• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-objective Optimization of Casing Treatment in a Centrifugal Compressor Based on Data Mining and Metamodel*

    2019-01-03 07:37:26
    風機技術 2018年6期

    (Department of Mechanics,Tianjin University,Tianjin,China,zxliu@tju.edu.cn)

    Abstract:Casing treatment (CT) has the potential to extend the stable operating range of a centrifugal compressor.A multi-objective optimization method is proposed to optimize the CTof centrifugal compressors. The method consists of Kriging metamodel, Genetic Algorithm(GA),data-mining techniques and CFD code.Firstly,data-mining techniques are used to analyze the initial design space.The correlations between design variables and objectives are extracted,resulting in a refined design space.Then,the global optimization of CT is conducted by GA based on data-mining results.After optimization,the performance of the centrifugal compressor shows a considerable improvement over the whole speed line.The isentropic efficiency increases by 2.05%,and the stall margin improves by 7.11%.Finally,the mechanism behind the performance improvement is further clarified by detailed flow analysis.

    Keywords:Centrifugal Compressor,Casing Treatment,Data-mining,Multi-objective Optimization

    1 Introduction

    Turbochargers are usually used in internal combustion engines to improve fuel economy and reduce emission.As a key component of turbochargers,the centrifugal compressors converts mechanical energy into pressure energy by high-speed rotating impeller.Striving for high pressure ratio and large flow capacity is an overall trend of compressor development.However,this usually contradicts with high efficiency and wide operating range due to the complex transonic flow in narrow compressor passages.Self-recirculation casing treatment is commonly used to achieve a balance between high performance and wide stable operating range of centrifugal compressors[1-3].

    However,the design parameters of CT are severe correlated,and the mapping relations between design parameters and aerodynamic performance are highly non-linear[4-5].The trial-and-error method is usually failed to find the optimal CT.Global optimization methods are becoming more and more popular to obtain a better compromise between design efforts and high aerodynamic performance of CT.Min[6]integrated Design of Experiment(DOE)and Artificial Neural Network(ANN)to implement a multi-objective optimization of a centrifugal compressor with CT.Kim J.et al.[7,8]combined Kriging metamodel with genetic algorithm(GA)to conduct a multi-objective optimization of CT in an axial compressor.

    Though global optimization algorithms are able to search the optimal design scheme of CT,they deal with the optimization problem as a typical black box problem.Nearly none information of interactions between design parameters and aerodynamic performance could be drawn.Those information may be useful to understand the design feasibility and make simplifications to the design problem.On the other hand,the single-point optimization will definitely improve the aerodynamic performance at design condition,however,it may cause performance deterioration at off-design conditions.Therefore,this study introduces data-mining techniques to extract the interactions among design parameters,and the non-linear mapping relations between design parameters and aerodynamic performance.This helps to identify key design parameters of CT and simplify the optimization problem.Based on the data-mining results,a multi-point multi-objective global optimization method is established to optimize the CT of a transonic centrifugal compressor to improve is entropic efficiency as well as operating range.

    2 Numerical Method

    As shown in Fig.1,the full passage compressor including unshroud impeller,vaneless diffuser,CT and volute are modeled in the simulation.Some key design parameters of the centrifugal compressor are listed in Table 1.

    Fig.1 Computational domain and mesh

    Tab.1 Key parameters of centrifugal compressor

    In order to illustrate the computational domain more clear,Fig.2 only shows the single passage mesh of impeller and CT.The total mesh number of a single passage is around 1 380 000.There are 21 mesh nodes in the spanwise direction for the blade tip clearance.Butterfly mesh is applied to obtain a good mesh quality.The size of the first mesh cell near the wall is 0.001mm in the impeller and 0.01mm in the volute,which makes they+be small enough for the Spalart-Allmaras turbulence model.The whole computational domain(see Fig.1)contains approximately 13 370 000 nodes after mesh independency investigation.

    Fig.2 Single passage mesh of impeller and CT

    Fig.3 Comparison of numerical and experimental results

    Based on the full passage computational mesh,the 3-D steady Reynolds-averaged Navier-Stokes equations are solved.The Spalart-Allmaras turbulence model is applied for turbulence closure.Total temperature and total pressure are imposed as the inlet boundary conditions.Static pressure is set as the outlet boundary condition.No-slip and impermeability conditions are imposed on the solid walls.The interfaces between impeller and volute,impeller and CT are frozen rotors.By varying the back pressure gradually,the whole speed line of the compressor is obtained.

    The numerical and experimental results for the compressor are plotted in Fig.3,and the mass flow are normalized by the choke mass flow.It shows that the numerical results agree well with the experimental ones both in the efficiency and pressure ratio,the maximum error is only 3.01%.

