线观看| 国产黄a三级三级三级人| 亚洲av电影不卡..在线观看| 两个人的视频大全免费| 91久久精品国产一区二区成人| 国产av麻豆久久久久久久| 国产一区二区在线观看日韩| 热99re8久久精品国产| 又紧又爽又黄一区二区| 国产伦人伦偷精品视频| 国产av麻豆久久久久久久| 草草在线视频免费看| 亚洲人成伊人成综合网2020| 99久久久亚洲精品蜜臀av| 一个人观看的视频www高清免费观看| 波多野结衣巨乳人妻| 丰满的人妻完整版| 中出人妻视频一区二区| 久久亚洲真实| 国产精品亚洲美女久久久| 欧美精品国产亚洲| 免费黄网站久久成人精品| 此物有八面人人有两片| 在现免费观看毛片| 国产高清不卡午夜福利| 久久久精品欧美日韩精品| 尤物成人国产欧美一区二区三区| 久久精品国产自在天天线| 国产真实乱freesex| 少妇高潮的动态图| 日韩强制内射视频| 中文字幕久久专区| 国产免费av片在线观看野外av| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 69av精品久久久久久| 人人妻人人看人人澡| 亚洲av.av天堂| 成人鲁丝片一二三区免费| 亚洲中文字幕一区二区三区有码在线看| 一个人免费在线观看电影| 人妻丰满熟妇av一区二区三区| 国产一区二区在线观看日韩| 亚洲精品456在线播放app | 中出人妻视频一区二区| 日本五十路高清| 免费观看的影片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 99在线人妻在线中文字幕| 久久久久久久久久久丰满 | 国产精品一区www在线观看 | 麻豆av噜噜一区二区三区| 永久网站在线| 一区二区三区免费毛片| av在线亚洲专区| 久久人人爽人人爽人人片va| 国产 一区 欧美 日韩| www日本黄色视频网| 午夜爱爱视频在线播放| av.在线天堂| 女人十人毛片免费观看3o分钟| netflix在线观看网站| 长腿黑丝高跟| 国产在线精品亚洲第一网站| 国产91精品成人一区二区三区| 91精品国产九色| 日日啪夜夜撸| x7x7x7水蜜桃| 此物有八面人人有两片| 男人和女人高潮做爰伦理| 一个人看的www免费观看视频| 黄色视频,在线免费观看| 国产精品电影一区二区三区| 亚洲自偷自拍三级| 国产大屁股一区二区在线视频| 国产不卡一卡二| 美女高潮的动态| 成人国产一区最新在线观看| 日韩 亚洲 欧美在线| 全区人妻精品视频| 少妇猛男粗大的猛烈进出视频 | 波多野结衣巨乳人妻| 日本精品一区二区三区蜜桃| 老女人水多毛片| 草草在线视频免费看| 99久国产av精品| 2021天堂中文幕一二区在线观| 午夜爱爱视频在线播放| 免费在线观看影片大全网站| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看| 少妇猛男粗大的猛烈进出视频 | 日日摸夜夜添夜夜添av毛片 | 亚洲国产精品合色在线| 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| 深夜a级毛片| 毛片女人毛片| 又黄又爽又刺激的免费视频.| 狂野欧美白嫩少妇大欣赏| 国内精品一区二区在线观看| 天堂动漫精品| 成熟少妇高潮喷水视频| 国产亚洲精品久久久久久毛片| 免费大片18禁| 天堂影院成人在线观看| 国产精品久久久久久亚洲av鲁大| 欧美zozozo另类| 国内精品久久久久精免费| 变态另类成人亚洲欧美熟女| 琪琪午夜伦伦电影理论片6080| 中文字幕精品亚洲无线码一区| 日韩 亚洲 欧美在线| 亚洲人成网站在线播放欧美日韩| 精品乱码久久久久久99久播| 69av精品久久久久久| 国产探花在线观看一区二区| 一a级毛片在线观看| 天堂√8在线中文| 成人二区视频| 色综合色国产| 免费av观看视频| 联通29元200g的流量卡| av专区在线播放| 欧美不卡视频在线免费观看| 在线观看一区二区三区| 