• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanofibers with MoS2 nanosheets encapsulated in carbon as a binder-free anode for superior lithium storage

    2018-12-29 07:53:34ZHANGXiuDENGYakaiWANGYanliZHANLiangYANGShubinSONGYan
    新型炭材料 2018年6期

    ZHANG Xiu, DENG Ya-kai, WANG Yan-li, ZHAN Liang, YANG Shu-bin, SONG Yan

    (1. State Key Laboratory of Chemical Engineering,Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology,Shanghai200237,China; 2. Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing100191, China;3. CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan030001, China)

    Abstract: One-dimensional MoS2/carbon nanofibers (MoS2/CNFs) were synthesized by electrospinning using exfoliated MoS2 nanosheets and polyacrylonitrile as the precursors. The exfoliated MoS2 nanosheets about 150 nm across were encapsulated in carbon, and the free-standing MoS2/CNF film was easily cut into a flexible tablet that could be directly used as a binder-free anode for lithium storage. The MoS2/CNFs showed a high reversible capacity of 700 mAh g-1 at 100 mA g-1 after 50 cycles, a high rate capacity of 450 mAh g-1 at 1000 mA g-1 after 200 cycles and good cycling stability.

    Key words: MoS2; Carbon nanofibers; Electrospinning; Anode material

    1 Introduction

    Lithium ion batteries (LIBs) have been regarded as one of the most important rechargeable energy storage devices with broad applications in hybrid and electric vehicles owing to their high potentials and environmental friendliness[1-3]. The reversible capacities of commercial graphite-based anode materials cannot satisfy the increasing requirements for high-performance LIBs due to the low theoretical capacity of graphite (372 mAh g-1)[4]. Therefore, many endeavours have been concentrated on exploring novel anode materials, such as transition metal oxides[5], molybdenum disulfide (MoS2)[6], stannum (Sn)[7]and silicon (Si)[8]. Among these novel anode candidates, MoS2has been recognized as one of the most promising and attractive one for LIBs, owing to its high theoretical capacity (670 mAh g-1), relatively low discharge potential, low-cost, safety and environment-friendly[9-11]. However, bulk MoS2suffers from a low electrical conductivity and a high volume expansion during cycling, leading to a poor electrochemical performance[10]. To overcome these shortcomings, researchers focus on fabricating single-layer or few layered MoS2by chemical vapor deposition[11,12], chemical exfoliation[13]and mechanical exfoliation[14,15]. Beside the extremely low yield, the single-layer MoS2or MoS2nanosheets are easy to restack, leading to the structural instability during cycling, as a result, an obvious volume expansion and rapid capacity fading will occur[16]. Thus, researchers further focus their attentions on combining nanostructured MoS2with carbonaceous materials (such as carbon nanotubes[17], graphene[18,19]and conductive polymers[20]) to resolve the low electrical conductivity, huge volume change and restacking problem. However, how to develop a simple and efficient approach to fabricate MoS2/carbon nanostructures is still a big challenge.

    Herein, we develop an efficient approach to fabricate one-dimensional MoS2/carbon nanofibers (denoted as 1D MoS2/CNFs) by electrospinning. Exfoliated MoS2nanosheets with small lateral sizes were encapsulated in carbon to form nanofibers. The distinctive structure of 1D MoS2/CNFs can improve the electrical conductivity of pure MoS2nanosheets, but also can prevent the restacking of nanosheets. Importantly, the free-standing MoS2/CNF film is flexible and easily cut into tablets that are directly used as anode of LIBs without need of a binder. The unique structures offer the resultant 1D MoS2/CNFs excellent electrochemical performance. For instance, the resultant 1D MoS2/CNFs have a high capacity of 700 mAh g-1at 100 mA g-1after 50 cycles and good high-rate performance (450 mAh g-1at 1 000 mA g-1after 200 cycles). We believe that this efficient method can be further extended to fabricate other active nanomaterials encapsulated in carbon nanofibers or carbon nanotubes for broad applications in batteries, supercapacitors and catalysts.

    2 Experimental

    2.1 Materials and preparation

    MoS2nanosheets were initially fabricated by a modified sheer exfoliation method as literature reported[21]. 90 mg exfoliated MoS2nanosheets were dispersed in 10 mL N,N-Dimethylformamide (DMF) by ultrasonication, then 60 mg polyacrylonitrile (PAN) were dissolved in the solution by stirring at 40 ℃ for 12 h. Subsequently, above mixture solution was poured into a syringe for electrospinning. Detailly, the diameter of the needle, the distance between needle and collector, the working voltage and the flow rate of the solution are 0.34 mm, 15 cm, 10 kV and 0.5 mL/h, respectively. Finally, the resultant 1D MoS2/PAN nanofibers were oxidized at 280 ℃ in air for 2 h and then carbonized at 850 ℃ for 3 h under Ar atmosphere to obtain the 1D MoS2/C nanofibers.

