• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Profile Loss Analysis of Transonic Turbine Cascade with RANS and DDES*

    2019-01-03 07:37:22
    風機技術(shù) 2018年6期

    (Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Tsinghua University,Beijing,China)

    Abstract:With the increase of blade loading, the loss prediction model used in the design process needs refinement and improvement to meet the high-performance design.For the turbine design,most of existing profile loss models are developed for subsonic and transonic cases and their accuracy in high Mach number flow are limited.The primary research interest of this work is to study the flow mechanism of turbine cascade with high Mach number and the related profile loss.In this work,a transonic turbine cascade with strong shock wave is numerically studied with Reynolds Averaged Navier-Stokes(RANS).Also,to overcome the limitations of RANS modeling,Delayed Detached Eddy Simulation(DDES)type high-fidelity turbulence simulation is also conducted.Based on the numerical results,the primary loss sources, including the boundary layer loss, the trailing loss and the shock loss are analyzed and results from existing loss models are assessed.The results from current work may help to develop refinement profile loss model for the design of turbine cascade working in the high Mach number regime.

    Keywords:Transonic Cascade,Boundary Layer Loss,Trailing Edge Loss,Shock Wave,RANS,DDES

    1 Introduction

    Gas turbine is widely used in aviation,shipbuilding,electric power,petroleum and other industrial fields,because of its large power,light weight,small size,good mobility and so on.In order to ensure turbomachine works steadily and reliably during the long-term re-use process,and maintains high power density and efficiency.Gas turbine design needs to consider economy,safety and other comprehensive requirements.The design method of the traditional gas turbine mainly depends on experimental measurement and the empirical formula derived from a large amount of experimental data.This method has the disadvantages of long cycle,high cost and poor portability.With the continuous improvement of the turbomachine,the requirements of the turbine components are increasingly harsh.The existing experience and semi-empirical design methods can no longer meet the design requirements of these components.So the original loss models also need to be continually refined to meet the requirements of high-performance turbomachinery.Ainley and Mathieson[1]developed several performance prediction methods of loss in machine,including profile loss,secondary loss and tip leakage loss.Some of these models are still in use today.Dunham and Came[2]proposed a correction method at different Reynolds numbers to the Ainley and Mathieson methods of turbine performance prediction.Denton[3]analyzed the loss generation in two-dimensional axial turbine cascade and lack of understanding of many loss generating mechanisms.Gong,Zhu,Zhang,et al.[4]studied three types of transonic blades at different attack angles and discussed the prediction method of the blade loss.And they put forward some constructive suggestions to the existing calculation methods of the shock waves.

    With the continuous development of the gas turbine,the power density of the gas turbine is gradually increased.But its series is basically maintained constant,which leads to the increase of the enthalpy drop at each stage.That results in the transonic flow in the cascade and efficiency reduction of the gas turbine.Therefore,it is necessary to study the mechanism of loss inside transonic blades to improve the efficiency of gas turbine.Christopher[5]experimentally studied the loss of four different blades at different attack angles and outlet Mach numbers.Duan,Tan,et al.[6]simulated two types blades and analyzed the loss generation,the simulated results are in good agreement with available experiment data.

    With the rapid development of Computational Fluid Dynamics(CFD),many realistic and complicated flows can be simulated by numerical calculation,and the numerical simu-lation results are in good agreement with the experimental results.The RANS model is called Reynolds Averaged Navier-Stokes and widely used currently.The control equations are calculated by statistical average.so that the turbulent pulsations at various scales need not be calculated but only the averaged motion is calculated.Thus the space and time resolution are decreased,the computation quantity is reduced.But the main disadvantage of the RANS is that it can only provide average information about turbulence,so the accuracy of the simulation has limitation for complex flow.The DDES model is called Delayed Detached Eddy Simulation type high-fidelity turbulence simulation.DDES is proposed on the basis of Detached Eddy Simulation(DES),which adopts RANS method near the wall and LES(Large Eddy Simulation)method away from the wall.This method can obtain more flow field structure than RANS under the condition of ensuring the accuracy of calculation.However,it requires more computational resources than RANS,but less than LES.In this paper,RANS and DDES are used to simulate the transonic blade and modified loss model is proposed,which help to better understand the loss of transonic flow.

    2 Loss Models

    There are many different definitions of loss coefficient to evaluate the loss,and the stagnation pressure loss coefficient is one of them and widely used for individual blade row,which is computed from

    Where thept1is the inlet stagnation pressure,pt2andp2are the outlet stagnation pressure and static pressure at the measurement plane respectively,which is shown in Figure 4.In the turbine blade row,the entropy generation is employed as the metric to account for loss.So the most direct expression for the loss of the flow process is probably the entropy loss coefficient,for a perfect gas and adiabatic flow through a stationary blade row,which is formulated as

    Where theT2is the outlet static temperature corresponding to the flow determined from the measurement at the measurement plane.Theht2andh2are the outlet stagnation enthalpy and static enthalpy at the measurement plane.

