• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas Turbine Engine Internal and Secondary Flow System

    2019-01-03 07:37:34
    風(fēng)機(jī)技術(shù) 2018年6期

    (Imperial College London,UK;p.childs@imperial.ac.uk)

    Abstract:The challenging conditions at which gas turbine engines operate mean that careful management of component temperatures is necessary,in order to ensure component integrity and reasonable service life.Pressurised flows extracted from the compressor can be used for cooling,sealing and balancing of components throughout the engine.Cooling is typically necessary for some combustor and turbine components, and sealing flows may be needed to exclude high temperature gases.In addition to cooling and sealing requirements,there is also a need to balance thrust loads in an engine,to limit loads on bearings,arising from the pressure differentials across compressor and turbine disc assemblies.The diverse tasks of cooling, sealing and balancing are generally assigned to a system known as the internal air system or secondary flow system.This paper describes the technologies associated with this system for both industrial gas turbine engines and aero-engines,and the current state of the art and challenges in component and subsystem design.

    Keywords:Internal,Air,Flow,Secondary,Disc,Rotor,Stator,Ingress,Ingestion,Turbine,System

    1 Introduction

    Gas turbine engine efficiency improves with increasing operating temperature and pressure ratios.The associated running conditions mandate the use of cooling in order to enable reasonable service lives for many components,sealing flows in order to contain or exclude fluids and particulates,and pressurising flows in order to manage thrust loads on spool assemblies.These functions are generally associated with the internal air system or secondary air or flow system.Typical subsystems associated with the internal air system include:bearing sealing and cooling,disc thrust management,rim seal ingress and egress,turbine disc cooling,provision of cooling air supply for turbine blade cooling,provision of cooling flows for combustor components,pressure balancing and flow management of various disc,drum and shaft seals,management of wheel-space temperatures,and management of electrical device cooling.Some typical subsystems associated with the internal air system are illustrated in Figure 1.Air for these diverse requirements can be obtained by bleeding off compressed air from one or more stages in the compressor.This air may also be used for cabin air ventilation.

    Extraction of air from the compressor results in specific fuel consumption performance penalties.Such penalties arise from both the power required to compress this air and those arising from spoiling or increased entropy associated with cooling and purge flows mixing with compressor and turbine mainstream flows.Significant efforts are therefore made in order to limit the quantity of bleed air used.This paper reviews some of the principal technologies associated with internal air and secondary flow systems.The paper considers the overall design of the internal air system in Section 2,bleed flows in Section 3,disc thrust management in Section 4,compressor wheel-spaces,drums and stator wells and drive cones in Section 5,turbine disc rim seals and associated features and pre-swirl systems in Section 6,bearing chambers in Section 7,electrical subsystem temperature management in Section 8,and overall conclusions in Section 9.There has been substantial technical and scientific attention to each subsystem and as a result there is an extensive literature base,referenced here principally by attention to relevant reviews and recent works in the area concerned.

    Fig.1 Typical flow subsystems associated with the internal air system

    2 Internal Air System Morphology

    The configuration of the internal air or secondary flow system is predominantly defined by initial estimates for principal flows for the various subsystems and bounded by the compressor,combustor and turbine principal geometry.Flow estimates for the subsystems can be developed from scaling of previous engine flows,or from models for the subsystems considering the operating temperature of the various components,and using models to estimate the cooling or sealing flow required.A flow network model can be used to provide an indication of the necessary flow path dimensions and associated pressure drops.Such models tend to be one-dimensional flow networks that rely heavily on empirical and proprietary data.Once a flow network has been established[1]more detailed modelling of the various subsystems can be undertaken using 2D,3D and 3D time-dependent models to verify and optimise the flow budget.

    3 Bleed Flows

    Air can be extracted from one or more compressor stages in order to provide the various flows required for sealing,cooling and thrust management,as well as any air required for cabin air ventilation.A bleed off take can comprise a pipe extract located in the compressor casing at the relevant stage to give the pressure required for the flow.

    Significant quantities of air are required for pressurising and ventilating the air craft cabin.Federal Aviation Authority Regulation FAR 25[2]specifies a flow rate of 0.55 lb/minute per passenger.As a result the total flow requirement can be 0.92 kg/s for a 220 passenger aircraft.In order to ensure a supply of air uncontaminated by oil and other harmful substances,careful attention to filtering and venting of the flow at start-up may be necessary[3-4].