    This study focuses on the optimization of CT,therefore,the computational domain in the following optimization only consists of a single passage impeller,CT and vaneless diffuser(see Fig.2)to speed up the optimization process.

    3 Data Mining

    It is necessary to determine a small number of key design variables from design space to simplify the optimization problem.Some information in the design space,such as the trade-off between objective functions,the non-linear relations between design parameters and objective functions,will be useful for ignoring the unimportant design parameters.Therefore,the efficiency and the reliability of the optimization process may be improved.The process to extract information from the design space is called‘data-mining'.In this study,two typical data-mining techniques,univariate Analysis of Sensitivity(SA)[9]and multivariate Analysis of Variance(ANOVA)[10],are introduced to explore the interactions and correlations among design variables and objective functions.

    3.1 Structure Parameters of the CT

    As shown in Fig.4,the geometry of the CT is parameterized by 11 independent design parameters.Considering the geometry constraints of the compressor,the parameter ranges of CT are shown in Table 2.Based on these design parameters,numerical simulation is carried out to obtain aerodynamic properties of the compressor.

    Fig.4 Design parameters of CT

    Tab.2 Design parameter ranges of CT

    3.2 Univariate Data Mining:SA

    In this section,both local and global univariate SA are carried out for CT based on Kriging metamodel[11].SA can identify the effects of single design parameter on objective functions in quantitative way.The local SAis written as

    whereSlis the local SA coefficient,x={x1,x2,…,xn}denotes design parameters,f(x)is objective function,which involves efficiency at design point and near stall point,pressure ratio at design point and near stall point,and surge mass flow.

    The global SA coefficient Sg is expressed as

    wheref(x)can be expressed as an integral formula ofg(xi).p(xi)is a probability density function.The responsef(x)can be estimated by m random samples,Sgcan be calculated as

    Since SA is based on Kriging model,it is necessary to validate the accuracy of the metamodel.According to the design parameter ranges of CT in Table 2,150 samples are obtained by the Optimal Latin Hypercube(OLH)[12].The corresponding aerodynamic performances of those samples are estimated by validated CFD method(see Section 2).Kriging metamodel is constructed to approximate the relations between design parameters and aerodynamic performances.Cross-Validation(CV)is used to test the accuracy of the metamodel.The process of CV is that a number of responses will be removed from the sampling data set,one at a time.For each of removed points,the Kriging metamodel will be re-calculated and get a new predicted value.Based on the comparison between true responses and predicted values,the relative errors are obtained.As shown in Fig.5,the established metamodel can provide a good accuracy based on current samples.Additionally,the correlation coefficientsR2is also checked for the established metamodel.R2can be calculated as follow

    Fig.5 Cross-validation of Kriging metamodel

    As illustrated in Table 3,the constructed metamodel is reliable for further data-mining and global optimization.

    Tab.3 Correlation coefficients of responses

    Based on the well-established metamodel,SA is performed for the three objective functions(design efficiency,near stall efficiency and surge mass flow),and the results are illustrated in Fig.6.The SA coefficients of downstream slot position X6,downstream slot width X7 and bypass angle X9,X10 for design efficiency are high.X6,X7,X10 and upstream slot angle X3 have obvious influences on near stall efficiency.Surge mass flow is mainly affected by X6 and X7.Therefore,the univariate SA indicates that the five design parameters:X3,X6,X7,X9 and X10 play important roles in determining aerodynamic performances of the compressor.

    The influences of the five important design parameters on the aerodynamic performances are illustrated in Fig.7.This figure is plotted by varying a certain design parameter while keeping the rest parameters at the baseline level.It can be seen that with the increase of X3,the efficiencies and surge mass flow firstly increase and then keep stable.With the increase of X6,the design efficiency and near stall efficiency remain constant at the beginning and then drop off,while the surge mass flow firstly increases sharply and then decreases slowly.The three objective functions firstly increase and then decrease with the X7,while the effects of X9 and X10 can be ignored in the single factor analysis.The results show that the variation patterns of the objective functions are complex,it is hard to obviously improve all objectives and some compromises should be made to those objectives.It is important to carry out multi-point multi-objective global optimization to achieve a good balance among objectives.

    3.3 Multivariate Data Mining:ANOVA

    The univariate SA method can only extract the effects of single design parameter on objectives.The interactive effects of multi design parameters are also important.Therefore,a multivariate ANOVA method is introduced to identify the interactive effects among design parameters.