    Kacker and Okapuu[7]defined the energy loss coefficientΔΦ2and proposed the total pressure loss coefficient

    All of these are the definitions of overall flow loss.In order to study the mechanism of loss,the loss caused by irreversible entropy is divided into three parts:boundary loss,trailing edge loss,shock wave loss,secondary loss,tip-leakage loss and annulus loss.These losses are not mutually independent but affect each other.This paper only discusses the first three losses.

    2.1 Boundary Layer Loss

    The boundary layer loss is also called profile loss,generated in the blade surface boundary layers.It is due to the viscous dissipation in the boundary layers,which depends on the flow pattern(laminar or turbulent)in the boundary layers,surface roughness and surface pressure distribution.In transonic flow,it interacts with the shock wave as the Mach number increases,studied by Bian,Lin,et al.[8].

    2.2 Boundary Loss Model

    All of the entropy generation in boundary layer can be written by Denton[3]

    Where thexis the blade surface distance,Csis the total length of the blade surface,mis the mass flow rate,u,ρ,Tare the free stream velocity,density and temperature outside the boundary layer,respectively.Cdis the dissipation coefficient.For the turbulent boundary layer,a reasonable approximation of the dissipation coefficient is 0.002,where the averageRθis in the range 500<Rθ< 1 000,referred from Denton and Cumpsty[9].For the laminar boundary layers,the dissipation coefficient supposed by Ttuckenbrodt[10]can be calculated from

    2.3 Trailing Edge Loss

    When fluid flows in the cascade,the blade suction side and the pressure side are the different structures,resulting in the different expansions on the suction side and pressure side,the corresponding pressure and velocity of fluid vary greatly.Due to the thickness of the outlet side of the blade,the two fluid flows along the blade suction side and pressure side do not converge immediately after leaving the blade.Instead,vertical swirling regions(wake regions)form behind the exit side.Two parts of the flow exchange energy and become gradually uniform at the vortex area,resulting in a certain loss of energy.

    Trailing edge loss model

    The trailing edge loss is derived as[3],

    Where the Δptis the stagnation drop from the upstream of trailing edge to the downstream of the trailing edge.ois the throat width,tis the thickness of trailing edge.δ*andθare the displacement and momentum thickness of boundary layer at upstream of trailing edge.Cpbis the base pressure coefficient,defined as

    Wherepbcalled the base pressure,is the averaged pressure acting on the base of trailing edge.pref,uTEandρare the reference parameters at the upstream of the trailing edge.

    2.4 Shock Wave Loss

    Shock wave loss is a losses of energy due to the generation of a shock in supersonic flow.When a supersonic flow occurs in the transonic cascades,the supersonic flow creates a surge in the pressure increase area,causing a significant re-duction in the stagnation pressure and velocity of the flow,which results in energy loss.The emergence of diffuser may increase the thickness of the boundary layer,and may also cause the detachment of the boundary layer,resulting in an increase of the boundary layer loss.The shock wave loss is limited in transonic cascades.

    Shock wave loss model

    In transonic turbine,high stage pressure ratio is obtained,and so shock wave is occurred.The shock wave loss can be computed by Denton[3].

    Where theγis the adiabatic exponent of gas,Cvis the specific heat capacity,Mis the upstream Mach number of the shock.

    3 Transonic Numerical Simulation

    3.1 Blade Design

    The cascade coordinates from the Christopher[5]are used in this paper to design the blade.Using the method of spline curve interpolation,the whole blade is added more points.Meanwhile,the leading edge and the trailing edge were locally added more points.Among them,there are 1239 points on the pressure side,and the suction side has 1342 points.Adding more points is to make the blade curve more smoothly,as shown in Figure 1,the main geometric parameters are shown in Table 1.

    Fig.1 Blade profile and points distribution schematic diagram

    Tab.1 The main geometry parameters for blade

    3.2 Boundary Conditions

    The inlet and outlet section are set sufficiently far away from the blade to minimize their location effects.The length of the inlet section is designed according to the position of the measuring points arranged at the inlet of the test rig.For the outlet section,due to the transonic flow,the outlet is extended to about 5 times of the chord length to fully develop the downstream flow,Schlichting,Gersten,et al.[11].The Reynolds numberRe(defined by the outlet flow quantities and chord length)and the stagnation temperatureTtremain constant,then the inlet stagnation pressure,the outlet static pressure and temperature are calculated according to the different outlet Mach numbers.However,because the downstream measuring points arranged on the test rig is 0.5 times of the chord length,since the outlet is extended,numerical iteration is continued to find the boundary conditions of the actual outlet that meet the requirements.Obtained the boundary conditions are shown in Table 2.