    4 Disc Thrust Management

    The surface area associated with compressor and turbine disc assemblies is subject to pressure loading and needs careful management in order to ensure that any net thrust can be accommodated by the bearings.The arising load on bearings will vary according to the running conditions with both the magnitude and direction of the net thrust load altering significantly through a loading,start-up or flight cycle.In the case of aircraft the thrust load on a bearing system needs to accommodate in-flight events,such as stalling of a compressor stage,arising say from ice ingestion,and surge.The large diameter of the turbofan means that the arising thrust load is substantial,and this can be a particular challenge to accommodate for both normal running conditions and extreme events.Typical design approaches involve estimating the pressure differential across discs and stages,and summing up the net load on a spool,and use of sufficiently specified thrust bearings to accommodate the worst case scenario.Modelling methods accounting for the variation of pressure with radius for a rotating disc are reported by[5].

    5 Compressor Drums and Stator Wells and Drive Cones

    A compressor,in the case of an axial configuration,typically comprises a rotating drum made up of a series of discs supporting the rotating blades with lands or end walls for the stator blades(see Figure 2).Industrial gas turbine configurations may comprise a solid or a significantly more solid drum assembly providing useful inertia for accommodating load fluctuations in comparison to an aircraft application where weight is a critical factor.

    Fig.2 Compressor stack features.(Adapted from[5])

    The use of a disc assembly can result in a rotating cavity formed between two co-rotating discs with a shroud at the outer periphery.Such cavities are subject to wind age heating arising from relative motion between the rotating disc and the air contained,and as a result attention to management of the running temperature of the assembly may be necessary in order to provide acceptable service life.A significant range of flow conditions are possible in a rotating cavity depending on the cavity dimensions,whether there is net through flow of fluid,on the relative temperature of the cavity surfaces,whether the cavity closed,open,or bounded with a co-rotating or contra-rotating inner shaft[6-7].

    The case of a rotating cavity with radial outflow has been extensively studied and a series of characteristic features identified including a source region,Ekman type layers,sink region and rotating core[6,8-9].For a cavity with radial inflow,characteristic regions include an entrainment layer at the outer periphery,the source region,interior core and Ekman type layers on the disc and a sink region towards the inner radius[10].For a cavity with axial through flow,the flow conditions can be particularly complex with non-axisymmetric time dependent flow features arising,dependent on parameters such as the radial and axial temperature gradient[6,11].Significant insights have been developed arising from numerical studies,with for example[12]and[13]demonstrating the presence of time varying flow features that change in form and rotate relative to the discs.The use of radial inflow as a means to control compressor drum growth and hence tip clearance has been investigated by[14].Measurement of axial and tangential velocity profiles inside the cavity of a compressor drum rig with four rotating cavities and shroud heat transfer were reported by[15-18]and coupled transient thermal analysis by[19].

    For shrouded stator vanes,a trench or recess in the compressor drum is necessary,known as a compressor stator well,see Figure 3.The associated geometry typically com-prises rim seals upstream and downstream of the vane,and some form of seal between the drum and the shroud to limit flow through the well.The design of such configurations will include consideration of ingress and egress associated with the rim seal flows and any flow interactions and flow spoiling,management of any windage heating in the compressor stator well and ensuring that axial and radial movements can be accommodated[20-21].

    Fig.3 Compressor stator well

    A conical or cylindrical form is typically used to connect the high pressure turbine and compressor.The drive cone can provide a pathway for ducting cooling and sealing under the combustor to turbine components.Flow and heat transfer in this region has been investigated among others,by[22]and undertaking a conjugate heat transfer study,by[23].

    6 Turbine Rim Seals,Disc Features and Pre-swirl

    A running clearance is necessary between the high speed rotating disc supporting blades and the corresponding casing or stationary disc.In the case of coaxial discs this configuration is known as a rotor-stator disc cavity or wheelspace,see Figure 4.Fluctuations in pressure and flow conditions in the mainstream annulus,combined with instabilities in the cavity under certain conditions result in complex flow interactions between flows in the vicinity of the rim seal,in the mainstream bladed annulus and within the cavity.Flow exiting a cavity is typically referred to as egress and that entering a cavity as ingress.Significant attention is given to these flows in order to minimise the increase of entropy in a stage and to manage disc,rim and blade temperatures at acceptable levels.

