• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exponential Continuous Non-Parametric Neural Identifier With Predefined Convergence Velocity

    2022-06-25 01:17:36MarianaBallesterosRitaFuentesAguilarandIsaacChairez
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Mariana Ballesteros, Rita Q. Fuentes-Aguilar, and Isaac Chairez

    Abstract—This paper addresses the design of an exponential function-based learning law for artificial neural networks (ANNs)with continuous dynamics. The ANN structure is used to obtain a non-parametric model of systems with uncertainties, which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN. The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid. The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors. The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function. Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods. The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.

    I. INTRODUCTION

    NON-PARAMETRIC identification represents a key tool to develop adaptive control for uncertain systems. Some of these identifiers apply approximation theory to obtain a useful model of a system with uncertainties [1]. If the model could represent the input-output relationship with enough(according to the designer) accuracy, then, this model can be used to design disturbance canceling feedback controllers [2].

    Usually, the approximate model considers a linear combination of either states or functions, which formed a basis in a specific Hilbert space. The non-parametric approximation strategy individualizes the model by adjusting theweights(linear parameters) of each component (state or functions) in the basis [3]. In consequence, most of these identifiers use different variations of the least mean square method (LMS) to obtain the specific model that fits better (in terms of the norm used to define the performance index to be minimized by the LMS) with the input-output relationship [4], [5].

    Few results consider a nonlinear dependence of the weights characterizing the uncertain model. The selection of functions to form the basis establishes a particular form of the approximate model. In the context of this study, the basis is composed of sigmoid functions yielding to the concept of a non-parametric neural identifier [6], [7]. Neural identifiers use the approximation properties of artificial neural networks(ANNs) [8]-[11]. The specific form of sigmoid functions satisfies the definition introduced by Cybenko [12]. Then,Logistic, S-shaped, or inverse tangent can be feasible selections of the elements forming the basis.

    Over the past decades, the notion of neural identifier has solved the problem of designing approximate models for diverse systems using a simplified one-layer (output-layer)structure [13]. Many other identifiers used adaptive theory to obtain the estimation of the weights, even in more complex topological forms with multiple layers. Notice that, most of these identifiers were not able to predefine the convergence velocity of identification error and they only can ensure the upper bound of the convergence region for the trajectories of the identification error.

    The potential application of a neural identifier within the design of the adaptive controller demands thefastest possibleconvergence of the identification error. This vague concept can be reinterpreted in terms of the prescribed performance idea proposed in [14]-[16]. The prescribed performance idea considers that the tracking error should converge to an arbitrarily small residual set with convergence rate greater or equal than a pre-specified value. In literature, prescribed performance usually introduced a nonlinear transformation that converts the original design into a stabilization problem that can be solved by proposing a suitable Lyapunov function candidate. The nonlinear transformation considers the application of an exponential function that appears hidden in the design of the approximate model based on ANNs.

    The idea of storing past information of states in the uncertain system serves to design the concurrent learning solution, which leads to prescribed exponential bounds for the identification error [17], [18]. Nevertheless, the continuously growing storage of past states limits the application of such class of solutions. The velocity gradient method is another remarkable variant of the methods developed to fix the convergence velocity [19]. Different variants of LMS solutions to estimate the weights have been studied recently with interesting results, but still providing an ex-post characterization of the exponentially convergence bounds. An example of the design of adaptive controllers where the estimated weights used on the identifier structure yielding a compensating structure and a linear correction element on the tracking error using Barrier Lyapunov functions is presented in [20]. A different option to enforce a prescribed performance for the modeling process using ANNs is based on the socalled control Lyapunov function (CLF). These functions have been considered a keystone element in the design of feedback controllers. In the context of non-parametric modeling, CLFs are central elements to design different weights estimation rules that provide diverse characteristics to the stability of the origin in the space of the identification error. In contrast to the classical CLF where the control design is the main objective,the application of such class of CLF in non-parametric modeling yields to define learning laws that can force prescribed transient behavior.

    This study proposes two particular forms of CLF that have exponential associated functions modifying the transient performance for the identification error. The main novelties and contributions of this work are:

    1) We use a CLF to design the learning laws in the neural identifiers with the peculiarity of adding exponential elements to enhance the convergence of the identification error. This exponential control Lyapunov function (ECLF) is conformed by the classical quadratic elements and an additional exponential structure depending on either the identification error or a pure time depending variable.

    2) The motivation for using ECLF arises from other identification and control fields as time delay control theory or optimal control [21]-[23], where such a class of functions is used in performance indexes with a discount. Indeed, the application of ECLF provides faster convergence of the states to the equilibrium point when the optimal solution is applied as a stabilizing controller [24]. This study presents a contribution to adaptation by including the ECLF in the design of adaptive weights.