    The structured mesh of blade is generated by using Numeca AutoGid.And the total grid number is about 4 million,which is shown in Figure 2.The turbulence model is S-A(Spalart-Allmaras)turbulence model,andy+for the first cell adjacent to the wall is smaller than 1.The hub and shroud faces of blade are implemented as symmetric boundary conditions,and the surfaces along the height of the blades are periodic boundary conditions.The inlet boundary conditions are the stagnation temperature and pressure,the outlet condition is the static pressure.

    Tab.2 Boundary conditions at different outlet Mach numbers

    Fig.2 The mesh and boundary distribution of blade

    All numerical simulations are conducted with the well proved in-house code by Su,Yamamoto,et al.[12],Su,Sasaki,et al.[13],Lin,Yuan et al.[14],Su and Yuan[15].The in house code is based on the multi-block structured mesh,and the integral form of N-S equation is solved with the finite volume method.For the DDES computation,the model de-veloped by Spalart,Deck,et al.[16]is used.In the DDES simulation,the fifth-order high resolution is used to reduce the numerical dissipation and multigrid accelerated implicit method is adopted in the unsteady simulations.

    4 Results and Discussion

    4.1 Loss Models Analysis

    The results of numerical are calculated,the pitchwise variation of total pressure loss at different Mach number is obtained.Then the results are compared with the experimental results,which are shown in Figure 3.According to the loss models mentioned in the previous loss model section,the missed-out losses are calculated,and compared with the experimental data,as shown in Figure 4.

    Fig.3 Pitchwise variation of total pressure loss.

    Fig.4 Total pressure loss coefficients of prediction model and experimental results distribution at different outlet Mach number

    In Fig.3,the abscissa is the ratio of the blade outlet coordinate to the pitch in the direction of the cascade(y/s),wherey/s=0.5 is the trailing edge.Comparing the distribution of numerical results and experimental results at different Mach number,we can find that the results of numerical calculation are higher than the experimental results on the pressure surface away from the trailing edge,and the deviation of numerical results on the suction side is reduced.Especially for the Mach number less than 1.21,the numerical results and experimental results are basically consistent.This shows that the numerical results are reliable at low Mach numbers.From the results of numerical and experimental,it can be found that the total pressure losses distribution at pitchwise is basically symmetrical,which also shows that the losses on the suction side and the pressure side are basically the same.However,the total pressure loss on the pressure side increases more slowly than that on the suction side,aty/s≈0.3-0.65.This is because the flow separation on the suction side is more easily,and as the Mach number increases,shock absorption occurs on the suction side and the shocks interfere with the boundary layer resulting in greater losses.

    In Figure 4,the mix-out loss calculated by using the Denton defined total pressure loss coefficient and the experimental measurement values are roughly coincident with a total deviation of less than 5%,except for the Mach number of 0.92.This shows that Denton's calculation equation of the overall total pressure loss is feasible in transonic flow.However,it can be seen from the results which are calculated by Kacker and Okapuu,it is different from the experimental results.Especially,the calculated results at transonic flow are even more inconsistent with the experimental results.

    4.2 Profile Loss Analysis

    The entropy loss coefficients at different Mach number are also computed as shown in Figure 5.Combing Fig.5 and Fig.6,when the Mach number is 0.92,there is as phenomenon of local supersonic flow at the outlet of the suction,and no shock wave is generated in the cascade channel.The loss at this case is mainly due to the dissipation caused by the boundary layer and trailing edge losses.With the Mach number increased,the fluid velocity increases,the boundary layer thickness becomes thin,but the shock wave is not very strong at Mach number is 1.02 and 1.12,so the proportion of shock wave loss is not large.From the figure 6,it can be found that the Mach number from the 1.02 to 1.12,the overall entropy loss coefficient is reduced.As the Mach number continues to increase,the intensity of the shock wave gradually increases,and it can be seen that the shock position gradually moves from suction side to the trailing edge,the thick black solid line represents the shock wave in Figure 7.The area affected by the shock wave also gradually increases.Therefore,as the Mach number increases greatly,the shock wave loss is the mainly loss and the total entropy loss increases,but the magnitude of the increase is not large.It can be found from the Mach number counter plot that the interaction between the shock wave and the wake decreases gradually.Therefore,the overall increase in entropy loss is not large.