    2.2 Characterization

    The morphologies of the samples were characterized by scanning electron microscopy (SEM, Zeiss MERLIN Compact) and transmission electron microscopy (TEM, JEOL 2100F). The structure and composition were characterized by X-ray diffraction (XRD, Rigaku D/MAX2500), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Escalab 250Xi) and TGA (STA449 Jupiter, NETZSCH) measurements. The nitrogen adsorption test was performed on a Quantachrome QDS-MP-30 analyzer (USA) at 77 K.

    2.3 Electrochemical measurement

    Electrochemical experiments were performed using standard CR2031 type coin cells assembled in the glovebox. After the MoS2/CNFs were cut into flexible tablet that was directly used as the anode electrode. The exfoliated MoS2and bulk MoS2electrodes were fabricated by mixing the active material with acetylene black and poly(vinyl difluoride) (PVDF) at a weight ratio of 8∶1∶1 for comparison. In the process of fabrication of LIBs, pure lithium foil were used as the counter electrode, propene polymer (PP) membrane as the separator and 1 mol/L LiPF6in ethylene carbonate as the electrolyte. The galvanostatic discharge/charge behavior of coin cells was tested on a battery testing system (Land CT2001A) at the voltage of 0.01-3 V. Both cyclic voltammetry (CV) and electrochemical impedance spectrometry (EIS) tests were performed on an Autolab equipment (PGSTAT302N).

    3 Results and discussion

    Fig. 1 illustrates schematically the synthetic procedure of the MoS2/CNFs. Bulk MoS2were added to the deionized water and isopropylamine (IPA) solvent with a volume ratio of 1∶1, and exfoliated by an emulsification machine at 10 000 r/min. Subsequently, the exfoliated MoS2nanosheets were treated through freeze-drying, and then dispersed in the PAN/DMF solution. After the free-standing 1 D MoS2/PAN based nanofibers were achieved by electrospinning, they were oxidized at 280 ℃ for 2 h and then carbonized at 850 ℃ for 3 h under Ar atmosphere, resulting in the 1D MoS2/CNFs.

    Fig. 1 Schematic illustration of the fabrication of 1D MoS2/CNFs.

    The MoS2nanosheets are achieved by solvent exfoliation with a lateral size of about 150 nm (Fig. 2a), and the exfoliated MoS2nanosheets are dispersed well in the DMF solvent even after ten days. The exfoliated MoS2exhibits an interplanar space of 0.63 nm corresponding to (002) plane (Fig. 2b). Subsequently, 1D MoS2/CNFs were also successfully fabricated by the electrospinning method. As shown in Fig. 3a, a large amount of interlaced 1D MoS2/CNFs are observed, and the nanofibers are uniform dispersed and have a diameter of about 180 nm. The surface of resultant MoS2/CNFs is quite smooth, and no bulk MoS2or restacked MoS2nanosheets are detected among the nanofibers (Fig. 3b), illustrating that all the exfoliated MoS2nanosheets are encapsulated in the carbon matrix due to their small sizes and good affinity with PAN molecules. The TEM image in Fig. 3c also shows that the nanofibers have uniform diameter of about 180 nm, agreeing well with the results observed in the SEM images (Fig. 3a and 3b). Additionally, two-dimensional MoS2nanosheets can be detected and are well encapsulates in the carbon matrix (Fig. 3d). After carbonization, the PAN molecules have transformed into amorphous carbon (Fig. 3e), and the typical lattice fringes with an interplanar spacing of 0.63 nm are observed among the amorphous carbon (Fig. 3f), indexed to be the (002) facets of MoS2[20], which has the same characteristics as the exfoliated MoS2nanosheets (Fig. 2b). Fig. 2g-j show a typical scanning transmission electron microscopy (STEM) bright field image and elemental mapping analysis of the 1D MoS2/CNFs, where carbon, molybdenum and sulfur species are all distributed in this area. Importantly, the free-standing 1D MoS2/CNFs can be easily cut into flexible tablet and directly used as the binder-free anode for LIBs (inserted in Fig. 3a).

    Fig. 2 (a) SEM and (b) HRTEM images of exfoliated MoS2 nanosheets. Exfoliated MoS2 nanosheets dispersed in DMF solvent after ten days is inserted in (a).