    In ANOVA method,the effects of design parameters on the objective functions can be calculated by decomposing the total variance of the model into the variance due to the design parameter.The total mean μtotal and the varianceσtotal2of the model are defined as

    The main effect of variablexiand the interaction effect ofxiandxiare given as

    Fig.6 SAresults of three objective functions

    Fig.7 Effects of varying design parameter on aerodynamic performances

    μi(xi)andμij(xi,xj)quantify the effect of variablexiand interaction effect ofxiandxjon the objective function.The varianceσ2(xi)due to the design variable xi andσ2(xi,xj)due toxiandxjare given as

    The proportion of the variance due to design variable to the total variance indicates the effect of a variable on the objective function.ANOVA is implemented based on the validated Kriging metamodel(see Fig.5,Table 3).

    Fig.8 ANOVA results of 3 objective functions

    ANOVA is performed for three objective functions.Variance of design variables and their interactions whose proportion to the total variance is over than 2.0%are shown in Fig.8.Both the main effects of X3,X6,X7 and the interaction effects of X3-X6,X6-X7 play significant roles in determining the aerodynamic performance of the compressor.On the other hand,the interactive effects of variable X9,X10 and others variables are also distinct.The results of multivariate ANOVA agree well with univariate SA,which provide guidelines to simplify the design space of optimization.

    4 Multi-objective Optimization

    4.1 Optimization Method

    A multi-point multi-objective optimization method is proposed by integrating data-mining techniques,Kriging metamodel,improved NSGA-II and CFD code.The flow chart of the method is presented in Fig.9.The left-hand part is data-mining,which provides significant information for simplifying design space.The right-hand part presents the core optimization process based on the improved NSGA-II[13].

    Based on the data-mining results,design parameters X3,X6,X7,X9,X10 have larger influences on the aerodynamic performances of the compressor and they are kept in the final design space.The range of those five design parameters of CT in the final design space are shown in Table 4.

    Fig.9 Flowchart of multi-point multi-objective optimization method

    Tab.4 Range of the five design parameters of CT in the final design space

    Based on the final design space,in total 150 samples are generated by OLH,the corresponding aerodynamic performances are estimated by validated CFD code.The prediction of total pressure and isentropic efficiency at design operating condition is conducted by imposing a design mass flow rate(0.98kg/s)boundary condition at vaneless outlet.The near stall operating condition is implemented by imposing a near stall mass flow rate(0.9kg/s).Choke mass flow rate is obtained by specifying a low outlet static pressure(201300 Pa).The Kriging metamodel is built based on those samples.The validation of the constructed metamodel has been mentioned before.

    The optimization of CT is to improve the isentropic efficiency of the compressor at two operating conditions:design condition and near stall condition.The mathematical expressions of the objectives are shown in Eq.(11)and the constraints are given in Eq.(12).

    Table 5 shows some essential parameters in the genetic algorithm and simulation.Parallel computing technique is applied to the optimization process.The optimization is carried out on a computer with a 24-core processor(Xeon(R)E5-2620),and the CPU utilization is about 80 percent.The total computational time required to run the optimization is about 400 hours.

    Tab.5 Essential parameters in the genetic algorithm and CFD simulation

    4.2 Results and Discussion

    The optimization history is shown in Fig.10.After the optimization,the optimal geometry of CT is selected from the Pareto-optimal front solutions.The overall performances of Solid Casing,baseline CT and optimal CT are illustrated in Fig.11.Compared to the baseline CT,the aerodynamic performance of the optimal one shows an obvious improvement over the whole speed line.At design condition,the isentropic efficiency improves by 2.05%and the total pressure ratio increases by 4.10%.Additionally,stall margin shows a considerable improvement by 7.11%.These results demonstrate the power of the multi-point multi-objective optimization method.Single-point optimization is less likely to achieve the similar results.

    Fig.12 compares the geometries of the baseline and optimal CT.It shows that the optimal CT has larger upstream slot angle,narrower downstream slot which is closer to impeller outlet.All these changes agree well with previous data-mining results.The mechanism behind aerodynamic performance improvement after optimization will be discussed below by detailed flow analysis.

    As shown in Fig.11(a),the isentropic efficiency shows the most obvious improvement at 0.89 kg/s operating point.The flow analyses in the following sections are all based on this operating point.

    Fig.12 presents the spanwise performance at 5mm downstream from the impeller exit.It shows both isentropic efficiency and total pressure ratio increase in the regions from hub to 70%span,but reduce near the shroud.

    The comparison of tip clearance leakage vortex is shown in Fig.14.It shows that the main flow rolls up the tip leakage flow,resulting in the generation of tip leakage vortex,especially for the solid casing.The tip leakage vortex leads to a blockage in the impeller passage,which can cause the occurrence of stall in the compressor.After optimization,due to narrower downstream slot width and farther downstream position,more low momentum fluid is sucked into the casing,which benefits isentropic efficiency.