    Fig.5 Entropy loss coefficients distribution at different outlet Mach number

    Fig.6 Mach number counter distributions at different outlet Mach number

    Fig.7 Instantaneous flow structure comparison by Q criterion

    Fig.8 Instantaneous numerical schlieren comparison

    5 Comparison of RANS and DDES

    Figure 7 and Figure 8 are the instantaneous flow field of DDES and unsteady RANS(URANS),respectively.The Q-criterion was used to show the vortex structure of the flow field and globally colored with Mach number.The structures and numerical schlieren in the figures show that compared with the URANS results,the DDES method obtains a richer three dimensional vortex structure.The DDES method captures the formation,shedding,and blending of wake vortices.As can be seen from Figs.7 and 8,the wake vortex is formed by boundary layer from the suction side and pressure side falling off at the trailing edge,and grows in the process of moving downstream,accompanied by the formation of a small vortex.In the process of transporting downstream,it is mixed with the mainstream and gradually dissipated.At the same time,a positive shock wave and an expansion wave at the trailing edge appear on the suction side,and no interaction between the shock wave and the wake is observed in this case.

    6 Conclusions

    In this paper,the different loss models were discussed,the blade was simulated by RANS and DDES,and the numerical results were compared with the experimental results.At last,the loss generation in transonic turbine cascade was analyzed.The conclusions are as follows.

    1.Through the calculation results of different loss models can be found,the calculation results of the total pressure loss coefficient defined by Denton have a good agreement with the experimental data at transonic flow.However,the results calculated by Kacker and Okapuu are greatly different from experimental data.

    2.From the total pressure loss along the pitch direction,the total pressure loss coefficient is symmetrically distributed along the blade cascade,and the loss in the mainstream is very small.However,as approaching the trailing edge,the loss increases.Therefore,the method of the reducing losses is mainly to control the loss of the trail zone of the outlet section.

    3.In subsonic flow,the losses in cascade are trailing edge loss and boundary layer loss.As the Mach number increases,the boundary loss decreases,the shock wave loss appears and continues to increase until the shock wave loss as the mainly loss.In transonic flow,the shock wave position moves to the trailing edge from the suction side,and the wake interacts with the shock decreases.But the overall entropy loss increases slightly,with the Mach number increasing.

    4.The RANS method cannot capture the pressure wave formed by wake shedding.DDES finely captures the generation,development and dissipation process of the wake vortices.The DDES method has certain guiding significance for studying the mechanism of flow loss.