午夜福利视频1000在线观看| 免费观看精品视频网站| 亚洲美女黄片视频| 嫩草影院入口| a级一级毛片免费在线观看| 欧美bdsm另类| 嫩草影院入口| 淫妇啪啪啪对白视频| 亚洲精品在线观看二区| 两个人视频免费观看高清| 中文字幕人妻熟人妻熟丝袜美| 中文亚洲av片在线观看爽| 国产欧美日韩精品亚洲av| 无人区码免费观看不卡| 亚洲av五月六月丁香网| 日韩精品中文字幕看吧| 22中文网久久字幕| 国产黄色小视频在线观看| 中文字幕免费在线视频6| 九色国产91popny在线| 亚洲成人中文字幕在线播放| 久久精品国产清高在天天线| 午夜老司机福利剧场| 99热精品在线国产| 一进一出抽搐gif免费好疼| 琪琪午夜伦伦电影理论片6080| 99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| av在线观看视频网站免费| 最近最新免费中文字幕在线| a级一级毛片免费在线观看| 热99在线观看视频| bbb黄色大片| 欧美最新免费一区二区三区| 色哟哟·www| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区 | 午夜久久久久精精品| av在线观看视频网站免费| 一边摸一边抽搐一进一小说| 成人毛片a级毛片在线播放| 1024手机看黄色片| 老熟妇仑乱视频hdxx| 亚洲人与动物交配视频| 村上凉子中文字幕在线| 91精品国产九色| eeuss影院久久| 亚洲av不卡在线观看| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| 国产成年人精品一区二区| 老女人水多毛片| 五月玫瑰六月丁香| 美女被艹到高潮喷水动态| 亚洲精品粉嫩美女一区| 韩国av一区二区三区四区| 国产精品精品国产色婷婷| 欧美日本视频| 日本爱情动作片www.在线观看 | avwww免费| 高清在线国产一区| 97超视频在线观看视频| 99热精品在线国产| 国产精品精品国产色婷婷| 一个人看视频在线观看www免费| av视频在线观看入口| 一个人看的www免费观看视频| 亚洲精品久久国产高清桃花| 午夜福利在线观看免费完整高清在 | 久久亚洲精品不卡| 久久人妻av系列| 五月玫瑰六月丁香| 日韩欧美在线乱码| 成人午夜高清在线视频| 亚洲专区国产一区二区| 好男人在线观看高清免费视频| 精品人妻偷拍中文字幕| 又爽又黄无遮挡网站| 最新中文字幕久久久久| 日本一本二区三区精品| 久久久久久国产a免费观看| 中文资源天堂在线| 日本a在线网址| 亚洲经典国产精华液单| 精品欧美国产一区二区三| 久久精品人妻少妇| 极品教师在线视频| 国产精品,欧美在线| 欧美最黄视频在线播放免费| or卡值多少钱| 少妇高潮的动态图| 亚洲最大成人手机在线| 国产精品综合久久久久久久免费| 国产69精品久久久久777片| 久久精品国产清高在天天线| 特大巨黑吊av在线直播| 国产精品,欧美在线| 成人一区二区视频在线观看| 日韩欧美免费精品| 国产黄片美女视频| 给我免费播放毛片高清在线观看| 此物有八面人人有两片| 中文字幕人妻熟人妻熟丝袜美| 91在线观看av| 久久99热这里只有精品18| 欧美色欧美亚洲另类二区| 亚洲中文字幕日韩| 亚洲七黄色美女视频| 国产精品野战在线观看| 99热只有精品国产| 欧美成人免费av一区二区三区| 国内少妇人妻偷人精品xxx网站| 欧美xxxx黑人xx丫x性爽| 欧美高清成人免费视频www| 日韩欧美三级三区| 成熟少妇高潮喷水视频| 又粗又爽又猛毛片免费看| a在线观看视频网站| 日本熟妇午夜| 成年女人永久免费观看视频| 最近最新中文字幕大全电影3| 五月玫瑰六月丁香| 在线播放无遮挡| 丝袜美腿在线中文| 我的老师免费观看完整版| x7x7x7水蜜桃| 男女做爰动态图高潮gif福利片| 国产高清三级在线| 亚洲狠狠婷婷综合久久图片| 国产精品1区2区在线观看.