    3) We present two ECLFs for the design of adaptive laws for the developed exponential identifier, the first exponential element depends on the identification error, and the second uses a time-dependent sigmoidal function that grows with predefined velocity.

    4) The two variants of exponential learning laws justify a predefined transient performance for both algorithms developed in this study.

    The paper is organized as follows: In Section II, notation and useful mathematical preliminaries are described. Section III defines the class of uncertain systems and the approximation properties of the ANN with continuous dynamic used in this study. Section IV describes the first identifier as well as the exponential convergent learning laws, and in the last subsection, the design of the second identifier based on a time-dependent gain for the adjustment of the weights is described. In Section V, the use of the invariant ellipsoid method to minimize the convergence region of the identification error is described. Section VI describes the numerical results used to demonstrate the benefits achieved by the methods introduced in this paper. Finally, Section VII concludes the paper with some remarks.

    II. PRELIMINARIES

    In this section, the notation used through the paper is defined and some important concepts for the design of the identifiers are explained.

    A. Notation

    B. Mathematical Background

    Comparison functions are useful tools for the analysis of the stability and boundedness of control systems. In this work, the design of the neural identifier and the analysis of the identification error use this class of functions. The definitions for these functions are

    Definition 1:Comparison functions:

    Prescribed performance has been considered within the robust and adaptive control theories. Usually, prescribed performance used an auxiliary performance function that formalizes it in terms of generalized states such as the tracking error. In this study, the same auxiliary is also considered, but it uses the trajectories of identification error as the characterizing states.

    III. UNCERTAIN NONLINEAR SYSTEMS

    The class of nonlinear systems with uncertain structure satisfies the following mathematical description:

    A. Neural Network Representation of the Uncertain System

    IV. EXPONENTIAL NEURAL IDENTIFIER

    The structure of the neural identifier can be presented in a general form as sigmoid multipliers. The second part defines the vector field associated with the control action using the second set of adaptive parametersW2(t). Indeed, the structure of the neural identifier is

    A. Problem Statement

    C. Identifier With Predefined Velocity of Convergence

    The structure of the neural identifier with predefined velocity considers the same general form of (19)

    V. ANALYSIS OF THE CONVERGENCE REGION AND VELOCITY

    This section analyzes the effect of introducing the exponential dependent functions on the DNN identifier design.

    A. Identifier 1

    Considering the inclusion (33) and the result of Theorem 4,the following differential inclusion is valid:

    Notice that the right hand-side of (47) is a nonlinear function of the matrixPaand the positive parameter αawhich are intemately related by the solution of the bilinear matrix inequality (25). This nonlinear relation can be optimized (if such optimal solution exists with the aim of minimizing the guaranteed convergence time). Guaranteed parameter estimation is considered as an efficient tool for designing controllers, observers and parameter identifiers, including their convergence time. This approach offers remarkable advantages such as the need to know only the lower and upper bounds for the uncertain section of the system. However, the computational cost and the conservatism of the resulting estimates are two major inconveniences of this method.Guaranteed estimation method has been improved using the invariant (attractive) ellipsoid method if the uncertainties and perturbations fulfil a quadratic ellipsoidal constraint. In this paper, this condition is considered in the set of assumptions including at the beginning of this study. It is usual that parameters estimation based on the ellipsoid technique is obtained by a recurrent algorithm that estimates the intersection of ellipses. However, recent research works have brought another possible solution that is going to be used in this study. This problem can be formally stated as the following minimization problem:

    Fig. 1. Diagram of the implementation for both identifiers.

    Fig. 2. Diagram of the implementation for Identifier 1.

    B. Identifier 2

    Considering the inclusion (42) and the result of Theorem 5,the following differential inclusion is valid:

    Fig. 1 depicts a diagram with the stages to implement the proposed DNN identifiers.

    Algorithm 1 describes the learning procedure, as well as how the identifier is proposed. The numbers in parentheses in Fig. 1, represent the steps from Algorithm 1.

    Fig. 3. Diagram of the implementation for Identifier 2.

    Figs. 2 and 3 are a graphical representation of each algorithm, respectively. In both figures, the computation of the exponential element for each identifier is represented.Notice that the main difference in the design relay on the exponential. In Fig. 2, the function consists of the exponential term dependent on the identification error, while Fig. 3 depicts how the time-dependent exponential element is included in a sigmoidal. The steps and parameters needed for the implementation are shown in these figures.