    To further explore the chemical composition of the 1D MoS2/CNFs, XRD measurement was performed. As shown in Fig. 4a, there are several strong peaks at 14.2°, 32.6° and 39.6°, corresponding to the (002), (100), (103) planes of MoS2, respectively[22]. It should be noted that the peak of the MoS2/CNFs at 14.2° is much weaker than that of bulk MoS2, suggesting that the bulk MoS2has been successfully exfoliated into two-dimensional nanosheets. There is a broad and weak peak at about 25°,which refers to the typical diffraction peak of amorphous carbon[13]. There are no impurities detected by XRD analysis, demonstrating the high crystallinity and phase purity of the resultant 1D MoS2/CNFs. The type-IV hysteresis loop of the isotherms with pronounced adsorptions was obtained at relative pressuresp/p0from 0 to 1 (Fig. 4b). The specific surface area of the 1D MoS2/CNFs is 23.94 m2g-1. Interestingly, the pore size distribution indicates that there exists micropores and mesopores in the MoS2/CNFs (Fig. 4c), which should be related to the layered and restacked MoS2nanosheets as well as the interlaced structure of carbon. Thermogravimetric analysis was also performed to confirm the content of MoS2in the nanofibers (Fig. 4d). The weight loss occurs before 100 ℃, attributing to the evaporation of physically adsorbed water. The main weight loss occurs in the range of 300-500 ℃ because of the consumption of carbon and the oxidation of MoS2to MoO3in air. According to the final yield of MoO3, the content of MoS2encapsulated in the CNFs is more than 27.6%.

    Fig. 3 (a, b) SEM, (c, d) TEM and (e, f) HRTEM images of synthesized 1D MoS2/CNFs. (g) STEM image of the 1D MoS2/CNFs and its corresponding (h) C, (i) Mo and (j) S elemental mapping. The MoS2/CNF film shows a good flexibility as inserted in (a).

    The elemental contents of 1D MoS2/CNFs were elucidated by XPS measurement. Based on the XPS survey, it is distinct that carbon, molybdenum, sulfide and oxygen species are assumed in the MoS2/CNFs (Fig. 5a). The fitted C 1s peaks are demonstrated in Fig. 5b, the peaks located at 284.5, 285.5 and 287 eV are related to C—C, C—O and C—C bonds of amorphous carbon, respectively[23]. The high-resolution Mo 3d spectrum can be fitted to three types at the binding energies of 236.7, 233.4 and 230 eV, corresponding to the Mo6+, Mo 3d3/2and Mo 3d5/2peaks (Fig. 5c), respectively. The Mo 3d3/2and Mo 3d5/2peaks represent to the Mo4+in MoS2. The Mo6+is attributed to the existence of MoO3which is caused by the unavoidable surface oxidation of MoS2in carbonization. The high-resolution S 2p spectrum can be fitted to two types at 164 and 162.7 eV, corresponding to the S 2p1/2and S 2p3/2peaks, respectively, representive of the S2-in MoS2[18]. The O 1s peaks observed in the spectrum are mainly caused by the oxygen in the testing environment.

    Fig. 4 (a) XRD patterns of the resultant MoS2/CNFs and bulk MoS2 samples. (b)Nitrogen adsorption/desorption isotherms of the MoS2/CNFs. (c) Pore size distribution of the MoS2/CNFs. (d) TG curve of the MoS2/CNFs.

    Fig. 5 (a) XPS spectrum of the 1D MoS2/CNFs. High-resolution XPS spectra of (b) C 1s, (c) Mo 3d and (d ) S 2p.

    Fig. 6 Electrochemical performance of 1D MoS2/CNFs for LIBs. Charge-discharge curves of (a) the 1D MoS2/CNFs and (b) bulk MoS2at a current density of 100 mA g-1. (c) Cycling performance of bulk MoS2 and the MoS2/CNFs at a current density of 100 mA g-1. (d) High-rate performances of bulk MoS2 and the MoS2/CNFs at various current densities of 50, 100, 200, 500 and 1 000 mA g-1. (e) Cycling performance of the MoS2/CNFs at a current density of 1 000 mA g-1. (f) Nyquist plots of bulk MoS2 and the MoS2/CNFs after rate-cycling with an amplitude of 5 mV.