| 久久国内精品自在自线图片| 自拍偷自拍亚洲精品老妇| 亚洲不卡免费看| 久久久久久久久久黄片| 日日摸夜夜添夜夜添av毛片 | 国产亚洲精品av在线| 亚洲七黄色美女视频| 国产老妇女一区| videossex国产| 麻豆成人av在线观看| 亚洲专区中文字幕在线| 欧美成人性av电影在线观看| 韩国av一区二区三区四区| 亚洲国产欧洲综合997久久,| 亚洲精品乱码久久久v下载方式| 国产三级在线视频| 麻豆国产av国片精品| 一级黄色大片毛片| 毛片一级片免费看久久久久 | 免费在线观看影片大全网站| 国产精品嫩草影院av在线观看 | 亚洲精品粉嫩美女一区| 人妻丰满熟妇av一区二区三区| 日本精品一区二区三区蜜桃| 97人妻精品一区二区三区麻豆| 51国产日韩欧美| 日韩欧美国产一区二区入口| 国产麻豆成人av免费视频| 国产一区二区三区视频了| 禁无遮挡网站| 国产熟女欧美一区二区| 给我免费播放毛片高清在线观看| 九九在线视频观看精品| 亚洲精华国产精华精| 亚洲av二区三区四区| 在线观看免费视频日本深夜| or卡值多少钱| 亚洲精华国产精华液的使用体验 | 人妻丰满熟妇av一区二区三区| 99久久精品热视频| 亚洲av电影不卡..在线观看| 国产高清激情床上av| 免费人成在线观看视频色| 一级毛片久久久久久久久女| av.在线天堂| 麻豆av噜噜一区二区三区| 99久久中文字幕三级久久日本| 欧美高清成人免费视频www| 天天躁日日操中文字幕| 男女啪啪激烈高潮av片| 蜜桃久久精品国产亚洲av| 精品久久国产蜜桃| 黄色一级大片看看| 麻豆国产av国片精品| 精华霜和精华液先用哪个| 亚洲人成网站高清观看| 日本免费a在线| 在线天堂最新版资源| 桃色一区二区三区在线观看| 99热只有精品国产| 久久精品国产亚洲av涩爱 | 成人无遮挡网站| 久久热精品热| 亚洲第一电影网av| 国产精品精品国产色婷婷| 国产亚洲精品久久久久久毛片| 97超级碰碰碰精品色视频在线观看| www.色视频.com| 欧美高清成人免费视频www| 97热精品久久久久久| 国产av在哪里看| 观看免费一级毛片| 18禁在线播放成人免费| 日本-黄色视频高清免费观看| 成年女人毛片免费观看观看9| 国产精品一区二区三区四区久久| 看免费成人av毛片| 成人av在线播放网站| 热99在线观看视频| 18+在线观看网站| a在线观看视频网站| 亚洲自拍偷在线| 午夜精品一区二区三区免费看| 岛国在线免费视频观看| 悠悠久久av| 国产精品久久电影中文字幕| 淫秽高清视频在线观看| 全区人妻精品视频| 老司机午夜福利在线观看视频| 99在线人妻在线中文字幕| 成年版毛片免费区| 狂野欧美白嫩少妇大欣赏| 久久久久久伊人网av| 亚洲无线观看免费| 久久久色成人| 在线观看一区二区三区| 日韩欧美在线乱码| 日本一二三区视频观看| 精品人妻视频免费看| 欧美最黄视频在线播放免费| 欧美成人a在线观看| 亚洲精品一区av在线观看| 淫妇啪啪啪对白视频| 亚洲aⅴ乱码一区二区在线播放| 又粗又爽又猛毛片免费看| 午夜久久久久精精品| 搡老妇女老女人老熟妇| 在线观看av片永久免费下载| 午夜久久久久精精品| 嫩草影院新地址| 成人av一区二区三区在线看| 欧美国产日韩亚洲一区| 舔av片在线| av.在线天堂| 欧美日韩亚洲国产一区二区在线观看| 久久精品综合一区二区三区| 免费av不卡在线播放| 欧美丝袜亚洲另类 | 特级一级黄色大片| 能在线免费观看的黄片| 国产私拍福利视频在线观看| 日韩,欧美,国产一区二区三区 | 九九久久精品国产亚洲av麻豆| 91狼人影院| 精品欧美国产一区二区三| 亚洲美女视频黄频| 91在线观看av| 99在线视频只有这里精品首页| 黄色女人牲交| 18+在线观看网站| 成年人黄色毛片网站| 热99在线观看视频| 国产精品亚洲美女久久久| 午夜爱爱视频在线播放| 91麻豆精品激情在线观看国产| 亚洲最大成人中文| 非洲黑人性xxxx精品又粗又长| 欧美黑人欧美精品刺激| 网址你懂的国产日韩在线|