    Fig.4 Schematic section of a turbine stage illustrating a rotor-stator disc wheelspace[5]

    A wide range of modelling approaches have been developed for determining ingress and egress rates in disc rim seals,Figure 5,including empirical correlations and orifice models where ingress and egress flows around the circumference of the seal are moderated by discharge coefficients.A recent version of such a model[24]integrates the ingress and egress assuming a saw tooth profile for the pressure at the nozzle guide vane exit.The seal effectiveness and purge flow is described in terms of two empirical constants,one defining the ratio of the ingress and egress discharge coefficients,and the other scales the performance curves to give the purge flow which is sufficient to prevent ingestion.

    Fig.5 Selected rim seal configurations(Adapted from[5])

    Experimental data from[25]and[26]indicates that ingestion mechanisms are associated with a range of different length scales,including shear layer interaction between the mainstream and rim seal flows over multiple vane pitches,in addition to vane and blade pressure fields.[26]present a model relating rim seal effectiveness in a rotor-stator cavity to purge flow based on turbulent transport mechanisms.The model assumes that the flow in the rim seal is mixed by a recirculation region or vortex extending around the circumference,and that all length scales of ingress lead to an effective eddy diffusivity that drives ingress across the seal concentration gradient.For a given seal,an effective eddy is assumed to act across the difference in seal effectiveness between the cavity and mainstream values.[26]also account for the reduction in turbulent mixing in the rim seal recirculation region with increasing purge flow.In general the better the seal,the lower the mixing length,which can be taken to indicate confinement of the effective eddy.A longer medial length of the rim seal,indicated by the radial dimension of the constriction,reduces the gradient and the reducing volume fraction occupied by the gap recirculation zone,drives a reduction in diffusivity,and as a result gives a higher turbulent mixing switch-off parameter.The model gives high fidelity matches for both the Cambridge data,[25],[26],and the data from the Bath rig[27-30].

    Common practice in many axial turbines is to place a shroud on the inner radius of guide vanes in order to reduce over tip leakage effects.This mandates a recess in the rotor drum assembly known as a turbine stator well,see Figure 5(g).The arising configuration,comprising two rotor-stator cavities normally separated by a labyrinth seal,has been subject to extensive studies in order to improve modelling methods as reported by[31]and[32].

    In the design of an internal air system it is necessary to account for windage heating by the various rotating components such as discs and bolts.Bolts are typically designed with aerodynamic features,recessed or covered in order to minimise such effects.A wide range of correlations are available for evaluating the moment coefficient of a disc under differing flow conditions,see[5]and[33].Experimental data for the effect of rotating bolts or stationary bolts in a rotorstator cavity has been produced by[34],and modelling reported by[35].

    In order to transfer air from the non-rotating frame of reference to the rotating frame of reference of a turbine disc,a pre-swirl system can be used.This established method typically comprises accelerating the air through a series of inclined nozzles on the stationary disc to give a high tangential component of velocity before the flow enters corresponding feed holes on the rotating disc and is then transferred through passages on board the rotor disc towards the base of the turbine blades where it can be used to maintain these at reasonable temperatures by means of a series of bleed holes in the blades.The acceleration of the flow,relative to the rotor disc,results in a reduction of the total temperature with potential advantages for cooling effectiveness.In many practical systems,however this accelerated cooling flow must pass across the rotor-stator disc cavity and mixes with the cavity air,some of which may be associated with hot ingress flow,negating some of the advantage of the pre-swirl temperature drop[36].The effectiveness of such a pre-swirl system can be described in terms of the maximum achievable temperature decrease and the associated discharge coefficients for the pre-swirl nozzles and receiver holes[37].In order to account for the complex interactions significant insight and modelling capability[38-42]and use of high quality empirically derived coefficients can be necessary[43].

    7 Bearing Chambers

    Bearings typically require very careful attention to their mounting,sealing and thermal management in order to ensure the necessary alignment,exclusion of dirt and retention of lubricants,and removal of heat generated by friction.In the case of a gas turbine engine,additional challenges can be management of operation at elevated temperatures and the significant thrust loads that can arise from extreme events,and ramping up or down to a different running condition.While the specification of a bearing may be assigned to specialist,the detailed design of a bearing housing will inevitably require interaction with the internal air system,arising from requirements for cooling,and sealing flows.Common choices for bearing seals include labyrinths and carbon face seals,see[44]and[45],as illustrated schematically in Figure 6.