    The electrochemical performance of the 1D MoS2/CNFs was primary tested by galvanostatic charge-discharge measurement at a current density of 100 mA g-1. As shown in Fig. 6a, two obvious potential plateaus during the first discharge are visible for the MoS2/CNF electrode. The plateau at ~1.1 V is caused by the intercalation of Li+into MoS2to form LixMoS2which brings up the phase changing of MoS2from trigonal prismatic to octahedral. Another plateau at ~0.5 V is related to the conversion reaction of LixMoS2to Mo and Li2S[24]. Although the specific surface area of the 1D MoS2/CNFs is only 23.94 m2g-1, the initial discharge and charge capacities of the MoS2/CNF electrode are 1 155 and 799 mAh g-1at 100 mA g-1, respectively. Because the lithium storage in the 1D MoS2/CNFs obeys the insertion/extraction Li+storage mechanism. The Coulombic efficiency is 69.2%, and the irreversible capacity loss is mainly attributed to the formation of solid electrolyte interphase (SEI) film[25]. The reversible capacity of the MoS2/CNFs remains stable at 700 mAh g-1at 100 mA g-1after 50 cycles (Fig. 6a), which is much higher than that of bulk MoS2(360 mAh g-1, Fig. 6b). Fig. 6c indicates that the MoS2/CNFs also show better cycling performance than bulk MoS2. Importantly, the 1D MoS2/CNF sample exhibits distinguished high-rate capabilities at different current densities from 50 to 1 000 mA g-1(Fig. 6d). The reversible capabilities of the MoS2/CNF sample is up to 530 and 450 mAh g-1at 500 and 1 000 mA g-1, respectively, which are significantly higher than the bulk MoS2(164 mAh g-1at 1 000 mA g-1). And when the current rate is again reduced back to 50 mA g-1, the reversible capacity can be recovered and maintains at 769 mAh g-1. In addition, the MoS2/CNF sample keeps no attenuation at 1 000 mA g-1after 200 cycles (Fig. 6e), indicating the excellent cycle performance.

    To explore the reasons of the excellent electrochemical performance of the MoS2/CNF sample, the EIS measurement was employed after rate cycles (Fig. 6f) and the equivalent circuit diagram of AC impedance is shown in Fig. 7.

    Fig. 7 The equivalent circuit diagram of AC impedance for the MoS2/CNF and bulk MoS2 samples.

    The two plots both contain two semicircles which locates at high and medium frequencies region and a straight line locates at low frequencies region. After data fitting, the solid electrolyte interface resistance (Rf, 4.07Ω) and charge transfer resistance (Rct,33.65Ω) of the MoS2/CNFs are obtained, which are much lower than those of bulk MoS2(Rf,16.24Ω;Rct, 228.3Ω). The fast diffusion of electron and high electrochemical activity for lithium storage in the MoS2/CNFs are clearly demonstrated by these results. The MoS2nanosheets homogenously encapsulated in the carbon matrix provide more active sites for lithium ions. The one-dimensional and small diameter microstructures of CNFs provide a short pathway for Li+transportation. And the intertwined carbon nanostructure forms a well conductive network, which also plays an important role as a buffering effect to effectively decrease the volume expansion during charge-discharge cycling[26].

    4 Conclusions

    We have developed an efficient approach to fabricate 1D MoS2/CNFs by the electrospinning method. The free-standing MoS2/CNF film can be easily cut into flexible tablet and directly used as binder-free anode for lithium storage. The unique structures offer the 1D MoS2/CNFs a high gravimetric capacity (700 mAh g-1at 100 mA g-1) and good high-rate performance (450 mAh g-1at 1 000 mA g-1) along with a stable cycle property. We believe that this simple and efficient method can be further extended to fabricate various active anode materials (such as transition metal oxides, Sn and Si) encapsulated in carbon for broad applications in batteries, supercapacitors and catalysts.