    Algorithm 1: Identifier Implementation 1: Start 2. Estimate the upper values for the fixed weights and ,that is and ,3: Define the values for matrices R and Q that are part of the Riccati equation 4: Implement the computational method to get the positive definite solution P of the Ricatti equation 5: If the solution of the Riccati equation exists, then:W0,1 W0,2 W+0,1 W+0,2

    6: Implement the ordinary differential equation corresponding to the RDNN identifier to get the dynamic evolution of with the exponential modification 7: Implement the matrix differential equations for the three weights forming the dynamic structure of the proposed RDNN W1, and W2 8: Fix the initial values for the states of the identifier as well as for the weights W1, and W2 9: Evaluate the numerical performance of the identifier comparing the evolution of its states in comparison to the actual trajectories of the system with uncertain dynamics with uncertain model, with the estimation of the root mean square of the identification error.10: If the root mean square of the identification error is smaller than the predefined quality indicator β0, then the algorithm is finished.11: Else Modify the initial weights of the RDNN taking the final value of matrices W1, and W2 from the numerical evaluation. Then,restart the numerical evaluation with the initial weights and evaluate the root mean square value.12: Repeat this procedure until the convergence quality estimation is gotten.?x?

    VI. NUMERICAL RESULTS

    The proposed identifiers were tested on a virtual model of a robot manipulator with two degrees of freedom. The model was obtained using the Simescape MultibodyTMtoolbox of Matlab?. The dynamics is assumed uncertain but, due to the well-known characteristics of the robot modeling [35], the model satisfies all the assumptions presented in Section III, as well as the structure of the class of systems considered in this paper. Notice that for this testing, the model served as a data generator and no information from the model was considered in the identifiers design. Some parameters used in simulations are shown in Table I while the rest are in matrix form presented in this section.

    All the initial conditions, the number of neurons and the free-parameters were selected equally for the three identifiers.For the second proposed identifier γ1=1, γ2=2 andL=5.

    As it can be noticed, most of the parameters were selected considering the calculus of the matrix inequality proposed in(26), estimating the upper values for the weights using the trial and evaluating procedure. This procedure leads to obtaining the value of the matrixP. The only free parameters in the learning laws were matricesK1andK2. The initial conditions for the weights and the identifier were selected randomly with a uniform distribution. The parameters considered in the activation functions for the identifier were taken from the reference [5]. The foundation principles of artificial neural network design claim that these parameters in the sigmoidal functions can be selected randomly if the number of activation functions is high enough.

    and the solution for (37) corresponds to

    Figs. 4-7 depict the identification result for each state of the planar manipulator of two degrees of freedom. Each figure shows the comparison between the evolution of the state for both identifiers, the state of the simulated system and a Classical DNN identifier.

    Fig. 7. Comparison of the identification results for the fourth state (angular velocity of the second link) using both of the proposed identifiers and a classical DNN identifier.

    Fig. 4. Comparison of the identification results for the first state (angular position of the first link) using both of the proposed identifiers and a classical DNN identifier.

    Fig. 5. Comparison of the identification results for the second state (angular velocity of the first link) using both of the proposed identifiers and a classical DNN identifier.

    Fig. 6. Comparison of the identification results for the third state (angular position of the second link) using both of the proposed identifiers and a classical DNN identifier.

    In Fig. 4, it can be appreciated how the second identifier converges faster to the system trajectory of the first state. This identifier converges in less than 0.1 seconds. In the zoomed view, the detail depicts the convergence of the classical identifier and the first proposed identifier. Notice here that the first identifier converges faster and presents oscillations of larger amplitude before 0.1 seconds. For this state, the classical identifier presents oscillations of smaller amplitude.However, the convergence to the actual state of the uncertain system was better for both proposed identifiers in this study.

    The convergence of the second state of the manipulator system for the classical and the proposed identifiers is showed in Fig. 5. In this figure, one may notice the difference between the convergence of both identifiers and the classical DNN identifier (depicted with the continued blue line). In the detailed view for the first seconds, it is appreciated the fastest convergence of the second identifier (compared to the classical one) before 0.1 seconds, then the first identifier convergences and the classical identifier is the last to converge.

    Fig. 6 shows the result for the convergence of the considered identifiers for the third state. In this case, the classical identifier presents oscillations of larger amplitude(comparatively). In the detailed view, the second identifier has smaller amplitude and high-frequency oscillations and converges faster (before 0.16 seconds). The first proposed identifier converges faster than the classical identifier to the position of the second link.