    亚洲国产欧洲综合997久久, | 一级毛片女人18水好多| 久久国产精品影院| 色综合亚洲欧美另类图片| 欧美日韩亚洲综合一区二区三区_| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜久久久久精精品| 成年版毛片免费区| 一区二区日韩欧美中文字幕| 午夜福利在线观看吧| 99热6这里只有精品| 久久伊人香网站| 亚洲va日本ⅴa欧美va伊人久久| 一进一出抽搐gif免费好疼| 久久中文看片网| 国产精品 国内视频| 少妇的丰满在线观看| 国产激情欧美一区二区| 999精品在线视频| 国产男靠女视频免费网站| 哪里可以看免费的av片| 免费在线观看黄色视频的| 午夜久久久久精精品| 白带黄色成豆腐渣| av欧美777| 亚洲av熟女| 国产成人欧美在线观看| 韩国av一区二区三区四区| 天天躁夜夜躁狠狠躁躁| 亚洲熟妇熟女久久| 在线观看日韩欧美| 真人做人爱边吃奶动态| 成人国产一区最新在线观看| 成在线人永久免费视频| 三级毛片av免费| 日日爽夜夜爽网站| 国产乱人伦免费视频| 亚洲国产日韩欧美精品在线观看 | 大香蕉久久成人网| 亚洲真实伦在线观看| 啦啦啦 在线观看视频| 草草在线视频免费看| 国产精品 国内视频| 老司机深夜福利视频在线观看| 在线视频色国产色| 一本久久中文字幕| 国产亚洲精品一区二区www| 黄色视频不卡| 中文字幕av电影在线播放| 久久国产精品男人的天堂亚洲| 夜夜爽天天搞| 亚洲在线自拍视频| 免费在线观看完整版高清| 在线看三级毛片| 亚洲中文字幕一区二区三区有码在线看 | 国产成人欧美| av视频在线观看入口| 精品少妇一区二区三区视频日本电影| 亚洲精华国产精华精| 午夜福利18| 黄色a级毛片大全视频| 狠狠狠狠99中文字幕| 午夜福利高清视频| 久久人妻av系列| 久久久久久大精品| 午夜免费成人在线视频| 真人做人爱边吃奶动态| 免费在线观看亚洲国产| 欧美激情久久久久久爽电影| www.www免费av| 亚洲国产精品999在线| 最近最新中文字幕大全电影3 | 丰满的人妻完整版| 欧美不卡视频在线免费观看 | 国产av不卡久久| 精品乱码久久久久久99久播| 中文字幕高清在线视频| 久久中文字幕一级| 日韩精品中文字幕看吧| 免费在线观看亚洲国产| 99久久99久久久精品蜜桃| 国产黄片美女视频| 99久久国产精品久久久| 黑丝袜美女国产一区| 伊人久久大香线蕉亚洲五| 午夜日韩欧美国产| 可以在线观看的亚洲视频| 国产av一区二区精品久久| 亚洲欧美精品综合一区二区三区| 欧美丝袜亚洲另类 | 午夜精品在线福利| 国产91精品成人一区二区三区| 亚洲五月色婷婷综合| 精品卡一卡二卡四卡免费| 成人手机av| 一区福利在线观看| 国产精品野战在线观看| 欧美成人一区二区免费高清观看 | 久久精品国产亚洲av香蕉五月| 色婷婷久久久亚洲欧美| 久久久久国内视频| 美女免费视频网站| 怎么达到女性高潮| 亚洲欧美一区二区三区黑人| 亚洲三区欧美一区| www国产在线视频色| 黄色女人牲交| 一级毛片高清免费大全| 日本免费a在线| ponron亚洲| √禁漫天堂资源中文www| 黄频高清免费视频| 欧美+亚洲+日韩+国产| 狂野欧美激情性xxxx| 黄色视频不卡| 变态另类成人亚洲欧美熟女| 夜夜夜夜夜久久久久| 免费看a级黄色片| 正在播放国产对白刺激| 制服丝袜大香蕉在线| 在线观看www视频免费| 日日摸夜夜添夜夜添小说| 国产精品亚洲av一区麻豆| 日本免费a在线| 精品免费久久久久久久清纯| 欧美zozozo另类| 日本 欧美在线| 久9热在线精品视频| 中文字幕精品亚洲无线码一区 | 婷婷丁香在线五月| 成年女人毛片免费观看观看9| 法律面前人人平等表现在哪些方面| 久久人妻av系列| 国产精品野战在线观看| 中文资源天堂在线| 老熟妇乱子伦视频在线观看| 国产99白浆流出| 精品电影一区二区在线| 麻豆成人av在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲精华国产精华精| 一本一本综合久久| av福利片在线| 在线看三级毛片| √禁漫天堂资源中文www| 国产又黄又爽又无遮挡在线| 亚洲 欧美一区二区三区| 国产伦一二天堂av在线观看| 亚洲一区中文字幕在线| 久久精品91蜜桃| 亚洲av成人不卡在线观看播放网| 国产成年人精品一区二区| 嫩草影院精品99| 两个人视频免费观看高清| 亚洲五月婷婷丁香| 精品熟女少妇八av免费久了| 成年女人毛片免费观看观看9| 成人18禁高潮啪啪吃奶动态图| 一级毛片精品| 黑人操中国人逼视频| 