    国产精品久久久久久精品电影小说| 亚洲欧美清纯卡通| 91精品国产九色| 考比视频在线观看| 天天操日日干夜夜撸| 97在线视频观看| 丝袜美足系列| 三上悠亚av全集在线观看| 一区二区日韩欧美中文字幕 | videos熟女内射| 成年人免费黄色播放视频| 男女啪啪激烈高潮av片| 久久久国产一区二区| 一级毛片我不卡| 另类精品久久| 欧美+日韩+精品| 男女啪啪激烈高潮av片| 日韩强制内射视频| 一区二区三区激情视频| 深夜精品福利| 一区在线观看完整版| 国产精品欧美亚洲77777| 一本大道久久a久久精品| 大型黄色视频在线免费观看| 亚洲人成77777在线视频| 亚洲人成电影免费在线| 精品少妇久久久久久888优播| 日韩一区二区三区影片| 人人妻人人爽人人添夜夜欢视频| 免费人妻精品一区二区三区视频| 黄色a级毛片大全视频| 在线观看免费视频日本深夜| 亚洲久久久国产精品| 桃红色精品国产亚洲av| 免费在线观看日本一区| 91字幕亚洲| 欧美激情极品国产一区二区三区| 午夜老司机福利片| 丝袜美足系列| 国产野战对白在线观看| 国产亚洲精品久久久久5区| 大香蕉久久成人网| 最新在线观看一区二区三区| 少妇的丰满在线观看| bbb黄色大片| 中文字幕人妻熟女乱码| 在线av久久热| av网站在线播放免费| 50天的宝宝边吃奶边哭怎么回事| 99精品在免费线老司机午夜| 中文字幕av电影在线播放| 97人妻天天添夜夜摸| 建设人人有责人人尽责人人享有的| 狠狠精品人妻久久久久久综合| 国产亚洲精品第一综合不卡| 欧美老熟妇乱子伦牲交| 国产一区二区激情短视频| 欧美精品一区二区大全| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| kizo精华| 69精品国产乱码久久久| 99久久99久久久精品蜜桃| 丝瓜视频免费看黄片| 国产精品.久久久| 无人区码免费观看不卡 | 国产免费福利视频在线观看| 欧美国产精品一级二级三级| 不卡一级毛片| 久久国产精品大桥未久av| 亚洲人成伊人成综合网2020| 色老头精品视频在线观看| 男女无遮挡免费网站观看| 夜夜爽天天搞| 欧美久久黑人一区二区| 在线亚洲精品国产二区图片欧美| 丝袜美腿诱惑在线| 国产亚洲午夜精品一区二区久久| 精品一区二区三区视频在线观看免费 | 大陆偷拍与自拍| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品一区二区www | 亚洲国产欧美一区二区综合| 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 他把我摸到了高潮在线观看 | av天堂在线播放| 极品教师在线免费播放| 一级毛片电影观看| 久久久久久免费高清国产稀缺| 日本精品一区二区三区蜜桃| 免费不卡黄色视频| 国产成人av激情在线播放| 脱女人内裤的视频| 久9热在线精品视频| 天天操日日干夜夜撸| 国产精品美女特级片免费视频播放器 | 十八禁高潮呻吟视频| 一二三四社区在线视频社区8| 69av精品久久久久久 | 久久国产亚洲av麻豆专区| 97人妻天天添夜夜摸| 人人妻,人人澡人人爽秒播| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区二区三区在线| 黄色片一级片一级黄色片| 久久ye,这里只有精品| 久久精品亚洲精品国产色婷小说| 12—13女人毛片做爰片一| 少妇被粗大的猛进出69影院| 老司机影院毛片| 波多野结衣一区麻豆| 免费av中文字幕在线| 我要看黄色一级片免费的| 三上悠亚av全集在线观看| 欧美黑人精品巨大| 中文字幕人妻丝袜制服| 99精品久久久久人妻精品| 久久久精品94久久精品| 久久国产亚洲av麻豆专区| 欧美日韩成人在线一区二区| 极品人妻少妇av视频| 性少妇av在线| www.精华液| 色视频在线一区二区三区| 久久精品国产综合久久久| 不卡一级毛片| av在线播放免费不卡| 亚洲av日韩精品久久久久久密| 99国产精品一区二区蜜桃av | 午夜激情久久久久久久| 国产精品电影一区二区三区 | 女人被躁到高潮嗷嗷叫费观| 午夜福利一区二区在线看| 69av精品久久久久久 | 热99久久久久精品小说推荐| 久久精品人人爽人人爽视色| 久久久国产一区二区| 女同久久另类99精品国产91| 黑丝袜美女国产一区| 欧美另类亚洲清纯唯美| 动漫黄色视频在线观看| 国产免费现黄频在线看| 在线播放国产精品三级| 黄色 视频免费看| 叶爱在线成人免费视频播放| 91老司机精品| 搡老岳熟女国产| 亚洲一区二区三区欧美精品| 久久 成人 亚洲| 日韩成人在线观看一区二区三区| 