    Similar to the previous figures, in Fig. 7, the results for the identification in the fourth state are shown. These results confirm that the classical DNN identifier presents oscillations with larger amplitudes than the proposed identifiers. In the detailed view, it is shown the fastest convergence (before 0.15 seconds) of the first proposed identifier (black line).

    In Fig. 8, the comparison of the three mean square errors for the Classical identifier, First and Second proposed identifiers are depicted. In this figure, the norm for the identification error using the classical identifier has bigger oscillations and a slower convergence. This analysis justifies the design of the proposed identifiers and provides a substantial basis for the inclusion of the time varying exponential functions in the learning design.

    Fig. 8. Norm of the identification error using a Classical DNN identifier and the proposed DNN identifiers.

    For the second identifier, Fig. 9 shows a comparison of the norm for the identification error using different values forL,the red line depicts the result for anL=5 and the blue dotted line for anL=20. This comparison using different values shows the relation of the parameterLin the velocity of convergence. Moreover, this comparative result emphasizes the possibility of fixing the convergence characteristics for the designed identifier with the learning laws presented in (36).

    Fig. 9. Norm of the identification error. Comparison between the results of the second proposed identifier selecting different values for the L parameter.

    As it has been revised, the proposed ECLF provides a transient constraint for the trajectories of the identification error. This fact appears as a significant improvement over the traditional CLF which is not able to regulate the converged velocity for the identification error.

    VII. CONCLUSION

    This paper discussed the design of the learning laws for an ANN structure devoted to system identification. The design included the addition of exponential functions in the Control Lyapunov function. The exponential functions were selected considering the concept of performance functions or prescribed performance. The Lyapunov analysis for the convergence of the identification error and the weights error was developed and the ultimate bound of the proposed designs was obtained. The analysis gave an estimation of the time of convergence to the invariant set around the origin using the exponential functions. For the second design one of the free parameters,Lcan be used to obtain a prescribed-like performance or improve the velocity of convergence. In the first identifier, the parameters of the identifier affect both, the size of the zone of convergence around the origin and the velocity of convergence. This study introduced a methodology to regulate the convergence velocity of the identification error enforced by the class of DNN proposed here. This accelerated convergence could be used to design hyper-exponential convergence for the identification error, uniform convergent identifier as well as the design of identifiers for delay systems with exponential convergence. Notice that all the improved characteristics of the exponential convergent identifier can be exploited in the design of adaptive controllers using the approximated model based on DNN.