    Fig.10 Optimization history and Pareto-optimal front solutions

    Fig.11 Comparison of performance between solid casing,baseline CT and optimized CT

    Fig.12 Geometry of baseline and optimized CT

    Fig.13 Comparison of spanwise performance 5mm downstream of impeller

    Fig.15 shows the comparison of relative Mach number at 95%span.Since the upstream slot angle increases after optimization(see Fig.12),the backflow fluid from casing can better mix with the incoming flow at impeller inlet,resulting in a more uniform flow in inducer.On the other hand,the leading edge shock wave(region A)becomes weaker after optimization,leading to a smaller loss at impeller inducer.Additionally,the low momentum region in the downstream passage(region B)has been reduced,which can decrease the risk of flow separation.This is due to the fact that more low-momentum fluid is sucked by the casing after optimization,which is corresponding to the analysis of Fig.14.

    Fig.14 Comparison of tip clearance leakage vortex between solid,baseline and optimized CT

    Fig.15 Comparison of the relative Mach number at 95%span between solid casing,baseline and optimized CTs

    5 Conclusions

    A multi-point multi-objective global optimization method is proposed to improve the aerodynamic performance of the CT in a transonic centrifugal compressor.The following conclusions can be drawn from the present study.

    The role of data-mining techniques(SA and ANOVA)is heuristic and they are applied to the initial design space of CT optimization.The single-variable effects and the interactive multi-variable effects on objective functions are identified.After data-mining,the initial design space is simplified and only five key design parameters of CT are kept in the final design space.

    Based on the data-mining results,a multi-point multi-objective optimization is implemented for the CT of a transonic centrifugal compressor.After optimization,the aerodynamic performance shows an improvement over the whole speed line.The isentropic efficiency increases by 1.87%and 2.05%respectively at the design point and near stall point.Also,the stall margin increases from 19.11%to 26.22%.

    The post-processing of compressor optimization,which couples data-mining results,detailed flow analysis and geometry changes,is an effective way to extract the mechanism behind the performance improvement after optimization.

    This paper focuses on the optimization of CT in a centrifugal compressor without a volute.The effect of volute on optimization results will be further considered in authors'future study.