    Fig.6 Generic bearing chamber arrangement for a multi-spool engine[45]

    8 Electrical Subsystem Thermal Management

    The increase in the use of electrical sub-systems in gas turbine engines typically requires management of the thermal environment for the electrical machine concerned.Such machines generally comprise similar geometrical forms to many gas turbine and mechanical engineering components,such as rotating discs,rotor-stator disc cavities,rotating and static disc features,plain and grooved cylinders,annuli,and cones.The flow and heat transfer associated with these configurations are reviewed by[46].

    9 Conclusions

    Gas turbine engine components are typically operated under high levels of thermal and mechanical stress.This mandates the use of cooling in order to ensure reasonable service life for the components concerned.In addition to managing component temperatures it is also necessary to consider containment or exclusion of fluids and dirt from certain subsystems and the management of thrust loads on bearings.The diverse requirements of thermal management,sealing and cooling and management of thrust loads are generally assigned to the internal air system or secondary flow system.Extensive research has been undertaken on this system arising from the need to minimise the quantity of air used as this must be extracted from the compressor and hence has an impact on the specific fuel consumption,and also to minimise any harmful interactions between sealing and cooling flows and the mainstream annulus flows,as this also can reduce the overall thermal efficiency and hence increase the specific fuel consumption.

    Common features associated with the internal air system are discs,cylindrical cavities,cylindrical and conical surfaces and arising flow and heat transfer in static applications,movement relative to a corresponding surface,and rotating frames of reference.Subsystems associated with the internal air system include bearing sealing and cooling,disc thrust management,rim seal ingress and egress,turbine disc cooling,provision of cooling air supplies for turbine blade cooling,cooling flows for combustor components,pressure balancing and flow management of various disc,drum and shaft seals,management of wheel-space temperatures,and management of the thermal environment for varied electrical devices.

    Research on disc flows in rotor-stator disc cavities has reached a level of maturity such that modelling of gas ingestion is now possible and routine in many companies and research groups.Flow and heat transfer in a rotating cavity continues to be a research topic with the arising instabilities resulting in transient 3 dimensional flow features that rotate relative to the cavity.Conjugate heat transfer methods have advanced such that their use for the majority of internal air system components is common-place enabling modelling and optimisation of many of the subsystems.