    免费不卡的大黄色大毛片视频在线观看 | 成人欧美大片| 一个人看的www免费观看视频| 22中文网久久字幕| 欧美精品国产亚洲| 男插女下体视频免费在线播放| 欧洲精品卡2卡3卡4卡5卡区| a级一级毛片免费在线观看| 国产精品国产高清国产av| 亚洲一区二区三区色噜噜| 日韩欧美一区二区三区在线观看| 成人午夜高清在线视频| 免费黄网站久久成人精品| 亚洲精华国产精华液的使用体验 | 国产精品免费一区二区三区在线| 美女内射精品一级片tv| 日本三级黄在线观看| 亚洲成av人片在线播放无| 国产高清视频在线播放一区| 久久精品影院6| 18禁在线无遮挡免费观看视频 | av在线观看视频网站免费| 九色成人免费人妻av| 99riav亚洲国产免费| 蜜桃久久精品国产亚洲av| 亚洲av中文字字幕乱码综合| 午夜福利在线观看免费完整高清在 | 精品乱码久久久久久99久播| 免费观看的影片在线观看| 成年av动漫网址| 国产精品亚洲美女久久久| 男人舔奶头视频| 国产一区二区在线av高清观看| 午夜免费激情av| 精品久久久久久久久久久久久| 久久鲁丝午夜福利片| 最好的美女福利视频网| 91在线精品国自产拍蜜月| 日本黄色片子视频| 亚洲最大成人中文| 男女下面进入的视频免费午夜| 午夜亚洲福利在线播放| 国产91av在线免费观看| 国语自产精品视频在线第100页| 婷婷色综合大香蕉| 18禁在线无遮挡免费观看视频 | 99在线人妻在线中文字幕| 俺也久久电影网| 国产av一区在线观看免费| 国产白丝娇喘喷水9色精品| 搡老岳熟女国产| 欧美性猛交╳xxx乱大交人| 乱系列少妇在线播放| 免费观看精品视频网站| 国产精品一区二区性色av| 精品乱码久久久久久99久播| 可以在线观看的亚洲视频| 日韩大尺度精品在线看网址| 男人舔奶头视频| 中文字幕熟女人妻在线| 91精品国产九色| 内射极品少妇av片p| 免费看a级黄色片| 中文字幕熟女人妻在线| 欧美极品一区二区三区四区| 国产精品1区2区在线观看.| 亚洲美女视频黄频| 男人和女人高潮做爰伦理| 久久久a久久爽久久v久久| 在线天堂最新版资源| 91麻豆精品激情在线观看国产| 亚洲精品久久国产高清桃花| 美女被艹到高潮喷水动态| 成人av一区二区三区在线看| 色综合站精品国产| 欧美成人精品欧美一级黄| 国产成人freesex在线 | 成人精品一区二区免费| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 99久久成人亚洲精品观看| 一级黄色大片毛片| 亚洲美女黄片视频| av在线天堂中文字幕| 国产中年淑女户外野战色| 国产伦精品一区二区三区四那| 国产乱人视频| 欧美性猛交黑人性爽| 人妻少妇偷人精品九色| 国产精品人妻久久久久久| 国产三级在线视频| 亚洲高清免费不卡视频| 日韩大尺度精品在线看网址| 国产精品福利在线免费观看| 久久天躁狠狠躁夜夜2o2o| 色尼玛亚洲综合影院| 国产视频一区二区在线看| 在线免费观看的www视频| 午夜免费激情av| 黄色欧美视频在线观看| 最好的美女福利视频网| а√天堂www在线а√下载| 晚上一个人看的免费电影| 伦精品一区二区三区| 少妇人妻一区二区三区视频| 最近手机中文字幕大全| 91在线观看av| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 又黄又爽又刺激的免费视频.| 成年女人看的毛片在线观看| 中文字幕熟女人妻在线| 老司机福利观看| 网址你懂的国产日韩在线| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 国产色婷婷99| 亚洲成人精品中文字幕电影| 一个人观看的视频www高清免费观看| 久久精品国产亚洲av天美| 国产视频一区二区在线看| 欧美精品国产亚洲| 国产视频内射| 在线观看66精品国产| 精品乱码久久久久久99久播| 97超级碰碰碰精品色视频在线观看| 欧美人与善性xxx| 成人国产麻豆网| 最后的刺客免费高清国语| 国内精品久久久久精免费| 欧美+亚洲+日韩+国产| 成人漫画全彩无遮挡| 特大巨黑吊av在线直播| 一级黄色大片毛片| 中文字幕熟女人妻在线| 亚洲国产精品国产精品| 三级国产精品欧美在线观看| 亚洲国产欧美人成| 精品日产1卡2卡| av福利片在线观看| 九九热线精品视视频播放| 久久久国产成人精品二区| 国产毛片a区久久久久| 国产精品,欧美在线| 别揉我奶头~嗯~啊~动态视频| 91在线观看av| 美女黄网站色视频| 干丝袜人妻中文字幕| 精品久久久久久久久久久久久| .