欧美不卡视频在线免费观看 | 久久久久免费精品人妻一区二区 | 国产成人系列免费观看| 亚洲国产精品999在线| avwww免费| 一进一出好大好爽视频| 哪里可以看免费的av片| 性色av乱码一区二区三区2| 亚洲精华国产精华精| 久久性视频一级片| 一进一出抽搐动态| 非洲黑人性xxxx精品又粗又长| 老司机午夜十八禁免费视频| 可以免费在线观看a视频的电影网站| 国产亚洲欧美精品永久| 我的亚洲天堂| 女人爽到高潮嗷嗷叫在线视频| 国产乱人伦免费视频| 妹子高潮喷水视频| 久久精品人妻少妇| 日韩欧美一区二区三区在线观看| 深夜精品福利| 美女高潮到喷水免费观看| 国产伦人伦偷精品视频| 亚洲五月天丁香| 日韩大码丰满熟妇| 麻豆国产av国片精品| 无人区码免费观看不卡| 成人国语在线视频| 伦理电影免费视频| 精品国产乱子伦一区二区三区| 欧美绝顶高潮抽搐喷水| 动漫黄色视频在线观看| 日韩免费av在线播放| 国产主播在线观看一区二区| 一个人免费在线观看的高清视频| 麻豆av在线久日| 国产极品粉嫩免费观看在线| 校园春色视频在线观看| 看免费av毛片| 免费在线观看视频国产中文字幕亚洲| 人人妻,人人澡人人爽秒播| 90打野战视频偷拍视频| 99久久精品国产亚洲精品| 一级毛片高清免费大全| 此物有八面人人有两片| 色综合站精品国产| 在线av久久热| 精品无人区乱码1区二区| 国产亚洲欧美精品永久| 久热爱精品视频在线9| 国产一级毛片七仙女欲春2 | 久久久久久亚洲精品国产蜜桃av| 精品国产国语对白av| 麻豆久久精品国产亚洲av| 久久精品国产清高在天天线| 欧美成人性av电影在线观看| 亚洲人成电影免费在线| 欧美日韩一级在线毛片| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看 | 天堂动漫精品| 精品熟女少妇八av免费久了| 无限看片的www在线观看| 男女做爰动态图高潮gif福利片| 十八禁人妻一区二区| 成人精品一区二区免费| 搡老岳熟女国产| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 久久久久久免费高清国产稀缺| 欧美激情 高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 91九色精品人成在线观看| 中文字幕人成人乱码亚洲影| www.www免费av| 91在线观看av| 男人舔女人下体高潮全视频| 欧美成狂野欧美在线观看| 好看av亚洲va欧美ⅴa在| 亚洲美女黄片视频| 黑丝袜美女国产一区| www.精华液| 欧美日韩黄片免| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成伊人成综合网2020| 国产激情欧美一区二区| 91字幕亚洲| 一个人免费在线观看的高清视频| 婷婷丁香在线五月| 久热爱精品视频在线9| av电影中文网址| ponron亚洲| 极品教师在线免费播放| 国产区一区二久久| 日本在线视频免费播放| 欧美精品啪啪一区二区三区| 亚洲国产精品sss在线观看| 中文字幕人成人乱码亚洲影| 国产精品自产拍在线观看55亚洲| 桃红色精品国产亚洲av| 啦啦啦观看免费观看视频高清| 国产99白浆流出| 99在线人妻在线中文字幕| 精品久久久久久久末码| 色综合欧美亚洲国产小说| 国产亚洲精品综合一区在线观看 | 热re99久久国产66热| 一本综合久久免费| 人人妻,人人澡人人爽秒播| 久久久精品欧美日韩精品| av片东京热男人的天堂| 色综合婷婷激情| 一级黄色大片毛片| 一进一出好大好爽视频| 免费看美女性在线毛片视频| 99久久国产精品久久久| 国产人伦9x9x在线观看| 一本综合久久免费| 在线视频色国产色| 黄频高清免费视频| 首页视频小说图片口味搜索| 精品国产乱子伦一区二区三区| 欧美绝顶高潮抽搐喷水| 在线观看www视频免费| 日本精品一区二区三区蜜桃| 一级片免费观看大全| 欧美成人免费av一区二区三区| 一区二区三区国产精品乱码| 熟女电影av网| 亚洲精品色激情综合| 亚洲精品中文字幕一二三四区| 欧美成狂野欧美在线观看| 99久久综合精品五月天人人| 两性午夜刺激爽爽歪歪视频在线观看 | 桃色一区二区三区在线观看| 熟女电影av网| 亚洲av日韩精品久久久久久密| 欧美色欧美亚洲另类二区| 久久精品国产综合久久久| 男女午夜视频在线观看| 免费看美女性在线毛片视频| 高清在线国产一区| 一边摸一边做爽爽视频免费| 久热这里只有精品99| 少妇裸体淫交视频免费看高清 | 亚洲熟妇熟女久久| 