    人妻系列 视频| 亚洲成人av在线免费| 人体艺术视频欧美日本| eeuss影院久久| xxx大片免费视频| 在线观看美女被高潮喷水网站| 午夜激情久久久久久久| 亚洲乱码一区二区免费版| 精品久久久久久成人av| 国产精品一及| 色综合色国产| 久久99热6这里只有精品| 亚洲最大成人av| 日韩av在线免费看完整版不卡| 免费av观看视频| 亚洲精品中文字幕在线视频 | 国产亚洲av嫩草精品影院| 一级毛片 在线播放| 少妇丰满av| 亚洲欧美日韩无卡精品| 两个人视频免费观看高清| 三级国产精品片| 成年女人在线观看亚洲视频 | 日本wwww免费看| 午夜亚洲福利在线播放| 亚洲一区高清亚洲精品| 亚洲欧美日韩东京热| 国产精品福利在线免费观看| 日日干狠狠操夜夜爽| 久久久久性生活片| 麻豆成人av视频| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 日韩一区二区三区影片| 国产精品99久久久久久久久| 26uuu在线亚洲综合色| 99热网站在线观看| 国产成人免费观看mmmm| 青春草亚洲视频在线观看| 日本免费a在线| 久久久色成人| 久久韩国三级中文字幕| 极品教师在线视频| 久久久久久久久久久免费av| 久久久久久伊人网av| 亚洲aⅴ乱码一区二区在线播放| 一级av片app| 人妻一区二区av| 日日啪夜夜撸| 校园人妻丝袜中文字幕| 成人二区视频| 网址你懂的国产日韩在线| 少妇丰满av| 69av精品久久久久久| 亚洲av不卡在线观看| 日韩国内少妇激情av| 91aial.com中文字幕在线观看| 久久久精品94久久精品| 又爽又黄无遮挡网站| 色5月婷婷丁香| av在线观看视频网站免费| 国产精品三级大全| 韩国高清视频一区二区三区| 人妻制服诱惑在线中文字幕| 美女国产视频在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲av不卡在线观看| 极品教师在线视频| 蜜臀久久99精品久久宅男| 国产精品人妻久久久久久| 国产成人freesex在线| 我的老师免费观看完整版| 国产一区二区三区av在线| 夫妻午夜视频| 毛片女人毛片| 极品教师在线视频| 国产亚洲av片在线观看秒播厂 | 国产一级毛片在线| 亚洲不卡免费看| 波多野结衣巨乳人妻| 黄色一级大片看看| 国产免费福利视频在线观看| 国产一区二区三区av在线| 一个人免费在线观看电影| 性色avwww在线观看| 一级av片app| 联通29元200g的流量卡| 女人久久www免费人成看片| 日韩一本色道免费dvd| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片电影观看| 久久综合国产亚洲精品| 男女国产视频网站| 亚洲,欧美,日韩| 成人亚洲精品一区在线观看 | 精品亚洲乱码少妇综合久久| 一级毛片aaaaaa免费看小| 日本熟妇午夜| 日日摸夜夜添夜夜添av毛片| 久久久久久久久久久丰满| 真实男女啪啪啪动态图| 欧美人与善性xxx| 国产黄片美女视频| 身体一侧抽搐| 美女大奶头视频| 2018国产大陆天天弄谢| 欧美性感艳星| 亚洲四区av| 极品教师在线视频| 免费观看精品视频网站| 国产成人精品福利久久| 国产乱人视频| 亚洲av免费在线观看| 国产精品精品国产色婷婷| 美女cb高潮喷水在线观看| 午夜福利成人在线免费观看| 大话2 男鬼变身卡| 亚洲欧洲日产国产| 久久久久久久大尺度免费视频| 欧美激情久久久久久爽电影| 99久久中文字幕三级久久日本| 久久久久九九精品影院| 亚洲精华国产精华液的使用体验| 久久99热这里只有精品18| 99久久精品国产国产毛片| 日韩电影二区| 男人舔女人下体高潮全视频| 免费观看的影片在线观看| 欧美潮喷喷水| 男女下面进入的视频免费午夜| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品50| 美女大奶头视频| 亚洲精品影视一区二区三区av| av在线老鸭窝| 2022亚洲国产成人精品| 日韩,欧美,国产一区二区三区| 少妇丰满av| 免费观看a级毛片全部| 精品久久久久久电影网| 又粗又硬又长又爽又黄的视频| 一级毛片 在线播放| 国产亚洲最大av| 一级黄片播放器| 在线观看人妻少妇| 日韩欧美一区视频在线观看 | 欧美日韩国产mv在线观看视频 | 偷拍熟女少妇极品色| 六月丁香七月| 国产淫片久久久久久久久| 欧美极品一区二区三区四区| 少妇的逼水好多| 亚洲国产高清在线一区二区三| 少妇被粗大猛烈的视频| 久久久久久国产a免费观看| 一级毛片我不卡| 久久草成人影院| 亚洲欧美成人精品一区二区| 