国产精品久久| 国产男人的电影天堂91| 免费在线观看成人毛片| 久久鲁丝午夜福利片| 高清日韩中文字幕在线| 中文字幕精品亚洲无线码一区| 久久久久久久久久成人| 色吧在线观看| 欧美3d第一页| 国内精品美女久久久久久| 国产一区二区亚洲精品在线观看| 成年av动漫网址| 永久网站在线| 嫩草影院新地址| 在线播放国产精品三级| 亚洲精品在线观看二区| 97热精品久久久久久| 欧美最黄视频在线播放免费| 热99在线观看视频| 中文字幕精品亚洲无线码一区| 国内精品一区二区在线观看| 亚洲精品粉嫩美女一区| 亚洲人成网站在线播| 国产亚洲精品久久久久久毛片| 哪里可以看免费的av片| 国产久久久一区二区三区| 国产女主播在线喷水免费视频网站 | 日韩欧美国产在线观看| 国产一区二区三区av在线 | 久久精品国产鲁丝片午夜精品| 1000部很黄的大片| 少妇猛男粗大的猛烈进出视频 | 国产极品精品免费视频能看的| 亚洲精品国产成人久久av| 亚洲人成网站在线播| 精品一区二区三区人妻视频| 日日干狠狠操夜夜爽| 亚洲av成人精品一区久久| 嫩草影视91久久| av视频在线观看入口| 男女那种视频在线观看| 中文字幕av成人在线电影| 91在线精品国自产拍蜜月| 又黄又爽又刺激的免费视频.| 99国产极品粉嫩在线观看| 毛片一级片免费看久久久久| 欧美潮喷喷水| 男女下面进入的视频免费午夜| 国产片特级美女逼逼视频| 亚洲国产日韩欧美精品在线观看| 亚洲自偷自拍三级| 亚洲久久久久久中文字幕| 国产精品综合久久久久久久免费| 久久天躁狠狠躁夜夜2o2o| 亚洲av中文字字幕乱码综合| 美女黄网站色视频| 一卡2卡三卡四卡精品乱码亚洲| 1000部很黄的大片| 欧美成人一区二区免费高清观看| 精品少妇黑人巨大在线播放 | 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 国内精品一区二区在线观看| 中文字幕熟女人妻在线| 国产色婷婷99| 一进一出好大好爽视频| 一级av片app| 日本黄色视频三级网站网址| 校园人妻丝袜中文字幕| 成人精品一区二区免费| 久久精品国产亚洲av香蕉五月| 午夜激情欧美在线| 亚洲电影在线观看av| 乱人视频在线观看| 午夜久久久久精精品| 免费大片18禁| 老女人水多毛片| 大型黄色视频在线免费观看| 国内精品宾馆在线| 在线观看66精品国产| 我要看日韩黄色一级片| 联通29元200g的流量卡| 久久亚洲精品不卡| 久久精品夜色国产| 国产成人精品久久久久久| 我要搜黄色片| 免费观看精品视频网站| 日韩制服骚丝袜av| 极品教师在线视频| 91久久精品电影网| 久久九九热精品免费| 搞女人的毛片| 精品久久国产蜜桃| 乱码一卡2卡4卡精品| 亚洲成人精品中文字幕电影| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 亚洲精品国产成人久久av| 老师上课跳d突然被开到最大视频| 此物有八面人人有两片| 久久久国产成人免费| 国产成人freesex在线 | 波野结衣二区三区在线| 精品免费久久久久久久清纯| 99精品在免费线老司机午夜| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 久久久午夜欧美精品| 春色校园在线视频观看| 国产高清不卡午夜福利| 精品免费久久久久久久清纯| 99热精品在线国产| 深夜精品福利| 日本在线视频免费播放| 在线观看一区二区三区| 久久久久性生活片| 精品一区二区三区视频在线观看免费| 国产精品久久视频播放| 老熟妇乱子伦视频在线观看| 久久久精品欧美日韩精品| 精品一区二区三区av网在线观看| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 蜜臀久久99精品久久宅男| 亚洲av免费高清在线观看| 亚洲国产精品合色在线| 国产精品女同一区二区软件| 看片在线看免费视频| 亚洲综合色惰| 欧美另类亚洲清纯唯美| 日韩欧美精品v在线| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 69av精品久久久久久| 日韩在线高清观看一区二区三区| 国产黄a三级三级三级人| 亚洲图色成人| 国产高清激情床上av| 亚洲一区高清亚洲精品| 日产精品乱码卡一卡2卡三| 给我免费播放毛片高清在线观看| 国产高清不卡午夜福利| 性插视频无遮挡在线免费观看| 日韩在线高清观看一区二区三区| 久久久精品94久久精品| 国产在线精品亚洲第一网站| 热99在线观看视频| 亚洲欧美日韩高清专用| 天堂网av新在线| 亚洲一区二区三区色噜噜| 国产精品人妻久久久影院| 亚洲成a人片在线一区二区| 