久久午夜亚洲精品久久| 天天躁日日躁夜夜躁夜夜| av线在线观看网站| 午夜免费成人在线视频| av又黄又爽大尺度在线免费看| 欧美另类亚洲清纯唯美| 国产精品久久久久成人av| 一边摸一边做爽爽视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 国产91精品成人一区二区三区 | av国产精品久久久久影院| 在线十欧美十亚洲十日本专区| 不卡一级毛片| 考比视频在线观看| 大陆偷拍与自拍| 99riav亚洲国产免费| 久久久国产一区二区| 国产成+人综合+亚洲专区| 亚洲美女黄片视频| 国产精品偷伦视频观看了| 成人精品一区二区免费| 亚洲视频免费观看视频| 精品熟女少妇八av免费久了| 久久精品亚洲精品国产色婷小说| 亚洲精品美女久久av网站| 两人在一起打扑克的视频| 精品福利观看| 极品教师在线免费播放| 免费在线观看日本一区| 国产免费av片在线观看野外av| 久久香蕉激情| 黄色成人免费大全| 免费高清在线观看日韩| 亚洲欧洲日产国产| a级毛片黄视频| 国产精品 国内视频| 男人操女人黄网站| 黑人欧美特级aaaaaa片| 欧美日韩av久久| 丰满饥渴人妻一区二区三| 一个人免费看片子| 露出奶头的视频| e午夜精品久久久久久久| 丁香六月欧美| 欧美 日韩 精品 国产| 亚洲,欧美精品.| 99国产精品一区二区蜜桃av | aaaaa片日本免费| 脱女人内裤的视频| 国产成人欧美| 免费在线观看完整版高清| 一级,二级,三级黄色视频| 国产成人啪精品午夜网站| 国产精品一区二区精品视频观看| 国产欧美亚洲国产| 国产亚洲午夜精品一区二区久久| videos熟女内射| 黄片大片在线免费观看| 欧美性长视频在线观看| 日本黄色日本黄色录像| 国产精品一区二区在线不卡| 精品国产一区二区三区四区第35| 亚洲熟女精品中文字幕| 一级a爱视频在线免费观看| 人人妻人人澡人人爽人人夜夜| 午夜激情久久久久久久| 男女午夜视频在线观看| 国产极品粉嫩免费观看在线| 欧美日韩精品网址| 人妻 亚洲 视频| 丝袜美腿诱惑在线| 亚洲欧美一区二区三区黑人| 一进一出抽搐动态| 日日夜夜操网爽| 国产亚洲一区二区精品| 日韩欧美一区二区三区在线观看 | 亚洲精品美女久久久久99蜜臀| 电影成人av| 欧美精品av麻豆av| 成年版毛片免费区| 亚洲第一av免费看| 久久人妻熟女aⅴ| 国产精品美女特级片免费视频播放器 | 日本一区二区免费在线视频| 下体分泌物呈黄色| 天堂中文最新版在线下载| 免费在线观看日本一区| 久久中文看片网| 久久久久久亚洲精品国产蜜桃av| 中文字幕制服av| 在线观看人妻少妇| 亚洲人成电影观看| 搡老熟女国产l中国老女人| 99精品欧美一区二区三区四区| 欧美一级毛片孕妇| 涩涩av久久男人的天堂| 黄色片一级片一级黄色片| 一边摸一边做爽爽视频免费| 电影成人av| 精品久久久精品久久久| 性高湖久久久久久久久免费观看| 久久人人爽av亚洲精品天堂| 日韩欧美一区二区三区在线观看 | 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 国产麻豆69| 亚洲熟女毛片儿| 亚洲av第一区精品v没综合| 一级毛片精品| 十八禁网站网址无遮挡| 成人18禁高潮啪啪吃奶动态图| 日韩成人在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 久久久久久免费高清国产稀缺| 纵有疾风起免费观看全集完整版| 中文字幕精品免费在线观看视频| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 亚洲精品久久成人aⅴ小说| 日本撒尿小便嘘嘘汇集6| 老汉色∧v一级毛片| 最近最新免费中文字幕在线| 一边摸一边抽搐一进一出视频| 久久久国产精品麻豆| 久久人人爽av亚洲精品天堂| 久久中文看片网| 色综合欧美亚洲国产小说| 韩国精品一区二区三区| 中文字幕人妻熟女乱码| 变态另类成人亚洲欧美熟女 | 黑人欧美特级aaaaaa片| 精品人妻在线不人妻| 午夜福利在线观看吧| 91精品国产国语对白视频| 蜜桃在线观看..