一区二区三区高清视频在线| 七月丁香在线播放| 国产黄片视频在线免费观看| 国产麻豆成人av免费视频| 日日啪夜夜爽| 日韩国内少妇激情av| 日本wwww免费看| 国产淫片久久久久久久久| 伦精品一区二区三区| 久久久成人免费电影| 国产精品熟女久久久久浪| 亚洲精品一二三| 亚洲美女视频黄频| 男人爽女人下面视频在线观看| 国产精品不卡视频一区二区| 爱豆传媒免费全集在线观看| 人妻系列 视频| 国产精品一区二区在线观看99 | 亚洲图色成人| 一区二区三区高清视频在线| 欧美xxxx黑人xx丫x性爽| 成人午夜精彩视频在线观看| 色综合亚洲欧美另类图片| 国产亚洲av嫩草精品影院| 丝袜喷水一区| 韩国高清视频一区二区三区| 精品国产三级普通话版| 激情 狠狠 欧美| 精品久久久精品久久久| 少妇人妻精品综合一区二区| 精品国内亚洲2022精品成人| av福利片在线观看| 少妇人妻一区二区三区视频| 亚洲自偷自拍三级| 日本一二三区视频观看| 成年女人在线观看亚洲视频 | 亚洲不卡免费看| 精品一区二区三卡| 观看免费一级毛片| 亚洲精品日韩在线中文字幕| 一本久久精品| 特级一级黄色大片| 在线天堂最新版资源| 97人妻精品一区二区三区麻豆| 久久久久九九精品影院| 在线播放无遮挡| 久久久久久久久大av| 乱系列少妇在线播放| 99久久九九国产精品国产免费| 亚洲国产欧美在线一区| 婷婷色av中文字幕| 欧美区成人在线视频| 久久久精品欧美日韩精品| 日本三级黄在线观看| 亚洲激情五月婷婷啪啪| 一区二区三区乱码不卡18| 波多野结衣巨乳人妻| 精品国产三级普通话版| 欧美丝袜亚洲另类| 成人亚洲精品一区在线观看 | 欧美精品一区二区大全| 毛片一级片免费看久久久久| 久久亚洲国产成人精品v| 99热网站在线观看| 中文字幕亚洲精品专区| 久久99精品国语久久久| 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 一级毛片 在线播放| 欧美丝袜亚洲另类| 三级国产精品欧美在线观看| 久久6这里有精品| 国产乱人偷精品视频| 国产毛片a区久久久久| 久久久久久久久久黄片| 简卡轻食公司| 国产精品99久久久久久久久| 国产亚洲91精品色在线| 直男gayav资源| 日日啪夜夜撸| 亚洲成人久久爱视频| 欧美不卡视频在线免费观看| 免费看美女性在线毛片视频| 80岁老熟妇乱子伦牲交| xxx大片免费视频| 狠狠精品人妻久久久久久综合| 成人毛片60女人毛片免费| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品 | 韩国高清视频一区二区三区| 中文天堂在线官网| 国产亚洲精品久久久com| 亚洲,欧美,日韩| 一边亲一边摸免费视频| 日本一本二区三区精品| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品在线观看| 熟女电影av网| 一个人观看的视频www高清免费观看| 中文字幕av在线有码专区| www.色视频.com| 少妇熟女欧美另类| 中文字幕av成人在线电影| 久久午夜福利片| 亚洲无线观看免费| 日韩强制内射视频| 亚洲丝袜综合中文字幕| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 国产永久视频网站| 久久久色成人| 免费观看av网站的网址| av国产久精品久网站免费入址| 国产精品99久久久久久久久| 日韩av免费高清视频| 中文字幕制服av| 日产精品乱码卡一卡2卡三| 国内精品宾馆在线| 九九在线视频观看精品| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 国产精品三级大全| 丝袜喷水一区| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色av中文字幕| 久久99精品国语久久久| 少妇熟女欧美另类| 亚洲精品日韩在线中文字幕| 国产美女午夜福利| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 一个人看的www免费观看视频| 在线观看美女被高潮喷水网站| 成人一区二区视频在线观看| 国产精品国产三级国产av玫瑰| 亚洲精品中文字幕在线视频 | 毛片女人毛片| av天堂中文字幕网| 嫩草影院入口| 女人久久www免费人成看片| 国产综合精华液| 美女被艹到高潮喷水动态| 精品久久久久久电影网| 欧美高清性xxxxhd video| 日产精品乱码卡一卡2卡三| 男人和女人高潮做爰伦理| 99久久九九国产精品国产免费| av在线天堂中文字幕| 亚洲丝袜综合中文字幕| 精品午夜福利在线看| 尤物成人国产欧美一区二区三区| 日韩精品有码人妻一区| 亚洲av电影不卡..