色5月婷婷丁香| 一区福利在线观看| 日韩高清综合在线| 国产色爽女视频免费观看| 午夜福利在线在线| 色播亚洲综合网| 淫妇啪啪啪对白视频| 国产熟女欧美一区二区| 丰满的人妻完整版| 亚洲精品久久国产高清桃花| 色尼玛亚洲综合影院| 国产成人精品久久久久久| 亚洲最大成人av| 亚洲av不卡在线观看| 高清午夜精品一区二区三区 | 69人妻影院| 乱码一卡2卡4卡精品| 天天躁夜夜躁狠狠久久av| 成人漫画全彩无遮挡| 欧美另类亚洲清纯唯美| 两个人的视频大全免费| 校园人妻丝袜中文字幕| 国产在线精品亚洲第一网站| 精品一区二区免费观看| 亚洲美女搞黄在线观看 | 一本精品99久久精品77| 久久久久久久久大av| 欧美成人免费av一区二区三区| 嫩草影视91久久| 国产淫片久久久久久久久| 在线观看66精品国产| 色播亚洲综合网| 人妻制服诱惑在线中文字幕| 午夜亚洲福利在线播放| 日本熟妇午夜| 免费大片18禁| 日本熟妇午夜| 亚洲国产精品成人综合色| 国产伦在线观看视频一区| 久久久精品94久久精品| 午夜日韩欧美国产| 欧美性感艳星| 特级一级黄色大片| 亚洲av第一区精品v没综合| 欧美+日韩+精品| av在线天堂中文字幕| 免费av观看视频| 亚洲无线在线观看| 在线播放无遮挡| or卡值多少钱| av在线亚洲专区| 成人漫画全彩无遮挡| 人人妻人人看人人澡| 九色成人免费人妻av| 中文字幕久久专区| 女生性感内裤真人,穿戴方法视频| 日韩大尺度精品在线看网址| 国产精品三级大全| 日韩欧美在线乱码| 欧美一区二区亚洲| 国产精品乱码一区二三区的特点| 欧美zozozo另类| 嫩草影院入口| 国产免费男女视频| 岛国在线免费视频观看| 国产精品一区二区三区四区免费观看 | 亚洲人成网站高清观看| 香蕉av资源在线| 乱码一卡2卡4卡精品| 91麻豆精品激情在线观看国产| av黄色大香蕉| 五月玫瑰六月丁香| 免费一级毛片在线播放高清视频| 国产一区二区亚洲精品在线观看| 在线国产一区二区在线| 中国国产av一级| 久久久久久久久中文| 日韩强制内射视频| 看片在线看免费视频| 丰满乱子伦码专区| 亚洲性久久影院| 综合色丁香网| 搞女人的毛片| 欧美在线一区亚洲| 国产视频一区二区在线看| 综合色丁香网| 真人做人爱边吃奶动态| 国产黄a三级三级三级人| 午夜精品一区二区三区免费看| 日韩欧美精品v在线| 国产精品一区www在线观看| 12—13女人毛片做爰片一| 能在线免费观看的黄片| 亚洲真实伦在线观看| 啦啦啦啦在线视频资源| 男人舔女人下体高潮全视频| 国产探花在线观看一区二区| 久久久精品94久久精品| 欧美+日韩+精品| 精品免费久久久久久久清纯| 亚洲av二区三区四区| 夜夜爽天天搞| 中文亚洲av片在线观看爽| 高清毛片免费观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 禁无遮挡网站| 亚洲一区二区三区色噜噜| 亚洲av免费高清在线观看| 12—13女人毛片做爰片一| 熟女人妻精品中文字幕| 久久欧美精品欧美久久欧美| 亚洲精品456在线播放app| 国产一区二区在线观看日韩| 国产在视频线在精品| 一进一出好大好爽视频| 久久久久久久亚洲中文字幕| 色综合站精品国产| 熟妇人妻久久中文字幕3abv| 亚洲五月天丁香| 在线天堂最新版资源| 在现免费观看毛片| 欧美又色又爽又黄视频| 欧美成人免费av一区二区三区| 亚洲欧美成人综合另类久久久 | 啦啦啦啦在线视频资源| 成人国产麻豆网| 国产av一区在线观看免费| 免费不卡的大黄色大毛片视频在线观看 | 国产真实伦视频高清在线观看| 免费看av在线观看网站| 最新中文字幕久久久久| 亚洲天堂国产精品一区在线| 有码 亚洲区| 日韩在线高清观看一区二区三区| 岛国在线免费视频观看| 亚洲中文字幕日韩| 欧美xxxx性猛交bbbb| 人人妻人人澡欧美一区二区| 国产精品一区二区三区四区免费观看 | a级一级毛片免费在线观看| 激情 狠狠 欧美| 国产精品乱码一区二三区的特点| 一边摸一边抽搐一进一小说| 老熟妇仑乱视频hdxx| 免费在线观看成人毛片| 午夜a级毛片| 精品人妻一区二区三区麻豆 | 亚洲精品乱码久久久v下载方式| 91麻豆精品激情在线观看国产| 人妻丰满熟妇av一区二区三区| 国产精品日韩av在线免费观看| 欧美日韩国产亚洲二区| 卡戴珊不雅视频在线播放| 大香蕉久久网| 国内精品宾馆在线| 99国产极品粉嫩在线观看| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 国产探花在线观看一区二区| 超碰av人人做人人爽久久| 