18禁裸乳无遮挡免费网站照片 | 亚洲午夜理论影院| 男人舔女人的私密视频| 国产一区二区在线av高清观看| 十八禁人妻一区二区| 亚洲男人的天堂狠狠| 久久久久久九九精品二区国产 | 久久精品成人免费网站| 午夜久久久在线观看| 亚洲自偷自拍图片 自拍| 午夜福利一区二区在线看| 在线观看午夜福利视频| 窝窝影院91人妻| av天堂在线播放| 免费搜索国产男女视频| 午夜福利成人在线免费观看| 日韩欧美 国产精品| 久久香蕉国产精品| 免费在线观看亚洲国产| 精品久久久久久久久久久久久 | 免费人成视频x8x8入口观看| 久久久精品国产亚洲av高清涩受| 变态另类成人亚洲欧美熟女| 国产精品爽爽va在线观看网站 | 韩国av一区二区三区四区| 亚洲精品一区av在线观看| 午夜亚洲福利在线播放| 老司机福利观看| 国产一级毛片七仙女欲春2 | 人人妻人人看人人澡| 国产蜜桃级精品一区二区三区| 大型av网站在线播放| 日本一本二区三区精品| 日韩中文字幕欧美一区二区| 天堂动漫精品| 国产成人影院久久av| 日本在线视频免费播放| 国产精品98久久久久久宅男小说| 亚洲第一av免费看| 69av精品久久久久久| 真人做人爱边吃奶动态| 美女免费视频网站| 成年人黄色毛片网站| 欧美 亚洲 国产 日韩一| 波多野结衣av一区二区av| 18禁裸乳无遮挡免费网站照片 | 国产不卡一卡二| 久久午夜亚洲精品久久| 精品第一国产精品| 国语自产精品视频在线第100页| 亚洲自拍偷在线| 国产午夜精品久久久久久| 18美女黄网站色大片免费观看| 日韩欧美在线二视频| 亚洲三区欧美一区| 99精品欧美一区二区三区四区| 很黄的视频免费| 日本熟妇午夜| 国产高清激情床上av| 99久久国产精品久久久| 美国免费a级毛片| 免费看a级黄色片| 色播亚洲综合网| 亚洲欧美日韩高清在线视频| 亚洲精品在线观看二区| 亚洲中文字幕一区二区三区有码在线看 | 日韩有码中文字幕| 亚洲中文日韩欧美视频| 日韩欧美国产一区二区入口| 极品教师在线免费播放| 免费看日本二区| 白带黄色成豆腐渣| 丁香欧美五月| 一边摸一边抽搐一进一小说| 午夜免费鲁丝| 日本免费一区二区三区高清不卡| 俄罗斯特黄特色一大片| 国内精品久久久久久久电影| 精品久久久久久久人妻蜜臀av| 波多野结衣av一区二区av| 国产精品日韩av在线免费观看| 免费看十八禁软件| 国产片内射在线| 日本熟妇午夜| 国产精品久久久av美女十八| 日本免费a在线| 成人三级做爰电影| 久久久久免费精品人妻一区二区 | 琪琪午夜伦伦电影理论片6080| 90打野战视频偷拍视频| 中国美女看黄片| 我的亚洲天堂| 国产精品影院久久| 淫秽高清视频在线观看| 夜夜夜夜夜久久久久| 成人一区二区视频在线观看| 又紧又爽又黄一区二区| 国产精品久久久av美女十八| 国产精品一区二区三区四区久久 | 在线观看免费午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| 中文在线观看免费www的网站 | 一本综合久久免费| 久久香蕉精品热| 亚洲片人在线观看| 亚洲欧美一区二区三区黑人| 欧美中文综合在线视频| 日韩成人在线观看一区二区三区| 成人手机av| 一级黄色大片毛片| 日日干狠狠操夜夜爽| 精品高清国产在线一区| 日韩欧美一区视频在线观看| 国产区一区二久久| 大型黄色视频在线免费观看| 久9热在线精品视频| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说| 无限看片的www在线观看| 国产亚洲欧美在线一区二区| 久久人妻av系列| 精华霜和精华液先用哪个| 午夜精品在线福利| 亚洲色图av天堂| 高潮久久久久久久久久久不卡| 精品电影一区二区在线| 丝袜美腿诱惑在线| 成人国语在线视频| 熟女电影av网| 免费在线观看完整版高清| 亚洲国产精品久久男人天堂| 天天躁夜夜躁狠狠躁躁| 午夜亚洲福利在线播放| √禁漫天堂资源中文www| 国产一区二区三区视频了| 一二三四社区在线视频社区8| 一本久久中文字幕| 中文字幕av电影在线播放| 亚洲真实伦在线观看| 大型av网站在线播放| 黑人欧美特级aaaaaa片| 身体一侧抽搐| 欧美黄色片欧美黄色片| 青草久久国产| 欧美日韩精品网址| 99热只有精品国产| 亚洲成人久久爱视频| 国产伦一二天堂av在线观看| 精华霜和精华液先用哪个| 亚洲人成电影免费在线| 婷婷精品国产亚洲av| 日韩欧美一区视频在线观看| 亚洲自拍偷在线| 欧美激情极品国产一区二区三区| bbb黄色大片| 曰老女人黄片| 亚洲久久久国产精品| 精品久久蜜臀av无| 久久久久久免费高清国产稀缺| 欧美日韩乱码在线| 欧美大码av| 天天躁狠狠躁夜夜躁狠狠躁| 久久九九热精品免费| 日本熟妇午夜| 国产午夜精品久久久久久| 国产精品永久免费网站| 亚洲成人久久性| 成在线人永久免费视频| www.