    色av中文字幕| 老司机午夜福利在线观看视频| 午夜免费观看网址| 少妇高潮的动态图| 国产精品 欧美亚洲| 女警被强在线播放| 国产一区二区三区在线臀色熟女| 久久国产乱子伦精品免费另类| 精品不卡国产一区二区三区| 亚洲欧美日韩高清在线视频| 久久久国产成人免费| 久久精品国产自在天天线| 亚洲国产中文字幕在线视频| 国产成人av教育| 18禁裸乳无遮挡免费网站照片| 午夜福利免费观看在线| 宅男免费午夜| 亚洲人成网站高清观看| 一个人观看的视频www高清免费观看| 亚洲av免费在线观看| 精品电影一区二区在线| 久久精品亚洲精品国产色婷小说| 国产精品 欧美亚洲| 久99久视频精品免费| 观看美女的网站| 床上黄色一级片| av中文乱码字幕在线| 国内精品一区二区在线观看| 观看免费一级毛片| 国内精品久久久久久久电影| 母亲3免费完整高清在线观看| 国产精品一及| 中文字幕人妻丝袜一区二区| 宅男免费午夜| 日本黄色视频三级网站网址| 国产午夜福利久久久久久| 中文字幕久久专区| 狂野欧美激情性xxxx| 老鸭窝网址在线观看| 91麻豆精品激情在线观看国产| 又粗又爽又猛毛片免费看| 手机成人av网站| 国产伦在线观看视频一区| 日韩欧美国产在线观看| x7x7x7水蜜桃| 午夜老司机福利剧场| 九九热线精品视视频播放| 久久婷婷人人爽人人干人人爱| 亚洲精品亚洲一区二区| 国产黄片美女视频| a级一级毛片免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩福利视频一区二区| 日日干狠狠操夜夜爽| 国产av不卡久久| 一进一出好大好爽视频| 此物有八面人人有两片| 一级黄色大片毛片| 免费av观看视频| 国产aⅴ精品一区二区三区波| 少妇的丰满在线观看| 一边摸一边抽搐一进一小说| 嫩草影院精品99| 日韩欧美三级三区| 欧美在线黄色| 日本免费一区二区三区高清不卡| 国产乱人伦免费视频| 免费av观看视频| 观看免费一级毛片| 亚洲av不卡在线观看| 一进一出抽搐动态| 99riav亚洲国产免费| 欧美一区二区亚洲| www.999成人在线观看| 中文字幕人成人乱码亚洲影| 一进一出抽搐gif免费好疼| 免费无遮挡裸体视频| 日韩欧美在线乱码| 国产 一区 欧美 日韩| 狂野欧美激情性xxxx| 可以在线观看的亚洲视频| 日韩高清综合在线| 午夜精品久久久久久毛片777| 久久久久久大精品| 久久这里只有精品中国| 免费在线观看影片大全网站| 国产精品亚洲美女久久久| 尤物成人国产欧美一区二区三区| 一级作爱视频免费观看| 免费看美女性在线毛片视频| 宅男免费午夜| 亚洲av日韩精品久久久久久密| 嫩草影院精品99| 性色av乱码一区二区三区2| 一二三四社区在线视频社区8| 欧美午夜高清在线| 亚洲精品成人久久久久久| av天堂在线播放| 精品国产亚洲在线| 国产探花在线观看一区二区| 国产高清videossex| 熟女人妻精品中文字幕| 精品久久久久久久末码| 国产精品自产拍在线观看55亚洲| 波多野结衣高清作品| 亚洲av免费在线观看| 免费在线观看亚洲国产| 听说在线观看完整版免费高清| 国产国拍精品亚洲av在线观看 | 亚洲国产中文字幕在线视频| bbb黄色大片| 99热这里只有精品一区| 久久精品91无色码中文字幕| 欧美一区二区国产精品久久精品| 日本 av在线| 波多野结衣高清无吗| 波野结衣二区三区在线 | 香蕉久久夜色| 国产又黄又爽又无遮挡在线| 夜夜夜夜夜久久久久| 亚洲国产色片| 午夜激情福利司机影院| 日韩av在线大香蕉| 国产精品三级大全| 国产精品久久久久久精品电影| 亚洲成人久久性| 婷婷亚洲欧美| 亚洲国产日韩欧美精品在线观看 | 一级a爱片免费观看的视频| 国产一级毛片七仙女欲春2| 久久久久久久久中文| 国产精品一区二区免费欧美| 91麻豆av在线| 三级毛片av免费| 美女cb高潮喷水在线观看| 两个人视频免费观看高清| 免费看美女性在线毛片视频| 国产国拍精品亚洲av在线观看 | 一个人免费在线观看电影| 亚洲av第一区精品v没综合| 国产一区二区激情短视频| 国产国拍精品亚洲av在线观看 | 亚洲国产精品成人综合色| 日本 欧美在线| 色播亚洲综合网| 国产精品免费一区二区三区在线| 亚洲国产精品999在线| 亚洲精品一区av在线观看| 午夜福利在线在线| 国产三级中文精品| 欧美又色又爽又黄视频| 好男人电影高清在线观看| 在线观看av片永久免费下载| 中文字幕av成人在线电影| 亚洲成人免费电影在线观看| 亚洲色图av天堂| 老司机在亚洲福利影院| 少妇高潮的动态图| 免费av不卡在线播放| 国产亚洲精品久久久久久毛片| 欧美绝顶高潮抽搐喷水| 中文字幕av在线有码专区| 国产亚洲精品综合一区在线观看| 免费一级毛片在线播放高清视频| a级一级毛片免费在线观看| 午夜视频国产福利| 成人永久免费在线观看视频| 看片在线看免费视频| 小蜜桃在线观看免费完整版高清| www.