| 一级片'在线观看视频| 99国产极品粉嫩在线观看| 亚洲人成电影观看| 啦啦啦在线免费观看视频4| 亚洲精品久久午夜乱码| 免费不卡黄色视频| 国产1区2区3区精品| 伊人久久大香线蕉亚洲五| 久久久国产精品麻豆| 首页视频小说图片口味搜索| 欧美国产精品va在线观看不卡| 国产淫语在线视频| 一级,二级,三级黄色视频| 脱女人内裤的视频| 女人高潮潮喷娇喘18禁视频| 天堂中文最新版在线下载| 午夜成年电影在线免费观看| 亚洲精品在线美女| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 757午夜福利合集在线观看| 宅男免费午夜| 操出白浆在线播放| 在线观看www视频免费| 久久天躁狠狠躁夜夜2o2o| 欧美 亚洲 国产 日韩一| 成在线人永久免费视频| 精品卡一卡二卡四卡免费| 日韩三级视频一区二区三区| 亚洲 欧美一区二区三区| 亚洲男人天堂网一区| 成人18禁在线播放| 日韩欧美一区视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 91精品国产国语对白视频| 国产欧美日韩精品亚洲av| 91大片在线观看| 久久久精品免费免费高清| 久久精品国产99精品国产亚洲性色 | 欧美日韩中文字幕国产精品一区二区三区 | 不卡一级毛片| 男人操女人黄网站| 中文字幕制服av| 制服诱惑二区| 久久久久久久大尺度免费视频| 黄片大片在线免费观看| 动漫黄色视频在线观看| 男人操女人黄网站| 在线亚洲精品国产二区图片欧美| 女警被强在线播放| 欧美+亚洲+日韩+国产| 亚洲天堂av无毛| 久久久精品区二区三区| 久久精品成人免费网站| 一级黄色大片毛片| 久久精品成人免费网站| 国产亚洲一区二区精品| 亚洲熟女精品中文字幕| 狠狠精品人妻久久久久久综合| 久久香蕉激情| 伊人久久大香线蕉亚洲五| 日韩有码中文字幕| 日韩制服丝袜自拍偷拍| 国产麻豆69| 国产深夜福利视频在线观看| 亚洲人成电影免费在线| www.自偷自拍.com| 性少妇av在线| 亚洲欧美色中文字幕在线| 成人国语在线视频| 在线观看一区二区三区激情| 一级片'在线观看视频| 国产xxxxx性猛交| 亚洲综合色网址| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 国产深夜福利视频在线观看| 久久久久久亚洲精品国产蜜桃av| 在线观看一区二区三区激情| 国产精品久久电影中文字幕 | 日韩三级视频一区二区三区| 精品高清国产在线一区| 美女高潮到喷水免费观看| 一级毛片女人18水好多| 丁香欧美五月| 久久九九热精品免费| 国产精品自产拍在线观看55亚洲 | 亚洲美女黄片视频| 亚洲人成电影观看| 国产免费视频播放在线视频| 美女午夜性视频免费| 波多野结衣一区麻豆| av不卡在线播放| 亚洲成人国产一区在线观看| 热99re8久久精品国产| 老熟妇乱子伦视频在线观看| videosex国产| 两个人看的免费小视频| 免费看a级黄色片| 欧美日韩成人在线一区二区| 热99国产精品久久久久久7| 亚洲av日韩精品久久久久久密| √禁漫天堂资源中文www| 精品亚洲乱码少妇综合久久| 女人精品久久久久毛片| 国产不卡一卡二| 国产精品久久电影中文字幕 | 在线天堂中文资源库| 精品国产乱子伦一区二区三区| 99在线人妻在线中文字幕 | 老熟女久久久| 久久久久久亚洲精品国产蜜桃av| 99国产极品粉嫩在线观看| 国产一区二区在线观看av| 亚洲精品在线观看二区| 日韩中文字幕视频在线看片| 欧美黑人精品巨大| 久久热在线av| 日韩熟女老妇一区二区性免费视频| 色综合婷婷激情| 极品教师在线免费播放| 热99国产精品久久久久久7| 啪啪无遮挡十八禁网站| 国产亚洲一区二区精品| 99热国产这里只有精品6| 狠狠精品人妻久久久久久综合| 精品一区二区三区四区五区乱码| 亚洲国产毛片av蜜桃av| 久久久精品94久久精品| 99re6热这里在线精品视频| 啦啦啦在线免费观看视频4| 国产成人精品在线电影| 在线观看舔阴道视频| 日韩欧美免费精品| 欧美日韩精品网址| 欧美精品一区二区免费开放| 999精品在线视频| 黄色片一级片一级黄色片| 国产亚洲精品第一综合不卡| 亚洲国产中文字幕在线视频| a级片在线免费高清观看视频| 亚洲欧洲精品一区二区精品久久久| 日韩精品免费视频一区二区三区| 亚洲精品国产色婷婷电影| 欧美激情 高清一区二区三区| xxxhd国产人妻xxx| 久久精品人人爽人人爽视色| 欧美国产精品va在线观看不卡| 一级片免费观看大全| 又紧又爽又黄一区二区| 侵犯人妻中文字幕一二三四区| 精品福利永久在线观看| 亚洲中文字幕日韩| 国产国语露脸激情在线看| av线在线观看网站| 国产成人免费观看mmmm| 久久狼人影院| 50天的宝宝边吃奶边哭怎么回事| 老司机影院毛片| 老司机亚洲免费影院| 日韩视频一区二区在线观看| 99精品在免费线老司机午夜| 亚洲av美国av| 一区在线观看完整版| 欧美另类亚洲清纯唯美| 亚洲全国av大片| 久久天躁狠狠躁夜夜2o2o| 一区二区三区乱码不卡18| 亚洲精品一二三| 老司机福利观看| 亚洲精品在线观看二区| 69精品国产乱码久久久| 国产亚洲av高清不卡| 