在线观看| 3wmmmm亚洲av在线观看| 免费看日本二区| 自拍偷自拍亚洲精品老妇| 水蜜桃什么品种好| 国产乱人视频| 非洲黑人性xxxx精品又粗又长| 三级国产精品欧美在线观看| 一级毛片我不卡| 人人妻人人澡人人爽人人夜夜 | 看黄色毛片网站| 五月玫瑰六月丁香| 国产日韩欧美在线精品| 黑人高潮一二区| 久久精品国产亚洲av天美| 日本色播在线视频| 极品教师在线视频| 日韩中字成人| 蜜桃亚洲精品一区二区三区| 精品久久久久久久久亚洲| 三级国产精品片| 亚洲av中文av极速乱| 国产精品一区www在线观看| 最近中文字幕2019免费版| 国产成人a∨麻豆精品| 国产探花极品一区二区| 日韩成人av中文字幕在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲最大成人av| 天堂av国产一区二区熟女人妻| 爱豆传媒免费全集在线观看| 国产成人精品一,二区| 国产精品久久久久久精品电影| 欧美极品一区二区三区四区| 街头女战士在线观看网站| 好男人在线观看高清免费视频| 欧美日本视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人与动物交配视频| 亚洲最大成人中文| 日韩中字成人| 春色校园在线视频观看| 国产成人午夜福利电影在线观看| 国产一区二区在线观看日韩| 美女内射精品一级片tv| 精品国内亚洲2022精品成人| 日本午夜av视频| 男插女下体视频免费在线播放| 欧美日本视频| 国产成人免费观看mmmm| 国产精品国产三级国产专区5o| 亚洲成色77777| 精品一区在线观看国产| 直男gayav资源| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 超碰97精品在线观看| 亚洲成人av在线免费| 精品一区在线观看国产| 日日啪夜夜爽| 国产成人免费观看mmmm| 国产成人a区在线观看| 亚洲精品色激情综合| 日韩欧美国产在线观看| 亚洲18禁久久av| 一级爰片在线观看| 国产av不卡久久| 啦啦啦韩国在线观看视频| 亚洲国产欧美在线一区| 80岁老熟妇乱子伦牲交| 99九九线精品视频在线观看视频| 一个人看视频在线观看www免费| 一夜夜www| 国产伦一二天堂av在线观看| 日日摸夜夜添夜夜爱| 欧美激情久久久久久爽电影| 色播亚洲综合网| 白带黄色成豆腐渣| 18禁在线无遮挡免费观看视频| 三级男女做爰猛烈吃奶摸视频| 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| 97热精品久久久久久| 国产老妇女一区| 精品久久久精品久久久| 亚洲电影在线观看av| 日本欧美国产在线视频| 亚洲精品亚洲一区二区| 免费看av在线观看网站| 亚洲av成人精品一二三区| 久久精品国产鲁丝片午夜精品| 国产精品av视频在线免费观看| 丝瓜视频免费看黄片| 日本wwww免费看| videos熟女内射| 美女黄网站色视频| 黄色欧美视频在线观看| 淫秽高清视频在线观看| 精品少妇黑人巨大在线播放| 国产免费视频播放在线视频 | 国产精品久久久久久精品电影小说 | 最近中文字幕高清免费大全6| 久久久久久久久久成人| 亚洲高清免费不卡视频| 美女脱内裤让男人舔精品视频| 亚洲四区av| 国产精品综合久久久久久久免费| 麻豆乱淫一区二区| 久久精品国产自在天天线| 丝瓜视频免费看黄片| 美女黄网站色视频| 天堂av国产一区二区熟女人妻| 国产高清国产精品国产三级 | 免费看不卡的av| 青春草亚洲视频在线观看| 搞女人的毛片| 好男人视频免费观看在线| 欧美日韩一区二区视频在线观看视频在线 | 嫩草影院新地址| 色5月婷婷丁香| 久久久久久久午夜电影| 久久草成人影院| 尤物成人国产欧美一区二区三区| 欧美最新免费一区二区三区| 欧美性猛交╳xxx乱大交人| 国产在线男女| 国产成人精品婷婷| 亚洲美女搞黄在线观看| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网 | 亚洲国产精品sss在线观看| 大香蕉97超碰在线| 国产熟女欧美一区二区| 久久久久久久久大av| 亚洲一区高清亚洲精品| 亚洲av中文av极速乱| 狂野欧美白嫩少妇大欣赏| 边亲边吃奶的免费视频| 亚洲国产精品成人综合色| 搞女人的毛片| 18禁在线播放成人免费| 大又大粗又爽又黄少妇毛片口| 久久久久久九九精品二区国产| 日本爱情动作片www.