熟女人妻精品国产| 免费看日本二区| 成年女人毛片免费观看观看9| 中出人妻视频一区二区| 精品午夜福利视频在线观看一区| 久久草成人影院| 性欧美人与动物交配| 桃色一区二区三区在线观看| 亚洲精品456在线播放app | 亚洲专区国产一区二区| av在线蜜桃| 国产三级中文精品| 亚洲成人中文字幕在线播放| 国内精品美女久久久久久| 亚洲精品一卡2卡三卡4卡5卡| av天堂在线播放| 宅男免费午夜| 国产精品精品国产色婷婷| 国模一区二区三区四区视频| 免费在线观看成人毛片| 亚洲av不卡在线观看| 国产探花在线观看一区二区| 亚洲一区二区三区不卡视频| 动漫黄色视频在线观看| 国产一区二区三区视频了| 成人三级黄色视频| 欧美午夜高清在线| 国产三级黄色录像| 韩国av一区二区三区四区| 国产亚洲精品av在线| 亚洲av中文字字幕乱码综合| 国产精品亚洲美女久久久| 精品福利观看| 亚洲专区国产一区二区| 久久精品人妻少妇| 婷婷六月久久综合丁香| 九九热线精品视视频播放| 亚洲精华国产精华精| 久9热在线精品视频| 女人被狂操c到高潮| 欧美3d第一页| 午夜精品一区二区三区免费看| 国产色婷婷99| 伊人久久精品亚洲午夜| 日本五十路高清| 国产av不卡久久| 亚洲五月婷婷丁香| 亚洲人成电影免费在线| 蜜桃久久精品国产亚洲av| 中文资源天堂在线| 免费在线观看影片大全网站| 成人三级黄色视频| 成年女人永久免费观看视频| 欧美成人一区二区免费高清观看| 国产精品久久久久久久久免 | 欧美一区二区国产精品久久精品| 亚洲av电影不卡..在线观看| av在线天堂中文字幕| 特级一级黄色大片| 欧美日韩乱码在线| 精品免费久久久久久久清纯| 天堂动漫精品| 女生性感内裤真人,穿戴方法视频| 久久精品国产自在天天线| www日本黄色视频网| 国产精品综合久久久久久久免费| 国产一区二区三区视频了| 91久久精品电影网| 每晚都被弄得嗷嗷叫到高潮| 中文字幕av成人在线电影| 一区二区三区激情视频| av在线蜜桃| 婷婷精品国产亚洲av在线| ponron亚洲| 亚洲成人中文字幕在线播放| 国产高清激情床上av| 国产黄a三级三级三级人| 久久精品综合一区二区三区| 欧美一区二区亚洲| 一夜夜www| 久久天躁狠狠躁夜夜2o2o| 色精品久久人妻99蜜桃| 国产亚洲av嫩草精品影院| 国产精华一区二区三区| 一进一出抽搐动态| 亚洲久久久久久中文字幕| 丰满人妻熟妇乱又伦精品不卡| 法律面前人人平等表现在哪些方面| 久久人妻av系列| 精品久久久久久久久久免费视频| 中文字幕高清在线视频| 欧美最黄视频在线播放免费| 在线国产一区二区在线| 日韩精品中文字幕看吧| 我的老师免费观看完整版| 久久久久亚洲av毛片大全| 男女下面进入的视频免费午夜| 国产精品一及| 国产黄a三级三级三级人| 亚洲性夜色夜夜综合| 免费观看人在逋| 国产黄色小视频在线观看| 国产伦人伦偷精品视频| 偷拍熟女少妇极品色| 欧美性猛交╳xxx乱大交人| 日本免费a在线| 欧美黑人巨大hd| 黄色片一级片一级黄色片| 国产久久久一区二区三区| 色综合婷婷激情| 99久久九九国产精品国产免费| 色哟哟哟哟哟哟| www日本黄色视频网| 美女黄网站色视频| 中文字幕熟女人妻在线| a在线观看视频网站| 久久久国产成人精品二区| 精品久久久久久久久久久久久| 国产午夜精品论理片| 亚洲中文字幕一区二区三区有码在线看| 中文字幕人成人乱码亚洲影| 国产欧美日韩精品亚洲av| 国产黄色小视频在线观看| 午夜激情福利司机影院| 中文在线观看免费www的网站| 91九色精品人成在线观看| 国产精品99久久99久久久不卡| 精品人妻偷拍中文字幕| 99久久精品热视频| 嫩草影院精品99| 俺也久久电影网| 久久久久性生活片| 久久久久久久亚洲中文字幕 | 欧美av亚洲av综合av国产av| 1000部很黄的大片| 最新中文字幕久久久久| 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 啦啦啦韩国在线观看视频| 在线观看66精品国产| 