久久久久国产网址| 俺也久久电影网| 日本免费一区二区三区高清不卡| 夜夜夜夜夜久久久久| 午夜a级毛片| 久久人妻av系列| 变态另类丝袜制服| 一个人看视频在线观看www免费| 性插视频无遮挡在线免费观看| 高清午夜精品一区二区三区 | 在线免费观看不下载黄p国产| 日日啪夜夜撸| 国产麻豆成人av免费视频| 免费在线观看影片大全网站| 韩国av在线不卡| 久久精品国产自在天天线| 国产 一区 欧美 日韩| 哪里可以看免费的av片| 搞女人的毛片| 男插女下体视频免费在线播放| 日韩av不卡免费在线播放| 成年女人毛片免费观看观看9| 丰满的人妻完整版| 精品久久久久久久人妻蜜臀av| 亚洲av第一区精品v没综合| 女同久久另类99精品国产91| 一进一出抽搐动态| 18禁黄网站禁片免费观看直播| 国产大屁股一区二区在线视频| 波多野结衣高清作品| 亚洲欧美成人精品一区二区| 毛片一级片免费看久久久久| 日韩欧美 国产精品| 国产视频内射| 亚洲综合色惰| 午夜日韩欧美国产| 亚洲婷婷狠狠爱综合网| 中文字幕av成人在线电影| 国产精品久久久久久久久免| 国产一区亚洲一区在线观看| 日韩成人伦理影院| 一边摸一边抽搐一进一小说| 此物有八面人人有两片| 亚洲精品乱码久久久v下载方式| 国产av不卡久久| 熟妇人妻久久中文字幕3abv| 日本一二三区视频观看| av在线观看视频网站免费| 久久精品国产亚洲av天美| 有码 亚洲区| 久久久久国产网址| 国产片特级美女逼逼视频| 亚洲欧美日韩无卡精品| av黄色大香蕉| 中国国产av一级| 三级男女做爰猛烈吃奶摸视频| 国产黄色视频一区二区在线观看 | 亚洲精品亚洲一区二区| 亚洲久久久久久中文字幕| 长腿黑丝高跟| 伊人久久精品亚洲午夜| 在现免费观看毛片| 搡老岳熟女国产| 成人美女网站在线观看视频| 淫秽高清视频在线观看| 国产高清不卡午夜福利| 精品无人区乱码1区二区| 精品国产三级普通话版| 可以在线观看毛片的网站| 最近中文字幕高清免费大全6| 精品一区二区三区视频在线观看免费| 成人鲁丝片一二三区免费| 美女黄网站色视频| 成人永久免费在线观看视频| 国产亚洲av嫩草精品影院| 人人妻,人人澡人人爽秒播| 亚洲第一电影网av| 中文字幕熟女人妻在线| 欧美区成人在线视频| 国产中年淑女户外野战色| 国产蜜桃级精品一区二区三区| 精品久久久久久久人妻蜜臀av| 毛片一级片免费看久久久久| 91午夜精品亚洲一区二区三区| 亚洲不卡免费看| 国国产精品蜜臀av免费| 国语自产精品视频在线第100页| 国产美女午夜福利| 精品国产三级普通话版| 亚洲中文日韩欧美视频| 六月丁香七月| 国产av在哪里看| 国内久久婷婷六月综合欲色啪| or卡值多少钱| 亚洲中文字幕日韩| 亚洲精品456在线播放app| 国产精品一区二区三区四区久久| 人妻制服诱惑在线中文字幕| 成人性生交大片免费视频hd| 午夜a级毛片| 亚洲人成网站在线观看播放| 一边摸一边抽搐一进一小说| 2021天堂中文幕一二区在线观| 国产 一区 欧美 日韩| 综合色丁香网| 国产女主播在线喷水免费视频网站 | 国产免费一级a男人的天堂| 人妻久久中文字幕网| 国产黄a三级三级三级人| 国产黄片美女视频| 亚洲人与动物交配视频| 久久久久久久久大av| 国产精品亚洲美女久久久| 在现免费观看毛片| 最新中文字幕久久久久| 国产精品人妻久久久久久| 亚洲va在线va天堂va国产| 国产一区二区三区av在线 | 12—13女人毛片做爰片一| 亚洲美女搞黄在线观看 | 亚洲av二区三区四区| 久久人人爽人人片av| 国产精品国产三级国产av玫瑰| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产色片| 草草在线视频免费看| 日韩在线高清观看一区二区三区| 国产精华一区二区三区| 3wmmmm亚洲av在线观看| 真人做人爱边吃奶动态| 欧美成人a在线观看| 国产精品一区二区性色av| 桃色一区二区三区在线观看| 搡老岳熟女国产| 国产综合懂色| 国产黄a三级三级三级人| 内射极品少妇av片p| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| 国产麻豆成人av免费视频| 亚洲成人中文字幕在线播放| 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 国产在线男女| 国产精品女同一区二区软件| 波野结衣二区三区在线| 简卡轻食公司| 久久国产乱子免费精品| 国产久久久一区二区三区| 美女黄网站色视频| 国产精品人妻久久久久久| 久久精品夜色国产| 国产 一区精品| 国产在视频线在精品|