在线观看| 午夜免费男女啪啪视频观看| 久久久国产一区二区| 亚洲av不卡在线观看| 中文欧美无线码| 三级国产精品片| 日日啪夜夜撸| 秋霞在线观看毛片| 久久热精品热| 99久久精品国产国产毛片| 一级毛片黄色毛片免费观看视频| 国产精品久久视频播放| 黄片无遮挡物在线观看| 女人十人毛片免费观看3o分钟| 大又大粗又爽又黄少妇毛片口| av国产免费在线观看| 高清欧美精品videossex| 欧美不卡视频在线免费观看| 丰满人妻一区二区三区视频av| 婷婷色av中文字幕| 在线观看av片永久免费下载| 女人十人毛片免费观看3o分钟| 亚洲,欧美,日韩| 国产成人精品婷婷| 丝袜喷水一区| 精品久久国产蜜桃| 免费大片黄手机在线观看| 亚洲国产最新在线播放| 精品酒店卫生间| 成人漫画全彩无遮挡| 真实男女啪啪啪动态图| 黄色配什么色好看| av在线播放精品| 国产精品一区二区在线观看99 | 国产成人a∨麻豆精品| 91精品一卡2卡3卡4卡| 噜噜噜噜噜久久久久久91| 午夜免费男女啪啪视频观看| 全区人妻精品视频| 国产精品嫩草影院av在线观看| 麻豆久久精品国产亚洲av| av在线播放精品| 亚洲欧美成人精品一区二区| 国产综合精华液| 国产成人一区二区在线| 欧美性感艳星| kizo精华| 啦啦啦中文免费视频观看日本| 精品酒店卫生间| 国产亚洲最大av| 久久久a久久爽久久v久久| 日韩人妻高清精品专区| 久久人人爽人人片av| 国产午夜精品久久久久久一区二区三区| 天堂俺去俺来也www色官网 | 91精品伊人久久大香线蕉| 大陆偷拍与自拍| 亚洲四区av| ponron亚洲| 在线免费观看不下载黄p国产| 日本黄大片高清| 国产人妻一区二区三区在| 午夜福利高清视频| 乱系列少妇在线播放| 寂寞人妻少妇视频99o| 成人性生交大片免费视频hd| 91午夜精品亚洲一区二区三区| 亚洲欧美一区二区三区国产| 夜夜看夜夜爽夜夜摸| 在线免费十八禁| 国产亚洲5aaaaa淫片| 韩国高清视频一区二区三区| 精品久久久久久久久亚洲| 午夜爱爱视频在线播放| 国产爱豆传媒在线观看| 18+在线观看网站| 嫩草影院精品99| 91精品一卡2卡3卡4卡| 日韩av免费高清视频| 欧美97在线视频| 又粗又硬又长又爽又黄的视频| 夜夜爽夜夜爽视频| 欧美精品国产亚洲| 欧美 日韩 精品 国产| 2021天堂中文幕一二区在线观| 欧美 日韩 精品 国产| 美女国产视频在线观看| 免费人成在线观看视频色| 国产精品爽爽va在线观看网站| 亚洲人成网站在线观看播放| 亚洲av电影在线观看一区二区三区 | 亚洲精品国产av成人精品| 寂寞人妻少妇视频99o| 熟女人妻精品中文字幕| 国产精品国产三级专区第一集| 亚洲国产色片| 国产永久视频网站| 午夜爱爱视频在线播放| 国产高潮美女av| 少妇熟女欧美另类| 少妇被粗大猛烈的视频| 国产亚洲av片在线观看秒播厂 | 熟女人妻精品中文字幕| 久久久午夜欧美精品| 亚洲国产成人一精品久久久| 亚洲av.av天堂| 大又大粗又爽又黄少妇毛片口| 国产精品爽爽va在线观看网站| 亚洲国产日韩欧美精品在线观看| 国产亚洲最大av| a级一级毛片免费在线观看| 中文精品一卡2卡3卡4更新| 日本一本二区三区精品| 最近最新中文字幕免费大全7| 丝瓜视频免费看黄片| 国内揄拍国产精品人妻在线| 精品99又大又爽又粗少妇毛片| av国产免费在线观看| 蜜桃亚洲精品一区二区三区| 91aial.com中文字幕在线观看| 麻豆av噜噜一区二区三区| 国产av在哪里看| 一级黄片播放器| 只有这里有精品99| 久久99热6这里只有精品| 国产一区二区三区av在线| 男人狂女人下面高潮的视频| 日韩欧美精品v在线| 免费看av在线观看网站| 亚洲熟女精品中文字幕| 蜜桃亚洲精品一区二区三区| 日本午夜av视频| 狠狠精品人妻久久久久久综合| av国产免费在线观看| 久久久久久久久久久丰满| 婷婷六月久久综合丁香| videos熟女内射| 国产av不卡久久| 国产在线男女| 偷拍熟女少妇极品色| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 在线a可以看的网站| 国语对白做爰xxxⅹ性视频网站| 99视频精品全部免费 在线| 2021少妇久久久久久久久久久| 精品人妻偷拍中文字幕| 婷婷色av中文字幕| 97超视频在线观看视频| 天堂av国产一区二区熟女人妻| 天美传媒精品一区二区| 精品国产露脸久久av麻豆 | 伊人久久国产一区二区| 日韩大片免费观看网站| 国产探花在线观看一区二区| 精品久久国产蜜桃| 色5月婷婷丁香| 欧美激情在线99| 美女脱内裤让男人舔精品视频| 国产人妻一区二区三区在| 国产 一区精品| videos熟女内射|