一级a爱片免费观看的视频| 亚洲性夜色夜夜综合| 可以在线观看的亚洲视频| 国产久久久一区二区三区| 国产免费男女视频| 日韩免费av在线播放| 最新中文字幕久久久久| 国产一区二区在线av高清观看| 欧美丝袜亚洲另类 | 成年版毛片免费区| 久久国产乱子伦精品免费另类| 成人特级av手机在线观看| 日韩高清综合在线| 日韩欧美在线二视频| 国产亚洲精品一区二区www| 好男人电影高清在线观看| 日本 av在线| 极品教师在线免费播放| 久久久色成人| 老司机福利观看| 9191精品国产免费久久| 国产极品精品免费视频能看的| 久久亚洲精品不卡| 成人特级av手机在线观看| 亚洲最大成人手机在线| 国产av一区在线观看免费| 免费看光身美女| 久久久久久九九精品二区国产| 美女黄网站色视频| 久久精品91无色码中文字幕| 国产成人欧美在线观看| 男女那种视频在线观看| 欧美日韩瑟瑟在线播放| 婷婷精品国产亚洲av在线| 国产亚洲欧美在线一区二区| 99在线视频只有这里精品首页| 久久久久精品国产欧美久久久| 天天一区二区日本电影三级| 无遮挡黄片免费观看| 日本a在线网址| 国产麻豆成人av免费视频| 亚洲国产欧美网| 国产乱人视频| 免费电影在线观看免费观看| 午夜福利在线观看吧| 亚洲精品456在线播放app | 国产高清视频在线观看网站| 国产精品久久视频播放| 国产精品久久久久久久久免 | 精品一区二区三区视频在线 | 又粗又爽又猛毛片免费看| 久久久精品欧美日韩精品| 国产日本99.免费观看| 99久久99久久久精品蜜桃| 日韩欧美精品v在线| 听说在线观看完整版免费高清| 51国产日韩欧美| 午夜视频国产福利| 久久久久亚洲av毛片大全| 亚洲七黄色美女视频| 欧美一级毛片孕妇| 91在线观看av| 国产三级在线视频| 日日干狠狠操夜夜爽| 99热这里只有精品一区| 国产激情欧美一区二区| 日韩欧美 国产精品| 国产欧美日韩一区二区三| 成人无遮挡网站| 国产又黄又爽又无遮挡在线| 国产一区二区三区视频了| 99热只有精品国产| 精品一区二区三区视频在线 | 免费av毛片视频| 精品欧美国产一区二区三| 一级毛片女人18水好多| 成人av一区二区三区在线看| 日本精品一区二区三区蜜桃| 国产欧美日韩一区二区精品| 国产成人a区在线观看| 精品一区二区三区视频在线观看免费| 久久中文看片网| 国产精品久久视频播放| 中出人妻视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品一区av在线观看| 免费搜索国产男女视频| 欧美另类亚洲清纯唯美| 757午夜福利合集在线观看| 国产真人三级小视频在线观看| 亚洲五月天丁香| 久久久久久久亚洲中文字幕 | 亚洲va日本ⅴa欧美va伊人久久| 国产不卡一卡二| 亚洲av免费高清在线观看| xxx96com| 国产精品影院久久| 我要搜黄色片| 在线播放国产精品三级| 精品国产亚洲在线| 在线观看美女被高潮喷水网站 | 亚洲人成电影免费在线| 成人一区二区视频在线观看| 在线观看免费午夜福利视频| 变态另类成人亚洲欧美熟女| 欧美激情在线99| 在线观看舔阴道视频| 国产av不卡久久| 黄色丝袜av网址大全| 国产免费一级a男人的天堂| 午夜老司机福利剧场| 窝窝影院91人妻| 黄色女人牲交| 国产成人欧美在线观看| 老熟妇仑乱视频hdxx| 最后的刺客免费高清国语| 国产免费男女视频| 成年女人永久免费观看视频| 日韩亚洲欧美综合| www.www免费av| 亚洲av成人精品一区久久| 久久欧美精品欧美久久欧美| 欧美zozozo另类| 男女那种视频在线观看| 国产高潮美女av| 国产精品精品国产色婷婷| 成年女人毛片免费观看观看9| 一个人看的www免费观看视频| 97超视频在线观看视频| 一进一出抽搐动态| 两性午夜刺激爽爽歪歪视频在线观看| 免费电影在线观看免费观看| 女人被狂操c到高潮| 每晚都被弄得嗷嗷叫到高潮| 久久亚洲真实| 精品久久久久久久人妻蜜臀av| 亚洲国产精品sss在线观看| 叶爱在线成人免费视频播放| 天天躁日日操中文字幕| 久久午夜亚洲精品久久| 久久天躁狠狠躁夜夜2o2o| 免费大片18禁| 亚洲五月天丁香| а√天堂www在线а√下载| 免费搜索国产男女视频| 成人性生交大片免费视频hd| 高潮久久久久久久久久久不卡| 国产精品影院久久| 亚洲精华国产精华精| 人人妻人人看人人澡| 久久99热这里只有精品18| 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区| 