90打野战视频偷拍视频| 久久青草综合色| 天堂动漫精品| 亚洲情色 制服丝袜| 国产精品久久久人人做人人爽| 少妇的丰满在线观看| 91成人精品电影| 久久精品亚洲av国产电影网| 黄网站色视频无遮挡免费观看| cao死你这个sao货| 成年人午夜在线观看视频| 俄罗斯特黄特色一大片| 成人精品一区二区免费| 视频区欧美日本亚洲| 成人18禁高潮啪啪吃奶动态图| 人妻 亚洲 视频| 免费av中文字幕在线| 考比视频在线观看| 成人18禁在线播放| 国产又色又爽无遮挡免费看| 搡老乐熟女国产| 大香蕉久久网| 国产精品国产高清国产av | 三级毛片av免费| 美女午夜性视频免费| 成人影院久久| 91成年电影在线观看| 欧美国产精品va在线观看不卡| 欧美亚洲 丝袜 人妻 在线| 老熟妇仑乱视频hdxx| 老司机午夜十八禁免费视频| 美女午夜性视频免费| 人人澡人人妻人| 老司机影院毛片| av免费在线观看网站| 后天国语完整版免费观看| 亚洲伊人色综图| 亚洲国产欧美在线一区| 99re6热这里在线精品视频| 一区二区三区乱码不卡18| 1024视频免费在线观看| 日韩欧美国产一区二区入口| 成人18禁在线播放| 午夜福利免费观看在线| 黄色视频在线播放观看不卡| 99热国产这里只有精品6| 精品国产一区二区三区四区第35| 免费在线观看日本一区| 亚洲一码二码三码区别大吗| 免费在线观看影片大全网站| 精品欧美一区二区三区在线| 十八禁网站网址无遮挡| 色婷婷久久久亚洲欧美| 麻豆国产av国片精品| 国产精品久久久av美女十八| 我的亚洲天堂| 免费观看av网站的网址| 国产亚洲一区二区精品| 亚洲成国产人片在线观看| 久久av网站| 天天躁日日躁夜夜躁夜夜| 丝袜人妻中文字幕| 久久精品国产a三级三级三级| 亚洲国产中文字幕在线视频| 国产精品.久久久| 女性被躁到高潮视频| 国产熟女午夜一区二区三区| 午夜福利欧美成人| 国产成人免费无遮挡视频| 亚洲国产精品一区二区三区在线| 美女视频免费永久观看网站| 亚洲综合色网址| 国产国语露脸激情在线看| av在线播放免费不卡| 日日爽夜夜爽网站| 夜夜爽天天搞| 亚洲av成人不卡在线观看播放网| 亚洲精品国产色婷婷电影| 亚洲人成77777在线视频| 亚洲欧美日韩另类电影网站| 日本wwww免费看| 热99久久久久精品小说推荐| 欧美乱码精品一区二区三区| 久久精品亚洲av国产电影网| 国产成人系列免费观看| 脱女人内裤的视频| 纵有疾风起免费观看全集完整版| 男人舔女人的私密视频| 黑人猛操日本美女一级片| 五月开心婷婷网| 国产精品1区2区在线观看. | 欧美另类亚洲清纯唯美| 亚洲中文av在线| 久热爱精品视频在线9| 日本vs欧美在线观看视频| h视频一区二区三区| 在线观看免费高清a一片| 国产成人精品无人区| 亚洲专区国产一区二区| 一区在线观看完整版| 精品亚洲成a人片在线观看| 成人三级做爰电影| av天堂在线播放| 国产一区二区三区综合在线观看| 一级毛片女人18水好多| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区久久| 极品教师在线免费播放| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 精品一区二区三区视频在线观看免费 | 国产成人av教育| 在线观看一区二区三区激情| 一级毛片电影观看| 深夜精品福利| 色综合婷婷激情| 69av精品久久久久久 | 两性夫妻黄色片| 午夜视频精品福利| 久久久久久亚洲精品国产蜜桃av| 亚洲国产看品久久| 国产日韩一区二区三区精品不卡| 亚洲中文av在线| 欧美人与性动交α欧美软件| 久久久久久久久久久久大奶| 妹子高潮喷水视频| 国产国语露脸激情在线看| 国产一区有黄有色的免费视频| 高清在线国产一区| 久久久水蜜桃国产精品网| 女人爽到高潮嗷嗷叫在线视频| 男女下面插进去视频免费观看| 丰满饥渴人妻一区二区三| 性少妇av在线| 久久精品aⅴ一区二区三区四区| 精品国产乱子伦一区二区三区| 亚洲九九香蕉| 日本a在线网址| 美女视频免费永久观看网站| √禁漫天堂资源中文www| 丝袜美腿诱惑在线| 午夜视频精品福利| 制服人妻中文乱码| 国产av精品麻豆| 美女视频免费永久观看网站| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品久久久久5区| 狠狠精品人妻久久久久久综合| 91大片在线观看| 国产成人精品久久二区二区91| 亚洲精品在线观看二区| 亚洲欧美日韩高清在线视频 | 999久久久国产精品视频| 国产aⅴ精品一区二区三区波| 久久99一区二区三区| 国产深夜福利视频在线观看|