精华液| 天天躁夜夜躁狠狠躁躁| 欧美成狂野欧美在线观看| 亚洲精品在线美女| 制服丝袜大香蕉在线| 欧美中文日本在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 丁香欧美五月| 亚洲欧美精品综合久久99| 久久久久久人人人人人| 国产欧美日韩一区二区精品| 欧美一区二区精品小视频在线| 久久九九热精品免费| 午夜两性在线视频| 母亲3免费完整高清在线观看| 久久久久免费精品人妻一区二区 | 麻豆国产av国片精品| 999精品在线视频| 高清毛片免费观看视频网站| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类 | 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av在线| 操出白浆在线播放| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 久久精品91蜜桃| 青草久久国产| 老汉色∧v一级毛片| 青草久久国产| 精品一区二区三区视频在线观看免费| 午夜福利在线观看吧| 久热爱精品视频在线9| 中亚洲国语对白在线视频| 手机成人av网站| 亚洲aⅴ乱码一区二区在线播放 | 欧美激情久久久久久爽电影| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 深夜精品福利| 怎么达到女性高潮| 99精品欧美一区二区三区四区| 久久国产亚洲av麻豆专区| 久久久久久久精品吃奶| 成人特级黄色片久久久久久久| 国产日本99.免费观看| 丰满的人妻完整版| 精品国产国语对白av| 1024视频免费在线观看| 99国产极品粉嫩在线观看| 国产片内射在线| 亚洲人成77777在线视频| 一级黄色大片毛片| 欧美色欧美亚洲另类二区| 久久天堂一区二区三区四区| 在线观看舔阴道视频| 中亚洲国语对白在线视频| 97碰自拍视频| 国产人伦9x9x在线观看| 极品教师在线免费播放| 国产亚洲av高清不卡| 在线看三级毛片| 18禁国产床啪视频网站| 国产伦在线观看视频一区| 国产成人影院久久av| 午夜影院日韩av| 亚洲人成网站高清观看| 18禁美女被吸乳视频| 久久婷婷成人综合色麻豆| 色综合欧美亚洲国产小说| 啦啦啦 在线观看视频| 少妇熟女aⅴ在线视频| 久久香蕉激情| 久久精品aⅴ一区二区三区四区| 国产精品电影一区二区三区| 夜夜爽天天搞| 欧美又色又爽又黄视频| 级片在线观看| 精品国产乱码久久久久久男人| 精品国产超薄肉色丝袜足j| 精品久久蜜臀av无| 啦啦啦 在线观看视频| 午夜激情av网站| 非洲黑人性xxxx精品又粗又长| 国产欧美日韩一区二区三| 身体一侧抽搐| 亚洲avbb在线观看| 欧美激情极品国产一区二区三区| 欧美精品亚洲一区二区| 日韩一卡2卡3卡4卡2021年| 亚洲第一青青草原| 欧美性长视频在线观看| 免费在线观看黄色视频的| 国内揄拍国产精品人妻在线 | 国产私拍福利视频在线观看| 欧美乱色亚洲激情| 两性夫妻黄色片| 国产又色又爽无遮挡免费看| 波多野结衣巨乳人妻| 亚洲精品久久国产高清桃花| 久久国产乱子伦精品免费另类| 精品国产乱子伦一区二区三区| 人成视频在线观看免费观看| 国产精品影院久久| 亚洲人成网站高清观看| 99国产精品一区二区蜜桃av| 欧美亚洲日本最大视频资源| 午夜久久久在线观看| 成在线人永久免费视频| 亚洲中文字幕一区二区三区有码在线看 | 女性生殖器流出的白浆| 黑人巨大精品欧美一区二区mp4| 首页视频小说图片口味搜索| 19禁男女啪啪无遮挡网站| 手机成人av网站| 国产日本99.免费观看| www.999成人在线观看| 午夜激情av网站| 亚洲免费av在线视频| 香蕉av资源在线| 男男h啪啪无遮挡| 免费女性裸体啪啪无遮挡网站| 亚洲欧美精品综合一区二区三区| 日本 欧美在线| 久久国产精品影院| 欧美成狂野欧美在线观看| 午夜福利高清视频| 91麻豆av在线| 国产私拍福利视频在线观看| 国产精品野战在线观看| 午夜亚洲福利在线播放| 久久国产精品影院| 操出白浆在线播放| 美女免费视频网站| 中文在线观看免费www的网站 | 国内毛片毛片毛片毛片毛片| 一级a爱视频在线免费观看| 99精品久久久久人妻精品| 波多野结衣av一区二区av|