免费av毛片视频| 国产伦人伦偷精品视频| 可以在线观看的亚洲视频| 色老头精品视频在线观看| 国产成年人精品一区二区| 狂野欧美白嫩少妇大欣赏| 搞女人的毛片| 亚洲av免费在线观看| 欧美3d第一页| 成年女人看的毛片在线观看| 国产精品爽爽va在线观看网站| 成人亚洲精品av一区二区| 成年女人看的毛片在线观看| 国产精品精品国产色婷婷| 亚洲国产中文字幕在线视频| 久久久久久九九精品二区国产| 色播亚洲综合网| 亚洲不卡免费看| 精品人妻偷拍中文字幕| 亚洲av熟女| 美女被艹到高潮喷水动态| 丁香欧美五月| 一级作爱视频免费观看| 又黄又粗又硬又大视频| 99热只有精品国产| 久久久久国内视频| 蜜桃亚洲精品一区二区三区| 三级国产精品欧美在线观看| 在线免费观看的www视频| 最近在线观看免费完整版| 无限看片的www在线观看| 天堂动漫精品| 久久久国产成人精品二区| 精品一区二区三区人妻视频| 搡老妇女老女人老熟妇| 亚洲欧美日韩高清在线视频| 国产精品影院久久| 久久天躁狠狠躁夜夜2o2o| 国产伦精品一区二区三区四那| 亚洲乱码一区二区免费版| 国产亚洲av嫩草精品影院| 日韩精品中文字幕看吧| 久久久精品欧美日韩精品| 亚洲国产中文字幕在线视频| 国产男靠女视频免费网站| 日韩欧美精品免费久久 | 免费人成视频x8x8入口观看| 在线播放无遮挡| 99精品欧美一区二区三区四区| 性欧美人与动物交配| 在线观看免费视频日本深夜| 国产伦人伦偷精品视频| 国产精品野战在线观看| 日韩 欧美 亚洲 中文字幕| 欧美黄色淫秽网站| ponron亚洲| 禁无遮挡网站| 国产精品99久久99久久久不卡| 99国产综合亚洲精品| 国产激情欧美一区二区| 高清日韩中文字幕在线| 最新在线观看一区二区三区| 亚洲国产高清在线一区二区三| 欧美在线一区亚洲| 午夜视频国产福利| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看| 国产精品综合久久久久久久免费| 美女cb高潮喷水在线观看| 一个人看的www免费观看视频| 欧美一区二区亚洲| 窝窝影院91人妻| 久久精品影院6| 最新美女视频免费是黄的| 在线观看一区二区三区| 欧美黄色淫秽网站| 欧美又色又爽又黄视频| 毛片女人毛片| 亚洲中文字幕日韩| 夜夜爽天天搞| 国产精品99久久久久久久久| 成人特级av手机在线观看| 国产精品野战在线观看| 99在线人妻在线中文字幕| 久久国产精品人妻蜜桃| 久久久久久久久大av| 欧美国产日韩亚洲一区| 午夜影院日韩av| 在线看三级毛片| 日韩中文字幕欧美一区二区| 国产精品久久视频播放| 一个人看的www免费观看视频| 观看美女的网站| 亚洲成av人片在线播放无| 有码 亚洲区| 国产精品电影一区二区三区| 岛国视频午夜一区免费看| 尤物成人国产欧美一区二区三区| 日本与韩国留学比较| 亚洲电影在线观看av| 日本a在线网址| 一个人看视频在线观看www免费 | 日本一本二区三区精品| 国产主播在线观看一区二区| 高清在线国产一区| 婷婷六月久久综合丁香| 色av中文字幕| 3wmmmm亚洲av在线观看| 成年女人毛片免费观看观看9| 久久国产乱子伦精品免费另类| 狂野欧美白嫩少妇大欣赏| 国内少妇人妻偷人精品xxx网站| 精品欧美国产一区二区三| 麻豆久久精品国产亚洲av| 久久性视频一级片| 国产99白浆流出| a在线观看视频网站| 国产老妇女一区| 男人的好看免费观看在线视频| 九九在线视频观看精品| 午夜福利视频1000在线观看| 精品不卡国产一区二区三区| 久久亚洲真实| 在线观看66精品国产| 久久九九热精品免费| 人妻夜夜爽99麻豆av| 99riav亚洲国产免费| 99视频精品全部免费 在线| 69av精品久久久久久| 精品福利观看| 亚洲精华国产精华精| 在线观看免费视频日本深夜| 俺也久久电影网| 亚洲精品在线美女| 免费搜索国产男女视频| 白带黄色成豆腐渣| 久久精品91无色码中文字幕| 女同久久另类99精品国产91| 嫁个100分男人电影在线观看| 精品一区二区三区视频在线观看免费| 久9热在线精品视频| 国产高潮美女av| 成人av在线播放网站| 午夜福利高清视频| 免费在线观看亚洲国产| 亚洲国产精品sss在线观看| 蜜桃亚洲精品一区二区三区| 此物有八面人人有两片| 给我免费播放毛片高清在线观看| 精品国产超薄肉色丝袜足j| 久久九九热精品免费| 一区二区三区高清视频在线| 非洲黑人性xxxx精品又粗又长|